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A better understanding of malaria persistence in highly seasonal environments

such as highlands and desert fringes requires identifying the factors behind the

spatial reservoir of the pathogen in the low season. In these ‘unstable’ malaria

regions, such reservoirs play a critical role by allowing persistence during the

low transmission season and therefore, between seasonal outbreaks. In the

highlands of East Africa, the most populated epidemic regions in Africa, temp-

erature is expected to be intimately connected to where in space the disease is

able to persist because of pronounced altitudinal gradients. Here, we explore

other environmental and demographic factors that may contribute to malaria’s

highland reservoir. We use an extensive spatio-temporal dataset of confirmed

monthly Plasmodium falciparum cases from 1995 to 2005 that finely resolves

space in an Ethiopian highland. With a Bayesian approach for parameter esti-

mation and a generalized linear mixed model that includes a spatially

structured random effect, we demonstrate that population density is important

to disease persistence during the low transmission season. This population

effect is not accounted for in typical models for the transmission dynamics of

the disease, but is consistent in part with a more complex functional form of

the force of infection proposed by theory for vector-borne infections, only

during the low season as we discuss. As malaria risk usually decreases in

more urban environments with increased human densities, the opposite coun-

terintuitive finding identifies novel control targets during the low transmission

season in African highlands.
1. Introduction
Highland regions in East Africa are located at the edge of malaria’s trans-

mission range due to seasonal rainfall patterns and low average

temperatures, which limit the development of the parasite and the abundance

of the mosquito vector [1,2]. In these regions of epidemiological transition, dis-

ease transmission is generally low, but exhibits intermittent seasonal outbreaks

with high mortality and morbidity among large populations with low herd-

immunity. Given that climate variables set the limits to the spatial distribution

of the disease, changes in temperature and rainfall are expected to have direct
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effects on malaria transmission in these regions [3]. In par-

ticular, it has recently been shown that inter-annual

variation in average temperatures can significantly expand

and contract the spatial distribution of the disease, with

implications for the impact of decadal warming trends [4].

Spatial variation in incidence is also important at the sea-

sonal scale in relation to the persistence of the disease during

inter-epidemic periods when transmission is at its lowest.

Elevation, through its well-known relation with temperature,

is expected to influence the distribution of areas where

malaria transmission persists. A better understanding of per-

sistence would require, however, additional consideration of

spatial variation in demographic and environmental factors

at sufficiently high spatial and temporal resolution. Although

among demographic factors, human mobility has recently

attracted attention [5–9], the role of population density

remains poorly understood in the population dynamics of

malaria and other vector-transmitted diseases. In particular,

larger numbers of hosts in mathematical models generally

dilute the number of vector bites and in so doing also

decrease transmission rates [10]. In only a few zoonotic

pathogens, namely hantavirus and lymphocytic choriome-

ningitis virus, have positive associations been reported

between host population density and infection prevalence

[11,12]. A more complex, non-monotonic, relationship has

been proposed for vector-borne infections based on a theor-

etical framework that incorporates behaviour and

encompasses different kinds of transmission [13]. Despite

the large spatial variations in population density and associ-

ated socio-economic conditions, the question of whether and

how these factors interact with temperature to maintain

disease transmission remains open.

By combining an extensive 11-year-long record of monthly

cases of exceptional spatial resolution and a spatially explicit

statistical approach, we examine here the effects of demo-

graphic factors in concert with temperature. We specifically

consider the influence of population density and access to

roads (as a measure of human mobility) on the variability of

malaria incidence during the low transmission season. We

also consider other environmental factors that could confound

our results by affecting soil water content and moisture reten-

tion of relevance to the availability of breeding habitats for

mosquitoes [14,15]. Our analyses identify population density,

in addition to temperature, as having a significant role in the

spatial distribution of disease incidence during seasonal

troughs. This adds a new dimension to dynamic malaria

models during the low season that could guide more effective

control as we discuss.
2. Material and methods
(a) Data
The malaria data consist of an 11 year (1994 through to 2005)

time series of monthly Plasmodium falciparum cases, confirmed

through microscopy examination of blood slides from clinical

(febrile) individuals self-presenting at the health facilities of the

Debre Zeit sector of Ethiopia (figure 1a). A total of 159 adminis-

trative units (known as kebeles each having an average area size

of 23 sq. km) from this sector are comprised in these records

(electronic supplementary material, Methods). In order to

consider the seasonal dynamics, we aggregated the monthly

data for each kebele into four-month blocks—January–April
(JFMA), May–August (MJJA), September–December (SOND)—

representing, respectively, the low, intermediate and high

transmission seasons.

