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Abstract

Objective—The aim was to determine if endothelial VCAM-1 (eVCAM-1) expression in the 

common carotid artery (CCA) would correlate with predictive markers of atherosclerotic disease, 

would precede reduction of markers of endothelial cell function and would predict coronary artery 

disease (CAD).

Methods and results—Carotid arterial segments (bifurcation, proximal and distal CCA) were 

harvested from 14 and 24 month-old male castrated familial hypercholesterolemic (FH) swine, a 

model of spontaneous atherosclerosis. Quantification of local expression of eVCAM-1, intimal 

macrophage accumulation, oxidative stress, intima-media (I/M) ratio, intima-media thickness 

(IMT), endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (p-eNOS) in selected 

regions of the carotids revealed a relationship between local inflammation and atheroscle-rotic 

plaque progression. Importantly, inflammation was not uniform throughout the CCA. Endo-thelial 

VCAM-1 expression was the greatest at the bifurcation and increased with age. Finally, eV-

CAM-1 best estimated the severity of CAD compared to blood levels of glucose, hypercholestero-

lemia, carotid IMT, and p-eNOS.

Conclusion—Our data suggested that eVCAM-1 was closely associated with atherosclerotic 

plaque progression and preceded impairment of EDD. Thus, this study supported the use of 

carotid VCAM-1 targeting agents to estimate the severity of CAD.
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1. Introduction

Inflammation is increasing recognized as a major contributor to the initiation and 

progression of atherosclerosis. Hypercholesterolemia leads to endothelial expression of 
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adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) at atheroprone 

areas such as curvatures and bifurcations [1]. Transmigration, accumulation and 

differentiation of inflammatory cells into foam cells increase intima-media thickness (IMT), 

a clinical marker of atherosclerosis [2]. Foam cell derived reactive oxygen species in 

uncouple endothelial nitric oxide synthase (eNOS), decreases nitric oxide bioavailability, 

and impairs endothelial-dependent dilation (EDD).

In humans, impaired brachial artery flow-mediated dilation (FMD), a non-invasive measure 

of EDD, can predict future cardiovascular events [3] [4] and the presence of distant (i.e. 

coronary artery) disease despite the absence of local (i.e. brachial artery) disease [5] [6]. 

Furthermore, abnormal coronary vasomotor responses to acetylcholine infusion may be 

obtained in the absence of measurable disease [7] by providing evidence that impaired EDD 

precedes disease. However, limitations to utilize EDD as a diagnostic predictor of CAD 

include poor correlation between FMD and severity of CAD [5] and the inability to detect 

CAD in patients with dysli-pidemia [8]. In addition, atherosclerotic plaque has been shown 

to develop in peripheral arteries despite normal EDD [9]. Thus, overall the evidence remains 

equivocal whether impaired EDD precedes or follows the appearance of disease.

The purpose of this study is to determine if inflammation, i.e. VCAM-1 expression, is a 

better diagnostic tool of early plaque development than other markers of atherosclerosis, 

including EDD, and in addition if peripheral VCAM-1 can predict the extent of CAD. We 

first evaluate the direct association between local VCAM-1 expression and markers of 

severity of disease and endothelial cell function in selected regions of the carotid arteries. 

We hypothesize that VCAM-1 expressed along the carotid endothelium will be correlated 

with intimal macrophage infiltration, oxidative stress, IMT, and intima-media ratio (I/M). 

Additionally, expression of VCAM-1 will precede the reduction of markers of endothelial 

cell function such as phosphorylated- and total-eNOS in the carotid arteries.

Second, we determine if inflammation, as reflected by endothelial VCAM-1 expression, is 

uniformly distributed along the common carotid artery (CCA). As for local inflammation, 

we evaluate the association between endothelial VCAM-1 in the bifurcation, proximal and 

distal CCA, and markers of severity of disease and of en-dothelial cell function. We 

hypothesize that endothelial VCAM-1 will be elevated in the bifurcation compared to the 

other carotid segments, along with markers of disease severity and inversely correlated with 

markers of en-dothelial cell function.

Third, we compare carotid endothelial VCAM-1 and risk factors for atherosclerosis, such as 

hyperglycemia, hypercholesterolemia, hypertriglyceridemia, high low-density lipoprotein 

cholesterol (LDL-C), and low high- density lipoprotein cholesterol (HDL-C), to determine 

which of these parameters constitutes the best predictor of CAD. We hypothesize that 

carotid inflammation will better predict CAD compared to other risk factors and markers of 

endothelial cell function.

These hypotheses are tested using the Familial Hypercholesterolemic (FH) swine model 

developed by Rapacz and collaborators [10]. This model of atherosclerosis is chosen 

because these animals develop spontaneous advanced coronary lesions which are similar to 
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those seen in humans [10]. We use FH pigs of two different ages, 14 and 24 months old, to 

maximize the range of carotid and coronary artery disease present in these animals.

