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Determining the influence of complex, molecular-system dynamics on the

evolution of proteins is hindered by the significant challenge of quantifying

the control exerted by the proteins on system output. We have employed a

combination of systems biology and molecular evolution analyses in a first

attempt to unravel this relationship. We employed a comprehensive math-

ematical model of mammalian phototransduction to predict the degree of

influence that each protein in the system exerts on the high-level dynamic

behaviour. We found that the genes encoding the most dynamically sensi-

tive proteins exhibit relatively relaxed evolutionary constraint. We also

investigated the evolutionary and epistatic influences of the many nonlinear

interactions between proteins in the system and found several pairs to have

coevolved, including those whose interactions are purely dynamical with

respect to system output. This evidence points to a key role played by

nonlinear system dynamics in influencing patterns of molecular evolution.
1. Introduction
The flood of genomic and molecular data that has become available in recent

years has permitted the investigation of high-level trends in molecular evol-

ution, particularly in the context of whole biochemical systems, with an aim

of unravelling the diverse selective pressures acting on proteins. To date, studies

on the patterns of molecular evolution within systems have largely focused on

representing the systems as networks, in which proteins are represented as

nodes and their interactions as the edges that connect them. Graph-topological

properties of the proteins are then calculated, and correlations between these

properties and the evolutionary histories of the genes are measured [1–12].

While correlations between network topology and molecular evolutionary

histories (e.g. between node centrality and evolutionary rates) were found by

all, the observed relationships varied from system to system. Thus, there is

still no general principle relating the structure of biomolecular networks to

molecular evolutionary patterns.

A shortcoming of the network approach is that it treats molecular systems

as static entities, defined solely by the existence or absence of interactions

between them. That is, it does not consider important dynamic relationships

between proteins. Recent studies on molecular evolution in metabolic pathways

have begun to consider the influence of system dynamics on natural selection

via estimates of the metabolic flux or flux control distributions of the pathways.

These are a means of quantifying the flow of metabolites through the pathway

and the degree of control that each enzyme has on this flow. In an early study,

Vitkup et al. [13] found that yeast proteins carrying high metabolic flux evolved

under exponentially stronger selective constraints. More recently, Colombo et al.
[14] compared the metabolic fluxes of the erythrocyte core metabolic reaction

network with molecular evolutionary rates and found, like Vitkup et al. [13],
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that enzymes that carry high fluxes have been more con-

strained in their evolution. Meanwhile, Olson-Manning

et al. [15] found that the first upstream enzyme in the

alipathic glucosinolate pathway of Arabidopsis thaliana has

higher flux control, and that this protein is the only one to

show evidence of selection. Though these studies have high-

lighted some of the processes underlying molecular evolution

within metabolic pathways, their methodologies cannot be

easily applied to other molecular systems, such as signalling

networks. While these methodologies certainly present a

more dynamic view of the system than network-based

methods would, the steady-state assumption in calculating

a metabolic flux distribution or flux control coefficients

precludes any assessment of the adaptive influence of

non-equilibrium dynamic behaviour. Thus, it is difficult to

draw a connection between flux coefficients and the pheno-

type, which creates a challenge in interpreting flux-based,

system-level evolutionary analyses of metabolic pathways.

In order to gain insight into the selective significance of

the non-equilibrium system dynamics in molecular evolution,

a non-trivial but well-characterized pathway is necessary.