Each kebele further encompasses up to four smaller adminis-

trative subunits for which population data were obtained from

the Central Statistical Agency of Ethiopia for 1994 and 2007

(CSA 1996, 2008). We interpolated these population data tem-

porally based on growth rates between two censuses in 1994

and 2007 available at the level of four districts that contain the

159 kebeles, by separately considering changes in urban and

rural populations. Spatial coordinates obtained from the

Oromia Regional Bureau of Health, along with the population

data, were used to weight all spatially explicit variables and

obtain population weighted estimates for the kebeles.

Two estimates of population density were calculated by

drawing circles with respective radii of 5 and 10 km around

each kebele. The sum of the population that fell within each of

these circles was divided by the circle’s area. These values

were then averaged at the kebele level. In addition, as a measure

of human mobility, we considered distance to roads adjusted for

the type of roads, based on the notion that some surfaces are

more difficult and costly to traverse than others (electronic

supplementary material, Methods).

Monthly mean temperature data were estimated for each

location unit based on a temperature lapse rate developed from

a combination of elevations and temperature readings at four

meteorological stations (electronic supplementary material,

Methods). Similarly, monthly rainfall data were obtained by

interpolating readings from a maximum of 13 stations using

ordinary Kriging (electronic supplementary material, Methods).

All climate data were then aggregated at the kebele level, by

taking a weighted average, using subunit population as the

weight. Other climate-related variables considered include Sea

Surface Temperature (SST) anomalies for the Niño 3.4 region

and monthly average normalized difference vegetation index

(NDVI) at a resolution of 0.1 degrees (electronic supplementary

material, Methods).

In order to examine the role of other possible sources of mos-

quito breeding sites, we considered distances from subunits to

perennial water bodies. In addition, we examined the ability of

local soils to retain rain and flood water—water holding capacity,

as well as landscape slopes (electronic supplementary material,

Methods). Land-use change through deforestation was not con-

sidered here due to its small area impact, although it has been

proposed to increase incidence in other regions [16–18].

Our intervention data consist of indoor residual spraying

(IRS) operations at the kebele level during the 11 years spanned

by the case data, obtained from the Oromia Regional Bureau of

Health. A categorical binary value of 1 was assigned monthly

to indicate presence of ‘effective’ IRS intervention whose dur-

ation corresponds to the residual effect of the insecticide

sprayed (six months for DDT, three months for Malathion) [19].
(b) Selection of explanatory variables
We started our analysis by defining a suite of explanatory vari-

ables to be assessed for their association with malaria incidence

during the low transmission season from January to April

(JFMA), following the main transmission season from September

to December (SOND). The low transmission season typically fol-

lows the coldest period of the year and receives the lowest rainfall

(electronic supplementary material, figure S1). Because we expect

the inter-annual variation in the cases for this season to be associ-

ated with inter-annual climate variability, we included mean

temperature and total rainfall at different temporal aggregation

windows, as well as NDVI and the Niño 3.4 SST anomalies, all

at different lag periods for each kebele.
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Figure 1. Location of study area (a), log of number of P. falciparum cases per 1000 population in the low transmission season by altitude of kebele (b), and by
population density of kebele (c). Illustration comparing the number of cases per 1000 population in two contrasting seasons—for the low (d ) and high season (e),
respectively (see also animation of monthly maps for the whole study period in the electronic supplementary material, video S1).
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Because malaria represents a transmission system, the

number of cases in one season should depend, in part, on the

number of cases in prior seasons (e.g. [20,21]). We used here a

lagged relative risk computed as the log-standardized ratio of

observed SOND cases to the global expected seasonal malaria

cases. The latter is the population in a kebele multiplied by a

global estimate of the average seasonal malaria rate, a value esti-

mated by dividing the total number of cases by the total

population across all kebeles [20,21].

Owing to the large number of independent variables (n ¼ 12), it

was desirable to reduce this set before consideration of random

effects which becomes computationally more demanding. To

select among possible explanatory variables of the low season

(JFMA) malaria cases, we used a generalized linear model frame-

work. Because observed count data, such as reported cases in

infectious diseases, often exhibit significant overdispersion [22],

and our exploratory analysis confirmed this pattern for our data,

we used a negative binomial distribution of cases. We used (back-

wards) stepwise model selection by the Akaike information

criterion (AIC), implemented with the stepAIC function in the

MASS package.

