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Abstract

Targeted drug delivery has been the major topic in drug formulation and delivery. As 

nanomedicine emerges to create nano scale therapeutics and diagnostics, it is still essential to 

embed targeting capability to these novel systems to make them useful. Here we discuss various 

targeting approaches for delivery of therapeutic and diagnostic nano materials in view of search 

for more universal methods to target diseased tissues. Many diseases are accompanied with 

hypoxia and acidosis. Coating nanoparticles with pH Low Insertion Peptides (pHLIPs) increases 

efficiency of targeting acidic diseased tissues. It has been showing promising results to create 

future nanotheranostics for cancer and other diseases which are dominating in the present world.
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1. Introduction

For a long time people have been working on developing therapeutic agents so that they can 

tune pharmacological and pharmacokinetic properties to treat diseases and get desired 

results. In their continuous quest for food and survival, our ancestors must have experienced 

the effects of natural sources of pharmacologically active chemical substances produced by 

organic and inorganic materials such as plants, fungi, insects, animal excreta, reptiles and 

mineral ores for better or for worse. They must have learnt to extract active ingredients from 

natural resources using crude methods and enhanced to use as pain killers or to heal wounds 

or to treat all types of diseases known to them. Ebers papyrus, dated back to ~ 1500 BC 

provides a detailed description of medical treatments used by ancient Egyptians (Jones, 

2011; Shadlen, 2011). In early as 7 century AD, metal, mineral and herbal based particles 

called Bhashma has been used in Ayurvedic medicine in Indian sub-continent. Modern 

analysis showed that these formulations contained Fe2 O3, FeS2, CuS and SiO2 and also 

particle sizes were regulated in the range of 1-2 μm (Mohaptra and Jha, 2010; Pal et al., 

2014). Undoubtedly, these ancient knowledge had laid the foundation for modern drug 
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formulation and delivery and made a huge breakthrough in this field as the chemical 

analysis became first available to us in 19th century (Ansari and Farha Islam, 2012 ).

While the conventional drugs are still being widely used, the innovation of therapeutic 

nanoparticles has been radically changing the future of drug formulation and delivery (Cai 

and Chen, 2007; Davis, 2008; Gao et al., 2005; Heath et al., 1980; Shi et al., 2010; Zhang et 

al., 2007). Nanoparticles are becoming more popular due to their unique tunable 

physicochemical properties. They have shown promising results in delivery of variety of 

molecules improving the therapeutic index of drugs by enhancing their efficacy and/or 

increasing their tolerability in the body. Nano-carries could also improve the bioavailability 

of water-insoluble drugs, carry large payloads, protect the therapeutic agents from 

physiological barriers, as well as enable the development of novel classes of bioactive 

macromolecules (Swami et al., 2012).

2. Targeted delivery of nanoparticles

Almost a century ago, Paul Ehrlich introduced the concept of targeted drug delivery. It was 

considered as a hypothetical ‘magic bullet’ as an entity consisting of two components — the 

first one should recognize and bind the target, while the second should provide a therapeutic 

action in this target. Currently, the concept of ‘magic bullet’ includes a coordinated behavior 

of three components – drug, targeting moiety and pharmaceutical carrier (Torchilin, 2000). 

Nanoparticles can be designed to have all three properties of the revised version of Ehrlich's 

“magic bullet”, and they could be used as therapeutics and/or diagnostics. When designing 

the nano-drugs it is essential to understand the target region. Target regions could be whole 

organs (heart, lung, brain, liver and etc), tissues (muscle), cells (nerve, dendrite and etc), 

disease specific structures (tumor cells) or cellular components. The efficacy of the 

therapeutics, effectiveness of the diagnostics, safety, affordability and access will measure 

the final success of nanoparticles in medicine in regard to its applied value to the patients.

3. Three major ways of delivery of nanoparticles

Nanoparticle drug delivery systems use the characteristics of disease tissues to selectively 

target their payloads, either by passive, active or physical targeting (Egusquiaguirre et al., 

2012; Petros and DeSimone, 2010).

3.1 Passive targeting

When nanoparticles localize into specific organs or site of disease via biological 

mechanisms, such as RES (reticuloendothelial system) or EPR (enhanced permeability and 

retention) effects, they are known as ‘passive targeting agents’ (Shilo et al., 2012).

RES also called macrophage system or mononuclear phagocyte system, is a class of cells 

which are part of the body's defense mechanisms. If nanoparticles are not protected against 

RES, they will end up in liver, spleen or lymph nodes very soon. Even though this seems to 

be a disadvantage, RES mechanism can be successfully used for mapping liver (Aviv et al., 

2009; Hainfeld et al., 2014; Kim et al., 2007; Kojima et al., 2010; Rabin et al., 2006; Shilo et 

al., 2012), spleen (Boote et al., 2010; Hainfeld et al., 2014; Oh et al., 2011; Rabin et al., 
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2006; Sun et al., 2009; Xiao et al., 2010) and lymph nodes (Aviv et al., 2009; Oh et al., 

2011; Rabin et al., 2006). The information gain from mapping of lymph nodes gives vital 

indications for cancer staging and metastatic potential of tumor, which could prevent 

unnecessary dissection surgery. The EPR effect is very common for most of the solid tumors 

and has been exploiting as a passive mechanism to deliver therapeutic agents. As tumor 

grows its architecture of vasculature become quite abnormal, showing lack of lymphatic 

drainage and leaky blood vessels. This allows the long circulating nanoparticles to 

accumulate in tumor site overtime at higher levels compared to other organs (Acharya and 

Sahoo, 2011; Greish, 2007; Huang et al., 2012; Khalid et al., 2006; Li and Szoka, 2007; 

Maruyama, 2011; Rasmussen et al., 2010; Torchilin, 2010; Wang et al., 2012a).