Perhaps one of the most well-understood signalling pathways

is visual phototransduction, an archetypal G-protein signal-

ling cascade. Phototransduction is the process by which a

visual stimulus is converted to a neuronal response. In

vertebrates, a light stimulus is absorbed by a visual pigment

associated with the receptor, rhodopsin, triggering a confor-

mational change. A heterotrimeric G protein, transducin,

binds the activated rhodopsin, which catalyses the exchange

of GDP for GTP on the Gta subunit of transducin, leading

to the dissociation of the G protein. Gta is then free to activate

the signal effector, a phosphodiesterase (PDE6), resulting in

the hydrolysis of cyclic GMP (cGMP). Falling cGMP concen-

trations lead to the closure of cGMP-gated ion channels,

causing a drop in the cytoplasmic Ca2þ concentration and a

subsequent hyper-polarization of the cell, which initiates the

neuronal signal. Several parallel processes then act to recover

from the signal, via deactivating the receptor and the effector

and re-opening the ion channels, in order to prepare the cell to

respond to further stimuli. Falling Ca2þ concentrations acti-

vate multiple feedback mechanisms, which tightly regulate

the deactivation of the receptor, the re-synthesis of cGMP

and the affinity of the ion channels for cGMP. For a detailed

overview of the molecular mechanisms of phototransduction,

see Pugh Jr & Lamb [16] or Yau & Hardie [17].

Recently, a comprehensive model of phototransduction has

been developed to simulate the murine phototransduction

response [18]. Following ideas proposed by Gutenkunst [19],

by applying a parameter sensitivity analysis to this model, we

could make an estimate of the impact of functional variations

in the system’s proteins on the dynamics of the photoresponse.

The system-level phenotype was quantified through four elec-

trophysiological characteristics of the photoresponse, which

are in common usage for capturing important functional charac-

teristics of phototransduction. They represent high-level, salient

features of the system dynamics that conceivably have been evo-

lutionarily relevant during mammalian divergence. We then

investigated whether there exists any relationship between the

evolutionary histories of the proteins and the sensitivity of the

system to their functional variation in order to gain insight

into how genetic variants influence function and thus are fil-

tered by natural selection. Finally, we perturbed pairs of

parameters together in order to predict whether any potential
nonlinear interactions exist between genes of the phototransduc-

tion system and we compared this with evidence for

coevolution between the proteins of the system.
2. Results
(a) Parameter sensitivity
We first investigated the local sensitivities of the model par-

ameters in order to determine the degree of influence each

parameter has over the response. Parameter sensitivity was

estimated for four electrophysiological properties of the

photoresponse which characterize high-level features of the

system dynamics under different light stimulus regimes.

Under dim light conditions, we measured the peak ampli-

tude and the time constant of signal recovery (trec); under

bright light conditions, we measured the duration of signal

saturation before recovery and the rate at which this

time increases with greater stimulus intensities (tD). For an

illustration of the four electrophysiological features, see

electronic supplementary material, figure S1.

Parameter sensitivity values spanned several orders of

magnitude, and even after log-transformation their distribution

remained skewed towards higher sensitivity values (electronic

supplementary material, figure S2). Because we measure par-

ameter sensitivity empirically, based on an arbitrarily chosen

perturbation size of 1%, we checked for extreme changes in

the empirical measurement functions over a large range of per-

turbation sizes. Such extremes might indicate less reliable initial

parameter values or that a smaller perturbation size would be

needed. For each parameter, we generated 39 models in which

the parameter value was set between 5% and 195% of its

default value. We then simulated flash responses to dim and

bright stimuli with each model, and measured the peak ampli-

tudes, trec values, saturation times and tD values for each one

(for two examples, see electronic supplementary material,

figures S3 and S4). In all cases, the magnitude of change in

the electrophysiological measurements was relatively small

for minimal perturbation sizes. For some parameters, such as

kRGS1 (electronic supplementary material, figure S3), signifi-

cant effects could be seen for large perturbations (less than

50% of the original value).

(b) Gene dynamic sensitivity
Plotting the ratio of the rates of non-synonymous nucleotide

substitutions to synonymous substitutions during species

divergence, dN/dS, against gene sensitivities shows similar

positive trends for the four electrophysiological measure-

ments (figure 1); however, the sensitivities of individual

genes varied for the different measurements. We performed

Spearman’s rank correlation test to determine the significance

of these relationships. Of these, two tests were significant: trec

(r ¼ 0:585, p ¼ 0:036) and saturation time (r ¼ 0:607,

p ¼ 0:028). Peak amplitude (r ¼ 0:274, P ¼ 0:365) and tD

(r ¼ 0:468, p ¼ 0:107) showed no significant relationship

with dN/dS. The correlation between dN/dS and the mean

sensitivity for each gene was also found to be significant

(r ¼ 0:612, p ¼ 0:026; figure 2).