The negative binomial model used to select variables has the

following general form:

yit � negBinðmit,uÞ ð2:1Þ

and

logðmitÞ ¼ logðeitÞ þ aþ
X5

j¼1

bjx jit þ
X4

j¼1

djw ji þ gzit þ tst, ð2:2Þ

where yit is the number of JFMA cases for kebele i and year t, m is

the mean count of JFMA malaria cases, u is a scale parameter

(dispersion factor), eit is the expected number of cases (the corre-

sponding population multiplied by the global malaria rate), a is

the intercept, bj are coefficients of regression for xj, the time and

space varying factors including mean temperature and rainfall

(with different lag periods), effective IRS status, population

density and NDVI; dj are coefficients of regression for the wj,

non-time varying factors including slope, soil water capacity,

water bodies and distance to roads; g is the coefficient of

regression for zit, the prior season’s log ratio of cases to the

expected cases; and t is the coefficient of regression for st, SST

anomalies from the Niño 3.4 region.
(c) Generalized linear mixed model
After identifying the variables that are significantly associated

with the JFMA count of cases, we tested these variables for

their significance in a generalized linear mixed model (GLMM)

framework that includes: (i) a spatially unstructured random

effect and (ii) a spatially structured random effect. Spatially

structured random effects explicitly account for spatial autocorre-

lations and weight relative risks in regions according to the

relative risks in their neighbourhood. This is consistent with

the latent effect of increased infectious disease risks from neigh-

bouring regions of high transmission used in both mathematical

[23–25] and statistical models [26,27].

We tested three different neighbourhood structures to

represent the spatially structured random effect (electronic

supplementary material, Methods). A normal conditional

autoregressive (CAR) prior distribution is assumed for these

structured spatial effects [28]:

vijvj � N

P
jaijvjP

jaij
,

s2
vP
jaij

 !
, ð2:3Þ

where s2 controls the strength of local spatial dependence, and aij

are neighbourhood weights for each kebele as defined above,

with simple binary values of 1 when kebele i is a neighbour of

kebele j, and 0 otherwise. Since the CAR distribution is improper,

we applied a ‘sum to zero’ constraint on each vi.

We chose a Bayesian Markov Chain Monte Carlo (MCMC)

parameter sampling implementation in WINBUGS to estimate

model parameters and their distributions [29]. We generated

a sample of 10 000 parameters sets to generate our posterior

distributions. The general form of the GLMM is as follows:

yit � negBinðmit,uÞ ð2:4Þ

and

logðmitÞ ¼ logðeitÞ þ aþ
X5

j¼1

bjx jit

þ
X4

j¼1

djw ji þ gzit þ tst þ fi þ vi,

ð2:5Þ

where f and n are the unstructured and structured random

effects, respectively. All other parameters are similar to those



Table 1. Comparison of goodness of fit for the different models tested
based on the DIC. (Smaller DIC values signify better fit.)

model DIC

(I) fixed effect only

(A) climate factors only 4346

(B) climate factors and population density 4333

(C) climate factors, population density and IRS status 4324

(II) fixed effect and unstructured random effect

(A) climate factors only 4277

(B) climate factors and population density 4275

(C) climate factors, population density and IRS status 4272

(III) fixed effect, unstructured and structured random effect

(A) climate factors only 4256

(B) climate factors and population density 4256

(C) climate factors, population density and IRS status 4258

0
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0.80.40
0

0.4

0.8

1.0

Figure 2. Median structured random effect from model III-A (with no population density) (a), and the sum of median structured random effect and population
density from model III-B (with population density) (b), both normalized to range between 0 and 1. The two random variables (respectively, in the x- and y-axes of
plot (c) exhibit high association (r2 ¼ 0.76), indicating the importance of population density in explicitly defining the spatial structure in the malaria cases during
the low season. The red line in plot (c) represents a linear regression line between the two effects.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151383

4

described in equation (2.2), as well as covariates (standardized

here to zero mean and unit variance to aid convergence in

the MCMC sampling). Model selection was based on the

deviance information criterion (DIC), a goodness of fit measure

for Bayesian models that penalizes for increasing model

complexity [30].
3. Results
A temporal pattern of spatial expansion and contraction

through the seasons is typically observed (figure 1d,e). This

pattern can be followed in time in the form of an animated

map (electronic supplementary material, movie S1). The

documented changes suggest that a horseshoe-shaped area

in the centre of the study region accounts for the majority

of cases during the low transmission season and is associated

with elevation differences (figure 1b). This contraction area

would serve as the reservoir of the pathogen from which dis-

ease transmission spatially expands in the main season.