3.2 Active Targeting

Active targeting uses peripherally conjugated specific targeting moieties for enhanced 

delivery of nanoparticles. The targeting moieties are various ligands including antibodies, 

peptides, aptamers or small molecules that possess high affinity toward unique molecular 

signatures found in diseased tissue to achieve active targeting (Byrne et al., 2008). Three 

general categories of active targeting methods are i) angiogenesis-associated targeting, ii) 

uncontrolled cell proliferation targeting and iii) tumor cell targeting.

Chemical stimulation for angiogenesis is caused by variety of proangiogenic factors such as 

vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). They 

are the key ingredients of this very complex biological mechanism which is essential for life. 

Pathological angiogenesis or abnormally rapid proliferation of blood vessels is common for 

growth of solid tumors. Therefore the targeting of angiogenesis has become a focus for 

cancer therapeutics (Chung and Ferrara, 2011; Folkman, 2002; Goth et al., 2003; Hicklin 

and Ellis, 2005; Jain, 2002; John and Tuszynski, 2001; Khalid et al., 2006; Seaman et al., 

2007). Thus, the growth factors are attacked by inhibitors of angiogenesis to regulate the 

tumor progression (Folkman, 1996; Mousa, 2000).

Another significant target for cancer cells are the cell proliferation markers. These markers 

are not unique to cancer cells but they are overexpressed in certain cancer cells. The human 

epidermal receptors (HER), transferrin receptors and folate receptors are widely being 

employed. Actively targeting nanoparticles have been using the monoclonal antibodies to 

target overexpressed cell proliferation receptors (Byrne et al., 2008; Gullotti and Yeo, 2009; 

Mamot et al., 2003; Qian et al., 2002; Sudimack and Lee, 2000).

According to the American Cancer Society statistics, in US, it is estimated that more than 

1.6 million new cases of cancer will be diagnosed and more than 0.5 million cancer deaths 

will occur in 2014. The four most common types of cancers that will be diagnosed in 2014 

in the United States are breast in women and prostate in men, lung, and colorectal. Therefore 

targeting of specific tumor cells is becoming another popular area. FDA has already 

approved several monoclonal antibodies for the treatment of specific types of cancers. 

Trastuzumab, a humanized monoclonal antibody against HER-2 which is overexpressed in 

human breast cancer, for the treatment of HER-2-positive metastatic breast cancer was 

introduced in 1998. Panitumumab, a human antibody against EGFR produced in transgenic 

mice (XenoMouse), for the treatment of EGFR-positive colorectal cancer was approved in 
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2006. Avastin, a humanized antibody against VEGF, for the treatment of metastatic 

colorectal cancer was introduced in 2004. Cetuximab, a chimeric antibody directed to EGFR 

(HER-1) for the treatment of advanced colorectal cancer appeared in 2004. Avastin® 

(Genentech, South San Francisco, CA) is a recombinant humanized anti-VEGF monoclonal 

antibody for the treatment of non-small cell lung cancer, metastatic colorectal cancer and 

metastatic breast cancer were approved (Byrne et al., 2008).

The major advantage of the active targeting over the passive targeting is a selective delivery 

of nanoparticles to the specific tumors/pathogenic tissues, which remain in the site of 

disease for an extended period of time, thereby increasing the local accumulation of the 

nanoparticles in the sites of interest. (Baldini et al., 1997; Gonzalez-Angulo et al., 2007; 

Kaufman, 2006; Meacham and Morrison, 2013). However, the heterogeneity and 

adaptability of cancers are difficult to overcome, which makes it problematic to create a 

common cure based on active targeting. Therefore, it is important to identify a universal 

hallmark for majority of cancers or consider use of external physical stimuli as a targeting 

strategy.

3.3 Physical Targeting

In many cases, pathological area differs from normal tissues in certain physical properties, 

such as temperature, lack of oxygen and pH. These natural properties are common for 

majority of cancers independent of origin, and could be exploited as targeting approaches. 

The principle behind use of nanoparticles for physical targeting is that a stimulus, which 

may be applied externally or originate within the pathological site, induces either a physical 

change in the structure of the nanoparticle itself, thereby causing the eradication of the target 

or modulating the rate at which an embedded drug is released. pH, lack of oxygen, 

temperature, ultrasound, electromagnetic radiation and mechanical forces serve as stimuli 

for physical targeting.

3.3.1 Magnetic-sensitive systems—Use of magnetic sensitive nanoparticles was first 

proposed by Widder, Senyi and their colleagues in late 1970s (Senyei et al., 1978; Widder et 

al., 1978). These nanoparticles are primarily fabricated in such way that therapeutic agents 

are attached to, or encapsulated within, a magnetic core or shell by giving capability of 

functionalizing their surfaces. Once functionalized, the nanoparticles are injected into the 

bloodstream, often using a catheter to position the injection site near the target. Powerful 

rare earth magnets are focused over the target site to apply magnetic fields with high-

gradient and the forces affecting the particles. So, the field permits nanoparticles to be 

captured and released at the target. Clinical trials done by Koda et al. to deliver doxorubicin 

hydrochloride showed great deal of success for hepatocellular carcinoma (Koda et al., 2002). 