2. Materials and Methods

2.1. Ethics Statement

Experimental protocols were approved by the University of Missouri Animal Care and Use 

Committee and in accordance with the “Principles for the Utilization and Care of Vertebrate 

Animals used in Testing, Research and Training.”

2.2. Experimental Design

Twenty-five male-castrated Rapacz Familial Hypercholesterolemic (FH) swine, a model that 

develops spontaneous advanced coronary lesions similar to humans [10], were purchased 

from the University of Wisconsin Swine Research and Teaching Center. Pigs were 

individually housed in rooms maintained at 20 °C – 23 °C with a 12:12-h light-dark cycle 

and had ad libitum access to water. Pigs were fed 800 g/day of a high-fat, high-choles- terol 

diet (relative kcal; 13% protein, 39.6% carbohydrate, 47.4% fat and 2% cholesterol by 

weight) for 6 months prior to sacrifice. Fifteen 14 month-old (body weight (BW): 49.9 to 

82.7 kg) and ten 24 month-old (BW: 44.5 to 171.8 kg) animals were used to maximize the 

range of atherosclerosis. One week prior to euthanasia, seven 14-month old and five 24-

month old swine underwent dual energy X-ray absortiometry (DEXA) scanning under 

sedation to assess body composition.

Immunohistochemistry and immunostaining—At sacrifice, the right coronary 

(RCA), left anterior descending (LAD) arteries and proximal and distal segments of the left 

common carotid artery (CCA), including the bifurcation from the brachiocephalic trunk, 

were collected, cleared from fat and connective tissue and immersed into 10% formalin. 

Paraffin-embedded sections were stained for eNOS phosphorylated at serine residue 1177 

(1:800, BD Transduction Labs), total eNOS (1:800, BD Tranduction Labs), VCAM-1 (no 

dilution, hybridoma6G10, ATCC), SRA-E5 (1:100, Trans Genic Inc.), and nitrotyrosine 

(1:400, Chemicon) using a LSAB+ kit from Dako. Photomicrographs of the bifurcation, 

proximal and distal CCA were captured at 10x magnification using Olym-pus MicroSuite 

Biological Suite Software connected to an Olympus BX61 motorized system microscope 

(Leeds Precision Instruments, Minneapolis, MN). Selected regions corresponding to High- 

and Low-VCAM-1 were visualized with an Olympus BX60 microscope (Leeds Precision 

Instruments, Minneapolis, MN) and captured using Spot Advanced Software (Version 4.6, 

Diagnostic Instruments, Sterling Heights, MI).

Immunostaining quantification—VCAM-1, Scavenger-Receptor A (SRA), 

nitrotyrosine, phospho-eNOS and eNOS staining were analyzed using Image-Pro Plus 

Software (Version 6.2, Media Cybernetics Inc., Bethesda, MD). VCAM-1-stained sections 

obtained from the bifurcation of 24 month-old swine with the most severe carotid 

atherosclerotic disease were subjectively evaluated for areas of strongest (High-VCAM-1) 

and weakest (Low-VCAM-1) endothelial VCAM-1 positive staining. Each area (High- and 

Low-VCAM-1) was then captured at high magnification (40X). VCAM-1 staining along the 
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endothelium and within the subendothelial area was then quantified as the percent of 

positive staining per area and sum of the intensity of the positive staining per area. Next, 

regions corresponding to High- and Low-VCAM-1 were identified on consecutive sections 

stained for nitrotyrosine, SRA, phospho-eNOS and eNOS and images of these regions (two 

per arterial section) were captured at high magnification (40×). Percent positive staining and 

intensity for SRA and nitrotyrosine was determined as the sum of positively stained areas 

included within the entire image divided by the total area and the sum of the intensity of 

positive staining per area, respectively. Positive staining for phospho-eNOS and eNOS was 

quantified as the percent of endothelial positive staining per endothelial area and the sum of 

the intensity of positive staining per endothelial area. To determine if endothelial VCAM-1 

expression is uniformly distributed along the common carotid artery (CCA), we quantified 

positive staining for each marker as the sum of positively stained endothelial areas divided 

by the luminal circumference of each arterial section (bifurcation, proximal and distal CCA). 

We used the luminal circumference for normalization of our positive staining since only the 

endothelial layer was included in our area used for quantification thus keeping the depth 

constant. This process allowed us to compare endothelial staining throughout the carotid 

artery despite the great variation in luminal diameter. Endothelial positive staining for 

nitrotyrosine, phospho-eNOS and eNOS was quantified similarly to VCAM-1. SRA staining 

was quantified in the bifurcation, proximal and distal CCA by determining the percent of 

intimal area positively stained.