Besides elevation (temperature), we are especially interested
in the role played by human density because of the apparent

increasing relationship observed for malaria cases (figure 1c).

(Hereafter, ‘the reservoir’ and the ‘spatial reservoir’ of disease

transmission refer to the spatial areas where cases are

reported during the low season, and persistence specifically

refers to this season. We do not consider here the particular

usage of the term reservoir for the subpopulation that carries

asymptomatic infections.)

The initial selection of significant explanatory variables

revealed that rainfall and mean temperatures in December–

February (DJF) are significantly associated with JFMA

cases, as was the lagged malaria relative risk. Furthermore,

population density obtained from circles of 5 km radius

was the most significant non-climatic factor associated with

JFMA cases. Neither proximity to roads nor other environ-

mental factors were significant. The Niño 3.4 anomaly

lagged by six months was dropped from further consider-

ation despite being significantly associated with JFMA

cases, as it was highly collinear with DJF rainfall.

Inclusion of the random effects (both structured and

unstructured) resulted in the best model. Moreover, neigh-

bourhood structure based on 10 km least-cost distance

proximity (equivalent to 10 km paved roads and 5 km trail

distance) proved to be best in capturing the random effects.

Population density also contributed significantly when

considered together with structured and unstructured

random effects (table 1). During the low malaria season,

the residual effect of IRS was not significant in all

three models, despite a slight improvement of DIC over the

models with non-structured random effect.

Importantly, population density and the spatial random

effect seem to explain similar variation in JFMA cases,

where the spatial random effect would compensate for popu-

lation density when the latter is not included. Consistent with

this observation, the spatial random effect alone in model III-

A (with no population density) has high partial correlation

with the sum of the spatial random effect and population

density in model III-B (with population density) (figure 2

and table 1). This pattern is largely due to the fact that popu-

lation density and the neighbourhood structure, which is

defined through proximity measures, are closely related

(figure 2c). Indeed, kebeles that have several population



Table 2. Coefficients of the best model for the low transmission season (JFMA) cases.

covariate median 95% CIa bR
total DJF rainfall b1 0.2001 [0.117, 0.280] 1.005

mean DJF temperature b2 0.5299 [0.345, 0.723] 1.008

population density b3 0.1055 [0.003, 0.204] 1.001

lagged malaria relative risk g 1.4270 [1.340, 1.518] 1.002

spatial unstructured hyper-parameter s2
f 0.3257 [0.134, 0.632] 1.001

spatial structured hyper-parameter s2
n 0.0026 [0.000, 0.042] 1.001

overdispersion parameter u21 2.5190 [2.062, 3.098] 1.001
aCI obtained from the 2.5% and 97.5% quantiles of each parameter’s distribution.
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Figure 3. Comparison of predictions and observations for the GLMM model that includes structured and unstructured random effects. In (a), kebele-season predictions
are plotted against observations in the log scale, with the identity line in the diagonal (dotted line). Predictions are generated by sampling from the posterior
distribution of fitted parameters 10 000 times for 159 � 11 kebeles-seasons and computing the median cases from the simulations. Because the number of
prediction – observation pairs at a given point can be (much) higher than 1 (e.g. 963 at the origin), we represent this number by the size of each circle centred
at that pair. (Size is specifically scaled by the square root of the frequency.) Thus, although some predictions depart from observations for the kebeles and seasons
with no cases, the instances of these discrepancies are very few compared to the bulk of correct predictions. Similarly, for observed non-zero cases, the majority of the
predictions fall along the diagonal. See the electronic supplementary material, figure S4, for a version of this graph that includes another representation of the uncer-
tainty around predictions. In (b), predictions of JFMA cases are aggregated for all kebeles and shown in time for the different years. From the 10 000 parameter
combinations, the medians of the aggregated cases for a given season are shown together with the 95% credible intervals (CI) (the 2.5% and 97.5% quantiles of
the simulated JFMA cases). The GLMM 95% CI include the observed cases 64% of the time (and 82% of the predictions within 7% of the CI intervals).
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centres in their neighbourhood are also likely to fall in a

region with high population density. The inclusion of popu-

lation density in our model helps to explicitly define part of

what would have been otherwise incorporated as structured

random effects.