This method may be effective for targets close to the body's surface, but as the magnetic 

field strength falls off rapidly with distance, sites deeper within the body become more 

difficult to target (McBain et al., 2008). Several groups recently proposed a way to 

overcome this hurdle by implanting magnets near the target site, within the body (Kubo et 

al., 2000; Yellen et al., 2005). However, this method is invasive and not systematic, which 

apply significant restrictions for clinical use. Moreover this method would not target 

metastases, which make cancer a lethal desease.
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Key advantages of magnetic NPs are they can be (i) visualized (super paramagnetic NPs are 

used in MRI);(Andreas et al., 2012; Thorek et al., 2006) (ii) guided or held in place by 

means of a magnetic field; (iii) heated in a magnetic field to trigger drug release or to 

produce hyperthermia/ablation of tissue; (iv) targeted specific locations in the body; (v) 

reduced the quantity of drug needed to attain a particular concentration in the vicinity of the 

target; (vi) reduced of the concentration of the drug at non target sites minimizing severe 

side effects and (vii) used to perform magnetic guided surgeries for surgically impossible 

tumors either due to too hemorrhagic or localized in tissues with high risk of healthy tissue 

injury.

Despite of these advantages they also inherit limitations. MNPs accumulate throughout the 

cross section from the external source to the depth marking the effective field limit which is 

a drawback. Magnetic agglomeration at the absence of magnetic field is tackled by 

superparamagnetic NPs. Creation of smaller NPs, is essential to achieve super-

paramagnetism. As the size becomes smaller, particles’ response to the magnetic field is 

remarkably reduced. As a result of that it makes difficult to direct particles and keep them in 

the proximity of the target while withstanding the drag of blood flow.

3.3.2 Ultrasound-sensitive systems—When nanoparticles are used to target solid 

tumors, homogeneous distribution of most of them in tumor is always questionable. 

Although nanoparticles can extravasate from the blood to the extracellular matrix, they do 

not always travel far away from the blood vessels. Thus, only a small population of cancer 

cells located close to the blood vessels will be exposed to the cytotoxic drugs thus 

minimizing it's therapeutic index. As nanoparticles stay for longer periods of time, they 

could target and bring harm to normal tissues. Researchers have explored ways to use 

ultrasound to enhance the cellular uptake of nanoparticles in the target sites by increasing 

the permeability of the capillary walls, pushing them through the extracellular matrix, 

enhancing the release of the drug from the nanoparticles and improving the cellular uptake.

Escoffre and his colleagues showed on 2D and 3D in vitro models that the focused-

ultrasound not only helps nanoparticles to penetrate into the interior of the tumor, it also 

helps to release drugs to the intercellular space without altering chemical properties 

(Dalecki, 2004; Escoffre et al., 2013; Hagtvet et al., 2011; Pitt et al., 2004b). The use of 

phenomenon of cavitation, which is the formation of bubbles in a medium exposed to 

intense focused ultrasound to disrupt the targeted tissue, is another application of this kind. 

Microbubble-based drug-delivery vehicles can flow through the vasculature into the 

ultrasound focal zone within the tumor region and they can release payloads upon the 

rupture. These bubbles can be also used as imaging contrast agents to improve diagnosis and 

detection of cancer (Dijkmans et al., 2004; Ferrara et al., 2007; Ibsen et al., 2013; Lindner, 

2002; Unger et al., 2001).

Non-invasiveness, the absence of ionizing radiations, and the facile regulation of tissue 

penetration depth by tuning frequency, duty cycles and time of exposure can be identified as 

the main advantages of using ultrasound sensitive systems (Mura et al., 2013). Ultrasound 

can trigger release of drugs from various nanocarriers by destabilization. Ultrasound 

triggered delivery systems has the ability to release drugs into cytosol as result of pore 
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formation in the cell membrane. Therefore they can bypass degenerative endocytotic 

pathway which is especially useful in DNA transfection (Pitt et al., 2004a). Low frequency 

ultrasounds can be used to promote the delivery of some liposomal based drugs through the 

skin to inhibit progression of melanocytic lesions(Tran et al., 2008). However, the increased 

vessel permeability through ultrasound can also impact negatively by promoting metastatic 

dissemination. Possible metastatic dissemination can be minimized by using NPs containing 

agents, which are able to efficiently interact with ultrasonic waves and decrease the 

threshold frequencies of ultrasound waves. Effectiveness of microbubbles based drug 

delivery for tissue targeting may be limited by their short lifespan and absence of 

extravasation. The development of perfluorocarbon (PFC) nanoemulsions and PFC droplets 

functionalized with aptamers, which can be converted into microbubbles under therapeutic 

ultrasounds have significantly improved cellular uptake and/or release of drugs in tumor 

sites(Rapoport et al., 2009).