Morphology—IMT, intimal and medial areas were measured on Verhoeff-Van Gieson 

(VVG) stained sections using standard planimetery. In brief, each arterial section was 

captured on Olympus BX61 microscope as previously described for other markers. IMT was 

defined as the distance between the external elastic lamina and the internal luminal border of 

the artery. IMT was measured three times at the widest part of the arterial section and 

averaged. Intimal area was defined as the area between the internal elastic lamina (IEL) and 

the luminal border of the artery while the area between the IEL and external-elastic lamina 

(EEL) was referred to as the medial area. Intima-media ratio (I/M) was calculated as the 

ratio of intimal- over medial-areas. Determination of I/M in the coronary arteries was 

performed using the same landmarks as for the carotid arteries using NIH Image J software 

(Bethesda, MD).

Intimal-thickness (IT) and IMT in each region corresponding to High- and Low-VCAM-1 

were measured from VVG-stained regions of the bifurcation captured with Spot Advanced 

Software. Intimal-thickness (IT) was defined as the distance between the internal luminal 

border and the IEL. Each parameter was measured three times and averaged.

Dual energy X-ray absortiometry (DEXA) scan—The animal was placed supine on 

the DEXA table in a fixed position and scanned once. Body composition was determined by 

an experienced technician using a computer software (QDR Software for Windows XP, 

Version 12.4, Hologic Inc., Bedford, MA). Percent body fat was expressed as a ratio of fat 

mass (g) divided by the total mass (g) × 100.

Blood analysis—Standard chemistry profiles were obtained from blood collected the day 

of DEXA scanning, when available (n = 12) or prior to sacrifice (n = 13). Triglycerides, 
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LDL-C and HDL-C and total cholesterol content was determined from frozen plasma 

collected the day of euthanasia (n = 22). Three animals died shortly after induction and 

before blood collection. Results from FH swine were compared to those of five non-FH 

domestic swine (control group).

Statistical analysis—Clinical characteristics of the animals studied were compared using 

two-tailed Student’s t test for parametric data or Mann-Whitney rank sum test for non-

parametric data. Staining, IT, IMT, and I/M were compared for age and origin of segments 

using 2-way ANOVA with post hoc testing of individual comparisons. Prediction of 

inflammation and CAD were performed using forward stepwise regression. Linear 

regression was used to examine relation between two factors. R2 values are provided as 

prediction, rather than correlation was the objective. Statistical analyzes were performed 

with Sigma Stat Version 3.5 for Windows (Dundas Software, Erkrath, Germany) except 

linear regression for which GraphPad Prism 5.0d for Mac OS X (GraphPad Software, San 

Diego, California) was used.

3. Results

eVCAM-1 is a local indicator of atherosclerosis

To determine if VCAM-1 is a good local indicator of carotid atherosclerosis, we evaluated 

the bifurcation of four 24-month old pigs with the greatest amount of disease. Within each 

cross-section, we selected one region with minimal (Low-VCAM-1) and one region with 

maximal (High-VCAM-1) eVCAM-1 staining (Figure 1(A) and Figure 1(D), respectively). 

We then measured IMT and IT as illustrated (Figure 1(E) and Figure 1(H)) using 

corresponding VVG regions. VCAM-1 was significantly correlated with IT (r2 = 0.68; p < 

0.01) and IMT (r2 = 0.56; p < 0.05) as shown in Figure 1(C). High-VCAM-1 regions had 

significantly greater IMT (Figure 1(F)) and IT (Figure 1(I)) compared to Low-VCAM-1 

regions supporting a relationship between local eVCAM-1 and plaque progression. 

Representative photomicrographs of regions of Low- and High-VCAM-1 stained for 

macrophage infiltration, oxidative stress (nitrotyrosine) and en-dothelial cell health (p-

eNOS, eNOS) are illustrated in Figure 2. Macrophages were restricted to clusters of cells 

within the subendothelial layer, and were only present with High-VCAM-1 regions (Figure 

2(G)). Nitrotyrosine staining within the intima was slightly more diffuse, similar to that of 

VCAM-1. Quantification of intimal positive staining and intensity for VCAM-1, 

macrophage infiltration and nitrotyrosine are shown in the 3rd and 4th rows. The percent of 

endothelium (data not shown) and intimal area stained for VCAM-1 and the intensity were 

greater in high versus Low-VCAM-1 regions (Figure 2(K) and Figure 2(P)). Moreover, 

regions of high- VCAM-1 had greater levels and more intense intimal SRA (Figure 2(L) and 

Figure 2(Q)) and nitrotyrosine (Figure 2(M) and Figure 2(R)) staining compared with Low-

VCAM-1 regions (p < 0.05).