All parameters in the best model (with population density

and both unstructured and structured random effects) are sig-

nificantly different from zero, with posterior distributions from

the two chains well mixed and converged (table 2). Compari-

sons of predictions and observations are illustrated in figure 3

and electronic supplementary material, figure S4. In general,

their values for individual kebele-seasons (figure 3a; electronic

supplementary material, figure S4), as well as for the aggre-

gated kebeles for a given season (figure 3b), are in good

agreement, with a slight tendency to under-predict at the

high end of incidence values. Because we are considering

the low season, the vast majority of kebeles exhibit no repor-

ted cases (62% of kebele-seasons) and our model correctly

predicted 89% of these instances (figure 3a).

At the level of individual kebeles, figure 4 shows maps

comparing observed and predicted cases on a quantile scale
for both a high incidence year (1998, panels (a) and (b)) and

a low incidence year (2002, panels (d ) and (e)). We observe

correct quantile predictions for 67% and 89% of kebeles,

respectively (figure 4c,f ). Similar results are obtained for

other years (electronic supplementary material, figure S3).

In general, quantiles of JFMA cases are correctly predicted

for 70% of all kebele-seasons (electronic supplementary

material, table S1).

By contrast with the low season, malaria cases in the main

season (SOND) were neither significantly associated with

rainfall nor with population density, while the effect of IRS

status became significant. Mean temperature however remained

significant in both seasons (see the electronic supplementary

material, table S2).

We confirmed the robustness of our results for the low

season, by fitting a model only to the data for the first

6 years (1995–2000). Apart from rainfall, all identified par-

ameters remained significant at 0.05 significance level

(electronic supplementary material, table S3), and the model

predicted post-2000 data reliably (electronic supplementary

material, figures S5 and S6).
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4. Discussion
As clearly visible in the animated malaria maps (electronic

supplementary material, movie S1), and exemplified in

figure 1d,e for the trough and following large peak of

1997, the spatial distribution of malaria expands and con-

tracts as we transition from high to low seasons in a way

that at first sight might appear simply related to elevation

(or equivalently, to temperature). Our results indicate how-

ever that while climate factors play an important role, it is

their combined effect with population density that main-

tains a reservoir of disease transmission and explains the

spatial heterogeneity of persistence during the troughs

between transmission seasons. Population density helps

explicitly define the spatial effects identified in the statistical

models. In particular, areas of persistence, where malaria

transmission continues in the low season, are largely con-

fined to interconnected population centres forming a

horseshoe-shaped stretch of land with population densities

ranging from 150 to 700 persons (or 30–80 households)

per square km (cf. figure 1c and electronic supplementary

material, figure S2a). Population density does not appear

to play a role during the main transmission, suggesting a

role during inter-epidemic persistence of the disease rather

than in the epidemics themselves.
Our study area, which is located at average elevation of

2000 m.a.s.l., has marginal temperatures both for the vector

(breeding) and the parasite’s development within the vector

(sporogony). As suitable vector breeding sites generally

decline from rural to urban settlements in Africa [31–34],

the finding of higher malaria incidence in suburban rather

than in more rural areas during the low transmission

season is therefore surprising. Higher population densities

may provide not only indoor microclimates with higher

ambient temperatures but also higher concentrations of

attractants such as carbon dioxide and human odours that

guide host seeking by the vector [35]. Higher house occu-

pancy rates could contribute to higher temperatures that

permit prolonged sporogony and transmission during the

low malaria season. Moreover, (semi)-hibernating mosqui-

toes continue to feed indoors without the requirement to

leave the dwelling for oviposition. Higher occupancy rates

will therefore also increase the contact rate between infectives

and susceptibles and the probability that an infected vector

transmits the parasite. Clustering of malaria cases within

households was indeed a common observation in the early

1900s in the Netherlands, where ‘winter transmission’ was

not uncommon [36]. Today, people who settle in densely

populated, peri-urban areas in East African highlands are

often met with inadequate health facilities, a situation
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exacerbated by poverty, low levels of education and poor

infrastructure [32]. They are also involved in economic activi-

ties (agriculture, in our case) that demand higher mobility,

which together with the higher population density elevate

the risk of infection. Higher population numbers in a given

area may also alter the agricultural landscape in ways that

create additional recruitment sites for the vector [37].