3.3.3 Temperature-sensitive systems—Above we gave examples of external stimuli 

applied to diseased area to enhance delivery of nanoparticles and/or release of imaging/

therapeutic moieties. Another approach relays on exploration of natural properties or 

microenvironment in diseased tissue. It is observed that certain types of malignant cancer 

(bladder, prostate and etc) (Stefanadis et al., 2001) and some other disease conditions show 

difference in local temperature compared to normal tissues. Understanding of the differences 

of local temperature in pathological sites paved the path to temperature-sensitive delivery 

systems. Long circulating, thermo-sensitive nanocarriers can be fabricated and used to 

exploit micro-environmental temperature differences in diseased sites. For example, in 1978, 

Yatvin et al. first time suggested a method to use temperature-sensitive liposomes to target 

mild hyperthermia in disease sites. Active or passive targeting methods have to be first 

employed to accumulate thermo-sensitive nanocarriers in targeted sites. As the nanocarriers 

accumulate in target sites, carried drugs are released in response to the micro-environmental 

temperature in more controlled manner.

In general, the thermo-sensitive polymers have the ability to swell and de-swell, depending 

on temperature. The two basic types of thermo-sensitive materials are: i) positive 

temperature-sensitive hydrogels that are swollen and hydrated at higher temperatures and 

contract on cooling below the upper critical solution temperature (UCST) and ii) negative 

temperature-sensitive hydrogels that are swollen at lower temperatures and contract on 

heating above the lower critical solution temperature (LCST). Water solubility of the system 

decreases as temperature increases. The latest type of system dominates the literature on 

drug release applications (Ta and Porter, 2013). Upon the introduction of UCST/LCST 

polymers to nanocarrier systems, they gained the ability to actively respond to the 

temperature changes in the microenvironment. As they respond to the environmental 

temperature these systems remarkably change their features such as conformation, solubility 

and hydrophilic/hydrophobic balance to release therapeutic agents in those sites (Fitzpatrick 

et al., 2012).

Injectable thermo-sensitive hydrogel systems are also considered as potential thermo-

sensitive nano-carries owe to their number of advantages, including simplicity of drug 

formulation, protective environment for drugs, prolonged and localized drug delivery, and 
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ease of application. Chitosan and related derivatives, poly(N-isopropylacrylamide)-based 

(PNIPAAM) copolymers, poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) 

copolymers and its derivatives, and poly(ethylene glycol)/ biodegradable polyester 

copolymers are widely used by researchers to construct injectable thermo-sensitive 

hydrogels (Gong et al., 2013; Lindner et al., 2004; McCoy et al., 2010; Stefanadis et al., 

2001; Yatvin et al., 1978).

DPPC/DSPC are the most common lipids used in making thermo sensitive liposomes. With 

the right lipid composition temperature- dependent fusion of liposomes can be achieved at 

mild hyperthermia region (39 °C- 42 °C) enhancing increased level of drug available at the 

diseased site (Ta and Porter, 2013). Early in vivo work done over a range of tumor models, 

including various carcinomas, sarcomas, and lymph node metastases, and over a range of 

drugs, including adriamycin, methotrexate, bleomycin and cisplatin showed the benefits of 

temperature-sensitive liposomes when use with mild hyperthermia (Iga et al., 1991; 

Maekawa et al., 1987; Nishimura et al., 1990; Tacker and Anderson, 1982; Weinstein et al., 

1979; Yatvin et al., 1981; Zou et al., 1990). Temperature sensitive nano-systems offer 

numerous advantages such as elimination of invasive surgical procedures, the ability to 

bypass physiological barriers, and allowing drugs to reach hard-to-access sites in the body, 

ability to stealth the thermo sensitive systems against immune system and environmental 

degradation and ability to combine this with induced hyperthermia. Owe to extensive studies 

done in these systems over past three decades that gives the capability for wide variety of 

choices to design nanocarriers of desired architectures. Limitations of thermo-sensitive 

nanocarriers can be overcome by combining them with additional stimuli-responsive 

materials.

3.3.4 Targeting hypoxia—Hypoxia (low oxygen concentrations) plays a vital role in 

many tumors by contributing to chemoresistance, radioresistance, angiogenesis, 

vasculogenesis, invasiveness, resistance to cell death, altered metabolism and genomic 

instability. The hypoxic regions often lie surrounding areas of necrosis in solid tumors 

(Brahimi-Horn et al., 2007; Brown and Wilson, 2004; Wilson and Hay, 2011). Hypoxia-

inducible factor (HIF), which is a transcriptional complex, acts as the hypoxia sensor in a 

cell. Overexpression of HIF-α, the regulatory subunit of HIF is a measure of increased 

vascular density, severity of tumor grade, failure of conventional treatment and prognosis. 

Therefore HIF has become an attractive, direct and indirect therapeutic target in recent years 

(Carroll and Ashcroft, 2006; Harris, 2002; Poon et al., 2009). Thambi et al. reported about 

self-assembled nanoparticles called hypoxia-responsive nanoparticles, which can selectively 

release hydrophobic agents under hypoxic conditions (Thambi et al., 2014). In vivo studies 

showed selective accumulation of nanoparticles at the hypoxic regions in tumors compared 

to normal cells.

Development of hypoxia targeting nanoparticles opens new paths to overcome drug delivery 

impediments mentioned earlier. For instance, the brain which demands high amount of 

oxygen is vulnerable to hypoxia as a result of irregularity of the blood flow induced by 

either cardiac failure, traumatic brain injury, brain cancer or subcortical vascular disease. 