eVCAM-1 is not correlated locally with markers of endothelial function

To determine if local eVCAM-1 precedes EDD, we measured expression of markers of 

endothelial cell function, i.e. p-eNOS and eNOS, in regions with Low- and High-VCAM-1 

in the bifurcation. Representative images of positive staining for both markers along the 
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carotid endothelium are illustrated in Figure 2. Endothelial p-eNOS and eNOS distribution 

and intensity were similar in both Low- and High-VCAM-1 regions (Figure 2(N) and Figure 

2(O), Figure 2(S), Figure 2(T)). The proportion of phosphorylated to non-phosphorylated 

eNOS, an index of eNOS activity, was also similar for both distribution (P = 0.686) and 

intensity (P = 0.486) in both regions. Occasionally, diffuse eNOS staining could be seen 

underlying the endothelium in areas of High-VCAM-1 regions and high IMT (Figure 2(J)). 

We observed similar intimal eNOS staining in early atherosclerotic lesions of swine 

coronary arteries, but not in regions lacking intimal thickening nor in non-immune control 

sections (unpublished observations). Additionally, markers of endothelial function did not 

correlate with carotid IMT, another commonly used marker of severity of disease (IMT vs. 

% p-eNOS: r2 = 0.05, p = 0.56; IMT vs. % eNOS: r2 = 0.29, p = 0.16; IMT vs. p-eNOS/

eNOS: r2 = 2.1 × 10−7, p = 0.99).

eVCAM-1 is differentially distributed along the CCA and increases with age

Regional hemodynamics are proposed to account for heterogeneous disease development 

within arterial segments [11], therefore we compared the distribution of eVCAM-1 with 

markers of severity of disease and endothelial cell function, in the bifurcation, proximal and 

distal CCA of swine belonging to two different age groups, assuming that older pigs would 

have more severe carotid and coronary artery disease [12]. Clinical characteristics of groups 

are summarized in Table 1. eVCAM-1 staining was particularly intense in several areas of 

the bifurcation (Figure 3(A)) compared to the proximal (Figure 3(B)) and distal CCA 

(Figure 3(C)) where both intensity and extent of eV-CAM-1 was less. Interestingly, 

VCAM-1 was also moderately intense along the adventitial/medial border in the distal CCA 

in several pigs (Figure 3(C)). In both age groups, eVCAM-1 was greater in the bifurcation 

compared to the proximal and distal portion of the CCA (p < 0.001; Figure 3(D)) and 

increased at 24 months compared to 14 months (p < 0.05), suggesting an effect of aging on 

endothelial inflammation.

eVCAM-1 is correlated with intimal macrophage accumulation, but not with oxidative 
stress

In the bifurcation, endothelial areas that expressed VCAM-1 also expressed greater SRA 

(Figure 3(E)) and nitrotyrosine (Figure 3(I)). Intimal SRA staining was markedly lower in 

the proximal (Figure 3(F)) and distal (Figure 3(G)) CCA compared to the bifurcation (Figure 

3(E)). Thus, similar to eVCAM-1, intimal accumulation of macrophages was greater in the 

bifurcation compared to the proximal and distal CCA (Figure 3(H)). In contrast to VCAM-1 

and SRA, nitrotyrosine staining was intense both in the endothelium as well as in the media 

of all carotid segments, particularly in the proximal (Figure 3(J)) and distal (Figure 3(K)) 

CCA and not significantly different between the three carotid segments (Figure 3(L)). Thus, 

eVCAM-1 was positively correlated with intimal macrophage staining in the bifurcation (r2 

= 0.18, p < 0.05) and distal CCA (r2 = 0.33, p < 0.01) while no relationship between 

eVCAM-1 and levels of nitrotyrosine was observed.

Aging did not result in changes in intimal macrophage accumulation, oxidative stress or 

severity of disease (IMT, I/M) despite increased VCAM-1 expression in 24 month-old pigs, 

suggesting that VCAM-1 may precede macrophage infiltration, oxidative stress (Figure 3(H) 
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and Figure 3(L)) and disease (Figure 4). Regardless of age, mean I/M ratio for both groups 

was significantly different between carotid segments (p < 0.001; Figure 4 top right) while 

IMT was greater in the bifurcation compared to proximal and distal CCA (p < 0.001; Figure 

4 Bottom panel).

Total eNOS and Phosphorylated-to-total eNOS ratio is weakly correlated with eVCAM-1 in 
the proximal CCA

To examine the relationship between eVCAM-1 and markers of endothelial cell function, we 

evaluated carotid segments for p-eNOS (Figure 3(M) and Figure 3(O)) and total eNOS 