Because a strongly negative correlation between expression

levels and evolutionary rates has previously been identified in

yeast [20,21], expression may be a confounding factor in our

analysis. We checked the baseline expression patterns of the
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Figure 1. dN/dS plotted as a function of gene dynamic sensitivities for the four electrophysiological measurements.
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genes in a panel of RNA-seq data from 53 different human

tissues [22], as provided by the Expression Atlas service

(https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2919)

[23]. The retina was not included in this dataset. Of the photo-

transduction genes that we studied, only GNB1 showed high

expression across many tissues, with a mean of 47.21 frag-

ments per kilobase of transcript per million mapped reads

(FPKM) and standard error (s.e.) of 2.51; GNB5 (mean 2.93

FPKM, s.e. 0.343) and RGS9 (mean 2.57 FPKM, s.e. 0.687)

also showed moderate expression levels. The other genes, if

present, only showed low expression (PDE6B: mean 1.84;

others: mean of less than 1 FPKM). We found no significant

correlation between dN/dS and mean expression levels, nor

were significant correlations found between our sensitivity

measurements and mean expression levels (peak amplitude:

r ¼ �0:385, p ¼ 0:216; trec: r ¼ �0:357, p ¼ 0:254; satur-

ation time: r ¼ �0:039, p ¼ 0:905; tD: r ¼ 0:011, p ¼ 0:974;

average sensitivity: r ¼ �0:237, p ¼ 0:459). While transcript

levels for these genes are not available for the retina, protein

quantities for the genes were found in the literature to be in

the range of 1 � 105 to 1 � 108 copies per rod photoreceptor

outer segment during construction of the phototransduction

model [18]. These protein quantities also do not correlate

with dN/dS (r ¼ �0:279, p ¼ 0:356). This lack of a correlation

between expression and dN/dS agrees with recent data that

show that in mammals this relationship is weaker than

expected [24].

While mean expression levels showed no correlation with

dN/dS, broad expression patterns should cause proteins to

evolve under a larger range of selective pressures. Thus, con-

straint on GNB1, for example, is not exclusively the result of

selection on the phototransduction system. When we

removed the three proteins showing the highest mean

expression levels outside the retina (GNB1, GNB5 and

RGS9), the previously found correlations between dN/dS
and the gene sensitivity measurements became more
significant: trec (r ¼ 0:681, p ¼ 0:030), saturation time

(r ¼ 0:839, p ¼ 0:002) and mean sensitivity (r ¼ 0:705,

p ¼ 0:023). Additionally, the correlation between dN/dS
and tD became significant with the removal of these genes

(r ¼ 0:717, p ¼ 0:020). The relationship with peak amplitude

remained insignificant (r ¼ 0:450, p ¼ 0:192).
(c) Non-additive phenotypic effects
We next used the model to determine whether any non-

additive interactions exist in the dynamics. Such nonlinearity

would indicate functional interdependence between the

proteins’ activities, which would have strong implications

for their evolution. We tested for non-additive interactions

between parameters by checking for equality between the

effect of simultaneously perturbing two parameters and

the sum of the effects of perturbing each of these two par-

ameters individually. Deviance from equality of these two

measurements would indicate a nonlinear interaction

between the parameters. For each of the four empirical

measurements of phototransduction, every pair of par-

ameters showed a difference in effect size between the

‘double mutant’ and the sum of the ‘single mutants’. Thus,

all parameter pairs show at least some degree of nonlinearity

in their interactions. The magnitudes of these differences

from linearity were small, concomitant with the small, 1%

parameter perturbations (ranges in terms of absolute base-

2 logarithms of the fold-change—peak amplitude: 2.31 �
10212 to 7.76 � 1025; trec: 5.06 � 10214 to 1.79 � 1024; satur-