Neuronal dysfunction and cell death in major neurodegenerative diseases also have direct 

and indirect links to hypoxia. Since HIF involved in virtually all aspects of the response to 
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hypoxia, HIF based nanocarriers have the potential advantage of simultaneously regulating 

the expression of a large number of genes thus treatment of diseases. However, for HIF 

related therapies it is vital to discriminate between various HIF isoforms (Freeman, 2005; 

Rapisarda and Melillo, 2012). Another potential advantage of hypoxia targeting NPs is the 

ability to treat inaccessible brain tumors, which cannot be achieved through conventional 

surgeries.

3.3.5 Targeting acidity—It's well known that the cancer cells undergo glycolysis even in 

the presence of oxygen which has very significant importance to cancer cells survival and 

proliferation. As a result, high glycolytic activity and production of carbonic and lactic 

acids, which are intensively pumped out cells to keep intracellular pH near neutral, are 

common characteristics of solid tumors. It leads to extracellular acidification of tumor 

microenvironment, which promotes cancer invasiveness and aggressiveness (Gatenby and 

Gillies, 2008; LaMonte et al., 2013; Mahoney et al., 2003; Wojtkowiak et al., 2011). This 

acidic microenvironment is common even for several other diseased tissues, such as 

ischemia, inflammation, arthritis and atherosclerosis. Thus, extracellular acidity might serve 

as a general marker for detecting and targeting of diseased tissue.

pH-sensitive nanoparticle systems are the one of the well-studied delivery systems. These 

systems contain pH sensitive polymers, lipids or peptides such as pHLIPs (pH Low Insertion 

Peptides). Key principle of making pH sensitive fusogenic liposomes is to identify a lipid 

which is stable at physiological pH but destabilized upon acidification following cellular 

internalization, thereby, promoting the release of their contents into the cytosol. First 

generation of such liposomes are designed using the cone shape of 

phosphatidylethanolamine (PE) lipids (Karanth and Murthy, 2007). Cytoplasmic delivery of 

membrane-impermeable therapeutic agents has been improved by the DOPE-based pH 

sensitive liposomes (Chu et al., 1990; Lee et al., 1998; Subbarao et al., 1987). The layer-by-

layer (LbL) nanoparticle assembling technique is developed to prepare pH-sensitive 

nanoparticles. They contain a pH-sensitive outer stealth layer which allows targeting and 

retaining of nanoparticles in acidic tumor regions (Poon et al., 2011). pH sensitive systems 

can be also achieved by the self-assembled surfactants. They are mostly known as niosomes 

and analogues to liposomes. For example, Di Marzio and colleagues reported that the use of 

non-ionic surfactants polysorbate 20 and polysorbate 21 together with cholesterol can form 

highly stable pH sensitive nano-vesicles which have the potential to deliver both hydrophilic 

and hydrophobic therapeutic agents to target sites (Di Marzio et al., 2011). pH sensitive 

systems also show great success for delivering drugs through oral drug administration due to 

vast environmental pH differences in gastrointestinal system (Makhlof et al., 2009, 2011; 

Sonaje et al., 2010). The development of highly pH sensitive NPs to target acidity helps not 

only for treatments but also for diagnosis of wide array of carcinomas and many other 

pathological diseases.

4. pHLIP-technology

The pHLIP technology, which was introduced several years ago, has been showing success 

in targeted drug delivery for cancer and other pathogenic conditions. pHLIP, being a 

membrane peptide, has affinity to cellular membranes and it targets extracellular acidity. In 
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contrast to other pH-sensitive systems, it “senses” acidity at the surface of cancer cells, 

where pH is the lowest due to the reversed pH gradient compared to cells in healthy tissue 

(Chiche et al., 2010).

4.1. Molecular mechanism of pHLIP action

The original pHLIP composed of 36 amino acids is an isolated C-helix of bacteriorhodopsin. 

The water-soluble pHLIP peptide has been observed to behave differently at different pHs 

when it is in the vicinity of the lipid bilayer. The pHLIP binds to lipid bilayer surfaces as an 

unstructured monomer above pH 7, and it spontaneously inserts as an α-helix across lipid 

bilayers at low pH, with a pKapp of 6 (Hunt et al., 1997). The insertion of pHLIP into 

membrane, is reversible and unidirectional, in most cases the C-terminus is translocated 

across the membrane whereas the N-terminus stays outside of the membrane (Reshetnyak et 

al., 2008; Reshetnyak et al., 2007). The opposite occurs for reverse sequence (Weerakkody 

et al., 2013). The insertion mechanism is based on the protonation of Asp/Glu residues 

located in the membrane inserting parts of the pHLIP (Andreev et al., 2014; Barrera et al., 

2011; Hunt et al., 1997; Karabadzhak et al., 2012). The thermodynamics and kinetics of 

pHLIPs membrane-associated folding and insertion has been extensively investigated. 