(Figure 3(Q) and Figure 3(S)). p-eNOS and total eNOS were significantly greater in the 

distal CCA compared to the bifurcation and proximal CCA (Figure 3(P) and Figure 3(T)) 

with no difference observed between 14- and 24-month old groups. p- eNOS/eNOS ratio, an 

index of eNOS activity, was increased at 24 months (p < 0.05; Figure 3(X)). The proportion 

of phosphorylated eNOS (p-eNOS/eNOS ratio) was greater in the distal CCA than the 

bifurcation (Figure 3(X)). Neither p-eNOS, total-eNOS nor p-eNOS/eNOS were inversely 

correlated to VCAM-1 in the bifurcation or distal CCA and only a weak association between 

eVCAM-1 and total eNOS (r2 = −0.19, p < 0.01, Figure 5(A)), and with p-eNOS/eNOS (r2 

= −0.20, p < 0.05, Figure 5(B)) was present in the proximal CCA. Interes- tingly, p-eNOS, a 

marker of endothelial function positively correlated to EDD in humans [13] was not 

significantly correlated with eVCAM-1 in any of the carotid segments.

Blood levels of glucose and total cholesterol predict eVCAM-1 in the carotid arteries

Forward stepwise regression demonstrated that blood glucose levels best predicted 

eVCAM-1 in the bifurcation (r2 = 0.58, p < 0.0001; Figure 5(C)) while LDL-C best 

estimated eVCAM-1 in the proximal (r2 = 0.60, p < 0.0001; Figure 5(D)) and distal CCA (r2 

= 0.31, p < 0.01; Figure 5(D)). Total cholesterol was also moderately positively correlated 

with inflammation in all segments (data not shown). Neither HDL-C nor triglycerides level 

were associated with the degree of inflammation in the carotid arteries (data not shown).

eVCAM-1 predicts CAD

As anticipated, the severity of coronary atherosclerotic plaque varied greatly among our 

studied population, ranging from minimal to severe thickening of the arterial wall and 

narrowing of the lumen as illustrated in Figure 6. We compared carotid eVCAM-1 and risk 

factors for atherosclerosis, such as hyperglycemia, hypercholesterolemia, 

hypertriglyceridemia, high LDL-C, and low HDL-C, to determine which best predicted 

CAD. CAD was best predicted by VCAM-1 in the bifurcation (r2 = 0.44; p < 0.001; Figure 

6 first row). When coronary arteries were examined separately, LAD disease was best 

predicted by eVCAM-1 in the bifurcation (r2 = 0.53; P < 0.001; Figure 6 middle row), while 

RCA disease was best correlated with LDL (r2 = 0.40; p < 0.01; data not shown). 

Additionally, no relationship was found between CAD and p-eNOS or carotid IMT, 

supporting the hypothesis that eVCAM-1 is a better peripheral indicator of CAD compared 

to endothelial function and intimal thickening.
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4. Discussion

The purpose of this study is two-fold to determine 1) the relationship between eVCAM-1 

and atherosclerosis both locally and regionally in the carotid artery and 2) the ability of 

carotid eVCAM-1 to predict CAD compared with other markers of atherosclerosis and of 

EDD. Of major importance, the current study provides the first direct evidence that carotid 

VCAM-1 expression is predictive of coronary atherosclerosis in a large animal model.

Local inflammation is associated with atherosclerotic plaque progression

Our findings demonstrate that eVCAM-1 is associated with indices of atherosclerotic plaque 

progression, intimal macrophage accumulation, and oxidative stress locally within the 

carotid artery wall. In contrast, local expression of carotid eVCAM-1 is not associated with 

a reduction in markers of endothelial cell function, i.e. phosphorylated- and total-eNOS. Due 

to the cross-sectional design of our study, we cannot definitively conclude that local 

VCAM-1 expression precedes the development of lesion. However, eVCAM-1 expression 

varies greatly in the arterial circumference and in several regions. We observe that VCAM-1 

expression is not always associated with macrophage infiltration, oxidative stress, or intimal 

thickening, and is consistent with VCAM-1 preceding lesion development. A longitudinal 

study which is similar to that done by Kaufmann et al. in mice [14] will be required to 

establish a temporal relationship between VCAM-1 and disease.

Since our study is done retrospectively and reactivity to vasodilators cannot be performed, 

we use phosphory-lated and total-eNOS as markers of endothelial function. Hambrecht et al. 

report a positive linear relationship between p-eNOS and acetylcholine-mediated EDD in 

people with stable CAD [13]. In the present study, despite the evidence of local 

inflammation and increased atherosclerosis in regions of High-VCAM-1, neither phospho-

rylated- nor total-eNOS is reduced compared to less diseased regions. Moreover, IMT, a 

commonly used clinical marker for prediction of cardiovascular outcome, is not locally 

associated with phosphorylated-, total or phos-phorylated-to-total eNOS ratio along the 

arterial endothelium, indicating that inflammation precedes endothelial dysfunction and 

supports VCAM-1 as a better indicator of disease than assessment of endothelial function in 

FH carotid arteries.