ation time: 6.16 � 10211 to 3.55 � 1025; tD: 2.23 � 10210 to

5.27 � 1025). While the smallest effects are arguably negli-

gible, the larger nonlinear effects point to potentially

significant interactions across the network that could have

selective relevance, particularly with mutations of larger

effect. The parameter pairs showing the highest magnitude

of differences from linearity for each empirical measurement

https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2919
https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2919
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are listed in electronic supplementary material, table S5, and

are discussed further below.
5

(d) Coevolution
Nonlinear dynamic interactions between proteins can result

in epistasis and subsequent coevolution between genes.

Thus, we measured the degree of coevolution between

the phototransduction genes by calculating the correlation of

their phylogenetic trees using the MirrorTree method [25]

(see electronic supplementary material, figures S5–S17 for

the phylogenetic trees and table S4 for the MirrorTree

correlation coefficients). The gene pair GNAT1–RHO
(a-transducin–rhodopsin) showed the highest phylogenetic

correlation coefficient, consistent with previous assertions of

coevolution between G proteins and their receptors [26].

Using this pair as a reference, we tested the other gene

pairs for significant evidence of coevolution. Pairs of genes

with correlation coefficients that do not differ significantly

from that of the reference (with a confidence of 0.05) were

then taken to show evidence of coevolution themselves. Thir-

teen additional gene pairs were found in this way to have

coevolved (figure 3).

Several of the coevolved protein pairs correspond neatly

to the strongest nonlinear parameter interactions (electronic

supplementary material, table S5). Some cases involve pro-

teins that physically interact and correspond to parameter

pairs whose interaction is readily understood. For example,

the rate of binding of activated, a-transducin-bound PDE6

with its regulatory protein RGS9-1 (kRGS1) and rates of

cGMP hydrolysis by PDE6 (bdark, bsub) have strong nonlinear

interaction effects on peak amplitude, trec and saturation

time. Of the proteins involved in these processes, a PDE6 cat-

alytic subunit (PDE6A) shows significant evidence of

coevolution with RGS9-1 (RGS9) and with RGS9-1’s anchor

protein (RGS9BP). Similarly, the parameters for the inter-

action between rhodopsin kinase and its regulatory protein

recoverin (kRec3, kRec4) show strong nonlinear interactions

with the parameters governing a conformational change of

recoverin that modulates in its regulation of the kinase, affect-

ing peak amplitude and saturation time. This is potentially

reflected in the significant evidence of coevolution between

the genes encoding the kinase (GRK1) and recoverin

(RCVRN). However, in these cases, because the proteins

physically interact, one would more typically ascribe the
coevolution simply to maintaining the proteins’ ability to

bind each other.

More interesting are the cases where proteins that do not

physically interact were found to show evidence of coevolu-

tion. Two regulatory proteins, RGS9-1 (RGS9) and arrestin

(SAG), appear to have coevolved despite regulating two

different proteins (the activated PDE6 complex and activated

rhodopsin, respectively). In the model, we find parameter

pairs associated with these two proteins among the par-

ameter pairs showing the strongest divergences from

linearity (the interactions between kA3 and kA4 with kRGS1
for trec). Specifically, the former parameter pair regulates

arrestin’s propensity to form homo-dimers and homo-

tetramers, while the latter regulates the rate of binding of

RGS9-1 and the activated PDE6 complex. We also see coevolu-

tion between the RGS9-1 anchor protein (RGS9BP) and

another regulatory protein, recoverin (RCVRN), reflected in a

nonlinear interaction for kRec1 and kRec2 with kRGS1. Finally,

we found evidence of coevolution between g-transducin

(GNGT1) and a catalytic PDE6 subunit (PDE6A), as well as

RGS9BP, which is interesting in that only the a-subunit of

transducin physically interacts with PDE6. However, we find

strong nonlinear interactions between the parameter govern-

ing the initial binding of transducin with rhodopsin (kG10)

and both the cGMP hydrolysis rates (bsub and bdark) and

RGS9-1 activity (kRGS1). In the case of the rhodopsin–trans-

ducin interaction, bg-transducin is known to be directly

involved in the initial docking [27], so it is feasible that

evolution of GNGT1 could affect this process.