Peptide's three major forms (in solution, attached to, and inserted across lipid bilayers ) are 

monomeric at peptide concentration less than ~ 7 μM (Reshetnyak et al., 2007). The process 

of insertion and folding (helix formation) is fast and varies from milliseconds to minute 

depending on peptide sequence (Andreev et al., 2010; Karabadzhak et al., 2012). The energy 

of peptide's association with bilayer is about 6-7 kcal/mol (Reshetnyak et al., 2008). As 

pHLIP inserts into the membrane and folds it releases additional energy (about 2 kcal/mol) 

(Reshetnyak et al., 2008), which could be utilized to tether cargo molecules to the surface of 

cancer cells (Fig 1a), or move cell impermeable cargo molecules across the membrane into a 

cell (Fig. 1b). It has been shown tumor targeting of fluorescent, PET and SPECT probes 

attached to the N-terminus of pHLIP (Cruz-Monserrate et al., 2014; Daumar et al., 2012; 

Macholl et al., 2012; Reshetnyak et al., 2011; Vavere et al., 2009; Viola-Villegas et al., 

2014). As biological membrane remains the main barrier for cytoplasmic drug delivery it 

was demonstrated that the energy of membrane-associated folding of pHLIP can be used to 

successfully deliver into cells polar and membrane-impermeable molecules including cyclic 

peptides, toxins, peptide nucleic acids (PNAs) linked to pHLIP's C-terminus via cleavable 

links (An et al., 2010; Moshnikova et al., 2013; Reshetnyak et al., 2006; Thévenin et al., 

2009; Wijesinghe et al., 2011). Over a decade the original pHLIP peptide has given birth to 

more than 20 pHLIP variants and available to use as probing and delivery agent 

(Weerakkody et al., 2013). The ability of pHLIP to probe extracellular acidic environment, 

which is associated with tumors and many other pathological conditions has opened new 

avenues for future drug delivery.

4.2. pHLIP based nanomedicine

Roughly a half a century ago, a British biophysicist and a medical scientist, Alec Bangham 

made a remarkable observation that phospholipids in aqueous systems can form closed 

bilayered structures and named them Bangasomes. Today we call them liposomes. After 

Bangham and his collaborators established the existence of liposomes, the liposomes have 

moved a long journey from being just another exotic entity of biophysical and colloidal 
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science research and became a pharmaceutical carrier of choice for various real-world 

applications, as we outlines in previous sections. As a result of that, now liposomal drugs 

has approved for clinical applications or they are undergoing clinical evaluation (Torchilin, 

2005).

When pHLIP is introduced to the conventional liposomes as a coating moiety (Fig. 1c), it 

allows to enhance the therapeutic value of the liposomes. It was shown that the presence of 

pHLIP on the surface of PEGylated-liposomes enhanced membrane fusion and lipid 

exchange in a pH dependent fashion, leading to increase of cellular uptake and payload 

release (Fig. 1d), and inhibition of cell proliferation by liposomes containing ceramide (Yao 

et al., 2013b). For liposomal drug production and storage the controlling of their size 

becomes a major issue. When liposomes are in storage they could fuse with each other and 

give a poly-disperse liposomal mixture and diminish the desirable properties as nano-

carriers. The same study (Yao et al., 2013a) reveals that liposomes containing just 5% of 

pHLIP lipid composition minimize inter-liposomal fusion and make them stable for several 

days if stored at neutral pH, since pHLIP brings overall negative charge to the surface of 

liposomes at neutral and high pHs. At the same time, drop of a pH leads to the protonation 

of Asp/Glu residues, reduces overall negative charge at the surface of liposomes and 

enhances interaction of pHLIP-coated liposomes with cellular membranes. It was studied the 

interaction between pHLIP-coated liposomes and cells as a function of incubation time of 15 

min vs. 60 min and it was shown existence of different pathways of liposome-cell 

interaction. Predominantly direct liposomal fusion with plasma membrane occurs during 

short incubation period; while during long incubation period, both fusion and cellular 

internalization through endocytosis (most probably, macro pinocytosis) could happen. Since 

pegylation helps to prevent opsonization, it promotes longer circulation of liposomes in 

blood, and enhances probability for liposomes to interact with cell membrane in a pH 

dependent manner. Thus, the pH-sensitive, “fusogenic” pHLIP-coated liposomes could be 

used to selectively deliver various diagnostic and therapeutic agents to acidic diseased cells.

Emmetiere et al. (Emmetiere et al., 2013) (Emmetiere et al., 2013) (Emmetiere et al., 2013) 

introduced dual-delivery approach using pHLIP to tether liposomes to cancer cells in tumor 

(Emmetiere et al., 2013). First, pHLIP was conjugated to the tetrazine (Tz), which is one of 

the bioorthogonally reactive small molecules to form pHLIP-Tz conjugate. pHLIP-Tz was 

injected into mice to selectively label the surface of cancer cells. Then, bioorthogonally 

reactive trans-cyclooctenes coated liposomes containing 18F PET isotope were given as a 

second injection. The long circulating radiolabeled liposomes were accumulated in tumor 

sites mainly via EPR effect, followed the click reaction between tetrazine-pHLIP and trans-

cyclooctenes in liposome coat resulting in covalent conjugation and tethering of liposomes 

to cancer cells. This in vivo click reaction allows achieving high signal/noise ratio, higher 

accumulation of radiolabeled liposomes in tumor site, low nonspecific binding and reduced 

toxicity to kidneys and bone marrow.