Inflammation is not uniform throughout the CCA and increases with aging. The present 

study is the first to assess the regional distribution of an inflammatory marker along the 

endothelium of carotid arteries in a large animal model of spontaneous atherosclerosis. In 

accordance with our hypothesis, we demonstrate that eV-CAM-1 is more prevalent in the 

bifurcation compared to the proximal and distal CCA, which is consistent with reported 

increased VCAM-1 expression associated with regions of disturbed flow [15]. Regions of 

high shear stress, such as the central portion of the CCA, characterized by steady laminar 

flow [11] [16], are generally exempt of atherosclerotic lesions. In these regions, high shear 

stress is thought to produce nitric oxide, which in turn inhibits NF-κB, an important 

regulator of VCAM-1 expression [17].

As seen locally in the arterial circumference, eVCAM-1 is closely associated with intimal 

macrophage accumulation regionally in the bifurcation and distal CCA. This is consistent 
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with leukocyte recruitment following expression of adhesion molecules in 

hypercholesterolemic rabbits [18]. An association between eVCAM-1 and oxidative stress 

throughout the CCA is expected. However, nitrotyrosine expression is similarly elevated 

throughout the CCA, even in the distal segment, which has minimal expression of VCAM-1 

and macrophage infiltration. These results indicate sources of free radicals and peroxynitrite 

other than macrophages and foam cells, for example, direct exposure of the endothelial cells 

to hypercholesterolemia and hyperglycemia [19] [20]. Increased oxidative stress may have 

overwhelmed the antioxidant effect of shear stress in the distal CCA compared to the 

bifurcation.

Interestingly, VCAM-1 was not inversely correlated with markers of endothelial function, 

aside from a weak inverse relation between eVCAM-1 and total eNOS in the proximal CCA. 

Regional differences were observed in the expression of phosphorylated-, total-eNOS, p-

eNOS/total eNOS ratio between carotid segments. The lower phosphorylated- and total-

eNOS in the bifurcation and proximal CCA compared to the distal CCA suggests a 

predominant role of local over systemic effects of hypercholesterolemia and hyperglycemia 

on endo-thelial cells. A local factor potentially responsible for the difference in levels of 

active and total eNOS is shear stress. Steady laminar stress activates the Akt/eNOS 

phosphorylation cascade, leading to nitric oxide production and EDD. Although we did not 

measure shear forces in our model, the central portion of the CCA where our distal segment 

was harvested exhibits high shear stress [21], which could explain the greater levels 

phosphory-lated- and total-eNOS. On the contrary, the proximity of the proximal CCA and 

bifurcation to the flow divider suggests turbulent flow and decreased shear stress in these 

segments [21] [22], which could explain the lower eNOS protein and lower activation of the 

Akt/eNOS phosphorylation cascade. Together, these results predict a gradient in the EDD 

throughout the CCA.

STEPWISE regression among several risk factors including fasting blood glucose, total-, 

HDL-C and LDL-C, and triglycerides, determined that blood glucose and LDL-C best 

predicted eVCAM-1 in the carotid arteries. The association between eVCAM-1, fasting 

blood glucose, and LDL-C is not surprising given that both hyper-glycemia and 

hypercholesterolemia are known risk factors for the development of atherosclerosis in 

humans and animal models [23]-[25]. Whether high fasting glucose is directly responsible 

for increased VCAM-1 expression in our model is unknown, although high glucose has been 

shown to upregulate expression of VCAM-1 in endo-thelial cells [26] [27], and soluble 

VCAM-1 has been correlated with disturbed glucose metabolism in men with CAD [28]. 

Moreover, patients with type 2 diabetes mellitus are more likely to develop CAD compared 

to non-diabetic patients [29]. In the settings of hypercholesterolemia, VCAM-1 is 

upregulated at atheroprone areas in ApoE−/−mice in association with plasma cholesterol 

[30]. Furthermore, the interaction between glucose and lipoprotein produces advanced 

glycosylation end products (AGEs) [31], which induce transcription factor NF-κB [32] [33] 

and upregulation of VCAM-1 [34]. The regional differences in inflammation seen in the 

carotid arteries may be explained, at least in part, by the presence of local factors, such as 

the hemodynamics which may modulate the pro-inflammatory susceptibility of endothelial 

cells to systemic factors such as blood glucose and LDL-C.
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Importantly we demonstrated that among several commonly used risk factors and markers of 

atherosclerosis, carotid eVCAM-1 best predicted the severity of CAD, particularly in the 

LAD, supporting a clinical use for carotid VCAM-1 in the diagnosis of CAD. Future studies 

will be needed to validate a similar role in humans. Interestingly, blood levels of LDL-C 

were superior to VCAM-1 at predicting disease in the RCA. The reason for this difference is 

unknown, although consistent with reports that atherosclerotic lesions in the LAD have 

increased inflammation than the RCA [35].

eNOS phosphorylation in the internal mammary artery has been shown to correlate with 

endothelial function in coronary arteries of patients with stable CAD [13]. In FH carotid 

arteries, no relationship was found between p-eNOS and CAD, indirectly indicating the 

absence of an association between peripheral EDD and CAD in our model. Therefore, we 

conclude that peripheral eVCAM-1 is superior to assessment of EDD at predicting CAD in 

FH swine. It will be imperative to determine if a similar relationship exists in human 

patients.