There are some cases where coevolution is expected but

not seen. Most notably, parameters related to arrestin’s

activity show a tendency towards nonlinear interaction with

parameters related to rhodopsin kinases’s activity or that of

its regulating protein recoverin. This is not surprising,

because the binding affinity of arrestin for rhodopsin, and

therefore the rate of arrestin’s regulatory activity, is modu-

lated by phosphorylation of rhodopsin by rhodopsin

kinase. Nevertheless, no coevolution was found between

rhodopsin, recoverin/rhodopsin kinase or arrestin.

Importantly, not all protein pairs within the system

showed evidence of having coevolved. This indicates that it

is not sufficient to attribute the coevolution to simply being

active in the same system. Likewise, most of the physically

interacting pairs did not show evidence of having coevolved

(figure 3), implying that physical interaction is also not a suffi-

cient condition for coevolution. Most interestingly, clustering

of the coevolutionary patterns confirms the separation of the

broadly expressed genes GNB5 and GNB1 as having evolved

under largely unrelated selective pressures, given that their

phylogenetic patterns show little to no correlation with those

of most of the other genes of the system (figure 3). On the

other hand, the strong coevolutionary signal found for RGS9
and other phototransduction proteins suggests that its evol-

utionary history may have been strongly shaped by its role

in this system, despite its broad expression in other tissues.
3. Discussion
In order to truly understand how natural selection on the

phenotype gives rise to evolutionary patterns at the genetic

level, it is critical to understand how proteins contribute to

the phenotype. While each protein taken independently has
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functionality that contributes to the survival of the organism,

it is clear that the nature of that protein’s interactions with

others should also influence fitness. Nevertheless, probing

the influence of genetic variation on high-level system prop-

erties in vitro or in vivo, by testing the effects of functional

changes in many interacting proteins, is a significant under-

taking. To date, advances have been made in this direction

only in the use of unicellular organisms [28]. For more com-

plex organisms, it would be necessary to use in silico
techniques to predict how functional changes will affect the

phenotype. However, until a robust method of predicting a

complex phenotype from a genotype is available, we must

presently seek correlations between system-level traits and

evolutionary patterns at the sequence level.

Given the potential influence of system dynamics on sur-

vival, the question arises of how selective constraint varies

between proteins with different degrees of influence on a sys-

tem’s output. One would expect that these sensitive parts of

the system would be strongly constrained in their evolution,

due to their potential to greatly disrupt the normal dynamics.

In order to investigate this, we employed a comprehensive

model of mammalian visual phototransduction that math-

ematically captures the main physiological features of the

system. We found that, in fact, the more sensitive proteins

(those associated with the parameters that most strongly

define the photoresponse) have shown less evolutionary

constraint during mammalian divergence. Furthermore, we

found that concurrent mutations in several pairs of proteins

of this system should often result in multiplicative pheno-

typic effects, which would result in tightly intertwined

functionality between the proteins. This may have manifested
in the patterns of protein coevolution during species

divergence that we identified.

(a) Gene dynamic sensitivity is a determinant
of evolutionary constraint

While the dN/dS ratios of the genes in this system are rela-

tively low, indicating that strong purifying selection has

been the dominant evolutionary force acting on the genes,

it is clear that the more dynamically sensitive proteins have

accumulated amino acid substitutions at a faster rate during

mammalian divergence. This is an interesting observation

as it shows an unexpected behaviour in the strength of

conservation in the genome: the genes that have a strong

effect on the phenotype are not necessarily those under the

strongest purifying selection and thus are not the most con-

served. This could be linked to evolvability of the system

during adaptation to new visual environments. While we

cannot make predictions regarding the specific impact, if

any, of those substitutions in such sensitive genes, we show

that they would have more potential to alter the system

dynamics to a greater degree than functional substitutions

in other genes.