According to the World Health Organization statistics the ischemic heart diseases are the top 

leading cause of death, affecting millions of men and women worldwide. Several techniques 

for passive and active imaging and as well as drug delivery to the diseased cardiac tissue 

have been developed during past few years (Galagudza et al., 2010; Scott et al., 2008), 
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which including different types of nanoparticles for drug delivery such as liposomes, drug–

polymer conjugates, polymeric micelles, dendrimers, nanoshells, and nucleic acid-based 

carriers (Torchilin, 2005; Verma et al., 2005; Wang et al., 2008). A study was done to 

evaluate ability of pHLIP-coated liposomes to target ischemic myocardium using two 

murine ischemia models: regional ischemia induced by coronary artery occlusion and global 

low-flow ischemia in isolated hearts (Sosunov et al., 2013). In both models, two candidates 

from the pHLIP family (WT and Var7) were chosen along with pH insensitive kVar7 (K-

pHLIP), which has Lys instead of key Asp/Glu residues and cannot insert into membrane at 

any pH (Weerakkody et al., 2013). It was shown that pHLIP-coated liposomes bind to 

ischemic regions but not to normal myocardium while kVar7 and liposomes coated just with 

PEG (no pHLIP) do not show any targeting (Sosunov et al., 2013). The study ensures that 

pHLIP-coated liposomes have the ability to target ischemic regions with therapeutic agents 

as well as to mark disease regions to assist pHLIP-fluorescent-aided cardiac surgeries.

Another novel approach of pHLIP-coated-liposomes is the delivery of nano-pores to induce 

apoptosis in cancer cells (Wijesinghe et al., 2013). Proper ion balance between intracellular 

and extracellular media is crucial for normal cell functioning. Any alterations in the 

conductance of membranes for ions will lead to cell death. To change cellular ion ballance 

the pore-forming gramicidin A (10 mol%) was delivered to cellular membrane using pHLIP-

coated DOPC liposomes. Liposomes were stable for more than a month in 4 °C. 

Hydrophobic gramicidin A monomers were introduced into pHLIP-coated-liposomes, where 

it makes beta-helices and forms transmembrane porse with diameter of 4-5 Å that can 

transfer monovalent cations through the membrane at rate of 107 cations per second (Hladky 

and Haydon, 1972). As we outlined above, when pHLIP-coated liposomes target cancer 

cells, they either fuse with the plasma membrane or are up-taken by endocytosis and then 

fuse with lysosomal membranes. It leads to delivery of gramicidin A pores (nano-pores) to 

cellular membranes of cancer cells. These nano-pores acidify the intracellular space and 

eliminate the vital Na+/K+ ion balance. This method not only opens pathways to treat acidic 

solid tumors, but also give opportunity to deliver various membrane peptides and proteins to 

the cells, widening the applications in biotechnology and nano-medicine.

Nano-gold particles have also caught attention in pHLIP-nanotechnology. Beneficial 

properties of gold in medicine has been considered for centuries (Wang et al., 2012b). And 

gold has been used in modern science as a contrast agent in electron microscopy. There are 

well-established methods to obtain uniform stable gold nano-structures in the range of few 

nanometers up to couple hundred of nanometers (Papasani et al., 2012). Tuning size and 

shape of nano-gold structures allows to obtain unique physical properties, which can be very 

useful for multiple applications across both therapeutics and diagnostics (Brullot et al., 

2012). Functionalized nano-gold particles are valuable for wide variety of nanomedicinal 

uses and now they are undergoing through evaluations of toxicity (Papasani et al., 2012), 

stability (Gao et al., 2012), pharmacokinetics (Simpson et al., 2013), cellular trafficking (Gu 

et al., 2012; Lin et al., 2012; Sadauskas et al., 2009; Wang et al., 2013), efficacy for gene 

regulation (Sharma et al., 2011) and drug delivery (Gu et al., 2012), and use in photo-

thermal therapies (Letfullin et al., 2011; Raoof et al., 2012).
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Lan et al. showed that nano-gold particles which are 1.4 nm size in diameter conjugated to 

N-terminus of pHLIP can successfully target cancer cells at low pH (Yao et al., 2013a). In 

vivo studies done using mice-tumor models demonstrated high tumor uptake in both 

intravenous and intra-tumoral administration compared to non-functionalized nano-gold 

particles. The beauty of pHLIP-nano gold technology is in its capability of providing the 

specific targeting, enhancing local concentration in tumor mass in homogeneous way while 

remaining in cells for an extended period (several days), by allowing applications of 

radiation therapy and imaging.

Davies and colleagues employed pHLIP to deliver luminescent europium coated 

nanoparticles into platelets (Davies et al., 2012). The 13 nm gold nanoparticles were co-

coated with a europium luminescent, EuL and the pHLIP to give pHLIP.EuL.Au. Human 

platelets are vulnerable to transfection or microinjection. But with this method authors could 

deliver nanoparticles which have roughly 640 lanthanide probes per particle. The result 

shows that the internalization of nanoparticles into the platelets happened only at low pH 

and not at normal pH. The significance of this research is that pHLIP can translocate 

multimodal nanoparticles in a pH dependent manner.