In conclusion, the current study provides the first direct evidence that carotid VCAM-1 

expression is predictive of CAD in a large animal model. VCAM-1 protein expression is 

non-uniform both locally along the carotid arterial circumference as well as regionally 

throughout the common carotid artery. Heterogeneity of inflammation is likely not a unique 

feature to the carotid artery, stressing the importance of anatomical consistency in 

assessment of inflammation both longitudinally and between subjects. Importantly, carotid 

eVCAM-1 was the best predictor of CAD in the FH swine. Future studies are needed to 

determine if these findings translate to human CAD patients, but this study strongly supports 

the development of VCAM-1 targeted agents as non-invasive diagnostic tools to 

longitudinally monitor the progression of peripheral and coronary atherosclerosis.
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Figure 1. 
Relationship between local eVCAM-1, intimal thickness and intima-media thickness. 

Regions with the strongest (High-) and weakest (Low-) VCAM-1 staining were selected in 

each carotid bifurcation of 24-month-old FH pigs ((A) and (D), respectively). Corresponding 

Verhoeff-Van Gieson (VVG) stain in regions ((B) and (E)) used for morphology (intima-

media thickness (IMT) and intimal thickness (IT)). (G) and (H), enlarged images for 

VCAM-1 and corresponding VVG staining in the intimal and superficial medial layers from 

the High-VCAM-1 region in (D). In selected regions of High-VCAM-1, positive staining 

occupies a greater proportion of the endothelium (E) and is more intense along the 

endothelium (E). VCAM-1 staining gradually decreases in intensity and distribution through 

the intima (I) and underlying media (m). (C) Percent endothelial VCAM-1 staining in 

regions of High- and Low-VCAM-1 was significantly correlated to IT (closed circle) and 

IMT (open circle). High VCAM-1 regions had a significant increase in IMT (F) and IT (I) 

compared to regions with low-VCAM-1 staining. Mean values ± SEM are represented (*P < 

0.05). Scale bar for (A), (B), (D), (E) corresponds to 200 μM; insets ((G), (H)) = 50 μM. 

eVCAM-1, endothelial VCAM-1; EEL, external elastic lamina; IEL, internal elastic lamina.
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Figure 2. 
Relationship between eVCAM-1 expression and local progression of atherosclerosis. 

Representative regions of Low-((A)-(E)) and High-VCAM-1((F)-(J)) stained for VCAM-1, 

macrophage infiltration (SRA), oxidative stress (nitrotyrosine), phosphorylated eNOS, and 

eNOS in the carotid bifurcation of a 24-month-old FH pig. (K), (P): As expected, regions 

selected as High-VCAM-1 had a greater percent area of their intimal area stained for 

VCAM-1 as well as a more intense positive staining compared to Low-VCAM-1 regions. 

Regions of Low-VCAM-1 had minimal positive staining for macrophage infiltration ((L), 

(Q)) or oxidative stress ((M), (R)) compared to high- VCAM-1 regions. In these regions, 

clusters of positive staining for SRA were seen predominately within the intima while 

nitrotyrosine staining was seen along the endothelium and diffusely throughout the intima. 

(D) (I): Positive staining for phosphorylated eNOS at ser-1177 is limited to the endothelium. 

The endothelium covering both regions of high and Low-VCAM-1 was stained similarly. 

However, eNOS staining was present in the intimal region as well as along the endothelium 

in High-VCAM-1 region (J). The percent of endothelial positive staining or intensity for p-

eNOS (N, S) or eNOS (O, T) were not different between regions of High- and Low-

VCAM-1. Scale bar corresponds to 50 μM. (K)-(T): Mean values ± SEM are represented (*P 