Areas of higher density might also coincide with those of

higher immigration from lower, more endemic regions, which

would import asymptomatic cases that contribute to persist-

ent transmission. Our results however indicate that human

mobility as represented by a simple proximity to roads is

not significantly associated with the distribution of cases in

the low season. There are only a few roads in the region,

and trails rather than roads tend to have wider use, especially

in the dry season. Using weighted proximity (as opposed to

geographical adjacency) as a basis for neighbourhoods

appears effective in capturing human movement patterns

that influence disease incidence. This observation is consistent

with other studies that used proximity measures as opposed

to adjacency measures [23–25]. Moreover, our results confirm

significant spatial autocorrelation as expected for vector-borne

infections from similar studies [26,27].

In addition to human mobility, vector mobility can also

affect low season transmission. The seasonal migration of

vectors to microclimates (to warmer or less arid environ-

ments) more conducive to bridging periods unfavourable

for reproduction has been reported for various Anopheline

species [38], and a retreat of vectors to lower elevations

during colder months is conceivable. Suburban settlements

in highlands with higher population densities may attract

larger fractions of migrating vectors than rural areas.

During unfavourable climatic conditions, adult survival

takes preference over breeding in many Anopheline vector

species. Semi-hibernating (or aestivating in arid climates)

females [39] continue to feed (and transmit malaria) without

breeding. The associated increased lifespan of this condition

would turn the vector into a more important reservoir for

malaria during the low season.

Increases in mean temperature during the period between

December and February have a delayed prompting effect on

transmission in the low transmission season (January to

April). Since this period includes the coldest months of the

year, our results imply that higher DJF temperatures can

limit the seasonal inhibition on the development of parasites,

the population growth of vectors and their biting frequency

[2,40,41]. This finding is consistent with the demonstrated

temperature effects on malaria transmission in highland

regions, where warmer years contribute to increases in the

intensity of the disease [4,20,42].

Higher DJF rainfall may also aid malaria transmission

during the low season, a period of low precipitation. The sig-

nificance of higher DJF rainfall may also operate though

increasing humidity (and longevity), rather than through

increased breeding. Regardless of mechanism, evidence for

a rainfall effect is weak in our model, in the sense that it is

not robust to consideration of fewer years. For the main trans-

mission season (SOND), we observe a reverse effect of inter-

annual rainfall, where higher levels in the preceding wet

months of JJA decrease malaria incidence in SOND, most

likely due to a wash out effect on mosquito habitats. Earlier

studies have not identified relative humidity as a relevant

factor in the Debre Zeit area for this period [43].
Although IRS was not identified here as significant for the

low season, it is found to be a major factor in the main trans-

mission season (electronic supplementary material, table S2).

IRS operations in our study area exclusively target the main

season 90% of the time and thus provide no protection in

the low transmission season.

The use of host population size as the only demographic

factor in malaria transmission models may be insufficient for

low intensity regions (and seasons) with high spatial hetero-

geneity in incidence levels. A spatially resolved dynamical

model would require a more explicit characterization of

differences in demographic factors, especially population

density to capture its heterogeneity. Along these lines, a

recent study on the spatial heterogeneity of malaria risk in

a region of low transmission with similar seasonal patterns

suggests the importance of considering risk ‘hot spots’ at

different spatial scales [44].

The results presented here specifically make a case for

revising the functional form of the force of infection (rate of

infection of a susceptible individual) used in dynamical pro-

cess-based models for the population dynamics of malaria.

These models are typically variations of the original formu-

lation in the Ross–MacDonald equations and assume that

transmission is ‘frequency-dependent’ and its rates depend

on the ‘mosquito per human’ ratio [1,45]. As such, they intro-

duce an inverse relationship between the force of infection

and the host population numbers (or density). A theoretical

argument that explicitly incorporates behavioural consider-

ations proposes a more complex function with an increase

at low host numbers (densities), and saturation followed by

a decrease at higher values. Our model results are consistent

with this pattern at low densities and our observations in

figure 1c support a nonlinear form possibly saturating at

high densities, if not decreasing, although multiple mechan-

isms outlined above are possibly at play that go beyond the

specific assumptions in [13]. In particular, the additional

complexities introduced by explicit space and the violation

of well-mixed systems [46] have been ignored in this discus-

sion; they make host density and host numbers no longer

interchangeable.

The results presented here also make a case to strengthen

control during the low transmission season in rural areas

with higher population densities. Such control measures

would consist of targeting the spatial reservoir of the patho-

gen in humans (finding and treating symptomatic and

non-symptomatic carriers) and/or the vector (additional

rounds of IRS). These measures would improve cost effective-

ness and aid existing initiatives to eliminate malaria from

African highlands. Our findings could be relevant to other

locations with seasonal malaria.
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