Non-viral vectors are also a hot topic in gene therapy due to their advantages over viral 

vectors such as simplicity of use, ease of large-scale production and lack of specific immune 

response (Niidome and Huang, 2002). Recently it was reported a novel use of pHLIP to 

deliver pDNA to tumor cells (Han et al., 2013a). DGL-PEG-pHLIP were made by 

conjugating the surface of dendrigraft poly-L-lysines (DGLs, generation 3 with 123 amino 

groups per molecule) to the N-terminus of pHLIP followed by electrostatic interactions 

between negatively charged pDNA and positively charged DGL head group of DGL-PEG-

pHLIP to create DGL-PEG-pHLIP/pDNA nanoparticles. Results of in vitro studies showed 

that higher cellular uptake of nanoparticles occurs at low pH (pH 6.0) compared to normal 

pH (pH 7.4) and nanoparticles enter cells mainly by adsorptive mediated endocytosis. The in 

vivo studies also followed the same pattern by showing high tumor uptake of DGL-PEG-

pHLIP/pDNA nanoparticles. It was clear that pHLIP enhanced the pH-controlled 

localization of the nanoparticles in tumors.

Zhao and colleagues (2013) show that pHLIP peptide not only targets acidic tumor micro 

environment but also it can release nanoparticles in a controlled manner to the intracellular 

space. They chose mesoporous silica nanoparticles (MSN), in particular MCN-41, to load 

with doxorubicin. MSN has the attributes of high homogeneous porosity, inertness, 

biocompatibility, high payload capacity and easy surface functionalization capability. The 

MSN particles were attached to the C-terminus of pHLIP by disulfide bond. At low pH (< 

6.5), doxorubicin-loaded pHLIPss-MSN rapidly inserted into the cell membrane and 

translocated MSN into cytoplasm. The disulfide bond was cleaved in cytoplasm to release 

doxorubicin.

Table 1 summarizes the current pHLIP applications in nanotechnology we discussed above.
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5. Conclusion

There are several challenges for targeted nano drug delivery systems to overcome. Still most 

of these drug systems undergo in vitro and in vivo testing using animal models. Therefore 

their relevancy to the real patients has to be evaluated extensively. Each nano drug platform 

is distinctive and need to be assessed experimentally as new system, which is strenuous. 

Nanoparticles stability, size uniformity, controlled drug release rate, sterile preparations in 

large scale and manufacturing cost have to be addressed in order to make them available to 

the market. But with recent scientific advances, next ten years it is expected to see large 

number of targeted drug delivery systems based on nanoparticles in the market. pHLIP 

nanotechnology has been showing its potential capability to address most of the challenges 

mentioned above. pHLIP technology used alone or combined with other approaches might 

lead to new formulations translatable to clinics.
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Abbreviations

bFGF basic fibroblast growth factor

EGFR epidermal growth factor receptor

DGLs dendrigraft poly-L-lysines

DPPC 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine

DSPC 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine

EuL europium luminescent

HER human epidermal receptors

HIF Hypoxia-inducible factor

LbL Layer-by-Layer

MSP mesoporous silica nanoparticles

PEO/PPO poly(ethylene oxide)/poly(propylene oxide)

PET positron emission tomography

pHLIP pH Low Insertion Peptide

SPECT single photon emission computed tomography

Tz tetrazine
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Highlights

• Nanomaterials are used to target both imaging and therapeutic agents

• Targeting a tumor environment might better address issue of tumor 

heterogeneity

• pHLIP senses acidity on the surface of cells

• pHLIP targets nanomaterials to acidic diseased tissue

• pHLIP promotes cytoplasmic delivery of nanomaterial's payloads
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Fig.1. 
Different applications of pHLIP for targeting of acidic tissues. Tethering of cargo molecules 

to the surface of cells (a). Cytoplasmic delivery of cargo molecules and it's release by break 

of cleavable link (shown in blue) (b). Assembly of multifunctional pHLIP-coated liposomes 

containing polar (green) and hydrophobic (yellow) payloads (c). Schematic presentation of 

interactions of lipid bilayer of the pHLIP-coated multifunctional liposomes with plasma 
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membrane of a cell (presentation of liposome in the endosome is schematic and not in a 

scale) (d).
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Table 1

Current pHLIP applications in nanotechnology

pHLIP nanotechnology How it works Administration Authors

PEGylated-liposomes containing ceramide Increase ceramide levels in cancer tissues 
promote cell death and tumor inhibition

In-vitro and In-vivo (Yao et al., 2013c)

pHLIP-Tz conjugates and trans-cyclooctenes 
coated liposomes containing 18F PET isotopes

Tetrazine(Tz) labeled cancer cells are 
targeted by trans-cyclooctenes coated 
liposomes to radio label the tumor site

In-vivo (Emmetiere et al., 
2013)

WT and Var7 coated liposomes pHLIP coated liposomes binds to ischemic 
regions and assist pHLIP-fluorescent -
aided cardiac surgeries

In-vivo (Sosunov et al., 
2013)

pHLIP liposomal nano-pores Hydrophobic gA is delivered to cancer 
cells to form channels in cell membrane to 
destroy ion balance and induce apoptosis

In-vitro (Wijesinghe et al., 
2013)

pHLIP nano-gold particles Homogeneous accumulation of gold in 
tumor sites allow radiation therapy and 
imaging

In-vivo (Yao et al., 2013a)

Eu coated pHLIP nanoparticles At low pH, more lanthanide probes can be 
internalized to human platelets breaking 
the targeting barrier

In-vitro (Davies et al., 2012)

pDNA nanoparticles High uptake of DGL-PEG-pHLIP/pDNA 
in tumors

In-vivo, In-vitro (Han et al., 2013b)

dox MSNs Dox are loaded to porous silica 
nanoparticles and deliver to cancer cells 
using pHLIP

In-vitro (Zhao et al., 2013)
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