< 0.05). SRA: Scavenger Receptor A.
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Figure 3. 
Endothelial VCAM-1, markers of atherosclerosis and endothelial health throughout carotid 

arteries in FH swine. Representative photomicrographs of VCAM-1 (A–C), SRA (E–G), 

nitrotyrosine (I–K), p-eNOS (M–O), eNOS (Q–S) and non-immune (U–W) staining in the 

bifurcation, proximal and distal CCA of a 14-month old animal: intima (i), media (m) and 

adventitia (a). In the bifurcation (A), VCAM-1 was more prominent in the intima, 

particularly along the endothelium (black arrows). These same regions also strongly stained 

for SRA (E) and nitrotyrosine (I). VCAM-1 ((B) and (C)) and SRA ((F) and (G)) in the 

intima (i) was markedly decreased in the proximal and distal CCA compared to the 

bifurcation. In contrast with VCAM-1 and SRA, nitrotyrosine was intense along the 

endothelium (black arrows) and in the media (m) of the proximal and distal CCA. p-eNOS 

(M–O) and eNOS (Q–S) were restricted to the endothelium (arrows) except in the 

bifurcation where faint eNOS staining was also occasionally seen in the subendothelial 

space (arrowheads). Quantification of endothelial VCAM-1 (D), intimal SRA (H), 
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endothelial nitrotyrosine (L), p-eNOS (P), total eNOS (T) and the ratio of phosphorylated- 

to-total eNOS (p-eNOS/eNOS, X). Positive endothelial staining for all markers except SRA 

were normalized to the luminal circumference of the artery. SRA was expressed as a percent 

of intimal positive staining. eVCAM-1 (D) and intimal SRA (H) was greater in the 

bifurcation compared to the proximal and distal CCA. In addition, 24-month swine had 

greater eVCAM-1 staining compared to 14-month animals. No significant difference was 

seen between groups or carotid segments for endo-thelial nitrotyrosine staining. P-eNOS (P), 

eNOS (T) and p-eNOS/eNOS (X) were greater in the distal CCA compared to other 

segments. Age had no effect except on p-eNOS/eNOS which was greater at 24 months. Data 

are represented as mean ± SE (14 months, n = 14, 24 months, n = 10; *p < 0.05 vs. 

bifurcation; †p < 0.05 vs. proximal CCA; ^p < 0.05 in 24 vs. 14 months). CCA, common 

carotid artery; eVCAM-1, endothelial vascular cell adhesion molecule-1; SRA, Scavenger-

receptor A; p-eNOS, phosphorylated eNOS; mo, month-old; ns, not statistically significant. 

All images were taken at 10× magnification.
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Figure 4. 
Intima-media ratio and intima-media thickness in carotid arteries of FH swine. Top left: I/M 

in the bifurcation, proximal and distal CCA of 14- and 24-month old FH pigs. Top right: 

Pooled I/M in each carotid segment from both groups. Bottom: Box plots of IMT in the 

three carotid segments of both age groups (box represents 25th and 75th percentile; 

whiskers, range; horizontal bar represents the mean. I/M and IMT were not significantly 

different with age. Each carotid segment I/M was different from each other (p < 0.001). 

CCA, common carotid artery; *p < 0.05 vs. bifurcation; †p < 0.05 vs. proximal CCA (14 

months, n = 14; 24 months, n = 10). Values are means ± SE.
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Figure 5. 
eNOS, phosphorylated-to-total eNOS ratio, glycemia, low density-lipoprotein (LDL) 

cholesterol and carotid eV-CAM-1 in FH swine. Endothelial VCAM-1 (eVCAM-1), and 

eNOS staining was expressed as the sum of endothelial positive area normalized to the 

luminal circumference of the artery. (A), (B): A weak negative linear correlation was found 

between eNOS and eVCAM-1 in the proximal CCA (A), whereas the ratio of p-eNOS/

eNOS was weakly positively correlated to eVCAM-1 in the same carotid segment (B). (C), 

(D): A positive linear relation was found between blood glucose levels (mg/dL), LDL 

cholesterol (mg/dL) and endothelial VCAM-1 in all carotid segments. Using a stepwise 

linear regression, en-dothelial VCAM-1 in the bifurcation was best predicted by blood levels 

of glucose (C). LDL cholesterol best predicted eV-CAM-1 in the proximal and distal CCA 

(D). eVCAM-1, endothelial VCAM-1; CCA, common carotid artery; LDL, low density-

lipoprotein. Significant levels were set at α = 0.05.
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Figure 6. 
Relation between carotid eVCAM-1 and coronary artery disease (CAD). Representative 

images of mild (A) and severe (B) atherosclerotic lesion in the left anterior descending 

artery (LAD). Severity of CAD determined as mean intima- media ratio (I/M) in LAD and 

right coronary artery (RCA). Scale bar corresponds to 200 μM. (C) first row: A positive 

linear relation was found between coronary artery I/M and eVCAM-1 in the bifurcation and 

to a lesser extent in the proximal CCA; (C) middle row: The correlation was strongest in the 

LAD while eVCAM-1 was at most weakly associated with CAD in the RCA ((C), third 

row). eVCAM-1, endothelial VCAM-1; CCA, common carotid artery.
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