Previously, we have shown that proteins that are

topologically central in a network representation of the

phototransduction pathway have been under stronger purify-

ing selection [12]. Interestingly, we found no correlation

between our gene sensitivity measurements and the topologi-

cal network measurements described in that publication.

Nevertheless, the contrast between the two results is striking.

This difference is likely to be due to the distinct attributes
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of the system captured by the two approaches, the static net-

work and the dynamic model. The network was constructed

according to the known physical interactions between the

proteins. The central proteins may thus be seen as being

important in the overall communication of the signal

throughout the system. Because they tend to have many

interacting partners, their loss would lead to a catastrophic

failure to transduce the signal. The way in which we used

the dynamic model does not capture this behaviour; slightly

modifying one of the parameters associated with such a

protein may not, in fact, disrupt the system dynamics to

any significant degree. However, if one were to disable that

protein in the model altogether, the dynamics would be

greatly affected. For example, the proteins comprised by the

PDE heterotrimer have relatively high centralities in the net-

work, while the model parameters associated with them were

found to be extremely insensitive in this study. Nevertheless,

removing PDE from the model would result in cGMP not

being hydrolysed and a subsequent lack of any photo-

response. Thus, a network representation is appropriate for

capturing the essentiality of the proteins of this system,

while a dynamic model can give information on their kinetic

fine-tuning. We argue that the use of dynamic models, in

fact, may be the key to understanding the evolvability of

biochemical systems.
(b) Non-additive interactions and coevolution
When considering the evolution of proteins that interact in a

system, it is important to know whether any epistatic inter-

actions exist between them. Epistasis will cause the

functional effect of a mutation to be dependent upon the gen-

etic background in which it occurs. Typically, this should

manifest as non-additive mutational effects, which are greater

or smaller than what is expected [29], and it may implicate

coevolution between some of the genes [30]. More impor-

tantly, the identification and characterization of epistasis is

an important challenge in understanding the nature of the

genotype-to-phenotype map [31]. Here, we have proposed

a novel approach that employs an accurate, detailed model

to predict non-additive functional effects. It proved to be a

promising means to quickly assay for the potential for

epistatic interactions in a given biological system. We found

all parameter interactions in the system to be nonlinear

to some degree. This indicates a high probability of

finding true epistatic interactions between the genes of the

phototransduction pathway.

We tested our predictions of epistasis by looking for evi-

dence of coevolution between pairs of genes. We could

identify several such pairs that corroborate the evidence for

potential epistasis. For example, the genes RGS9 and SAG,

which encode the proteins RGS9-1 and arrestin, respectively,

are responsible for deactivating two distinct parts of the path-

way: RGS9-1 accelerates the dissociation of a-transducin from

PDE6 and halts further hydrolysis of cGMP; arrestin, on the

other hand, caps rhodopsin and prevents further activation

of the G protein, transducin. Despite interacting with differ-

ent proteins, they help to shape the recovery of the

photoresponse together in a nonlinear manner (electronic

supplementary material, table S5). We hypothesize that the

indirect dynamic relationship of these proteins is the cause

of the significant evidence of coevolution found between

their genes (figure 3). We believe that the use of a
mathematical model of biochemical systems can in this way

provide a quantitative basis on which to quickly and easily

form hypotheses about coevolution between proteins that

do not physically interact.

It is also interesting to observe that clustering the pair-

wise correlation coefficients shown in figure 3 can

effectively discriminate between genes whose encoded pro-

teins are primarily responsible for the activation of the

phototransduction cascade (RHO, GNGT1, GNAT1, PDE6B
and PDE6G) from those that encode proteins that work to

deactivate the system (RGS9, SAG, RCVRN, GRK1 and

RGS9BP). Only the gene PDE6A did not cluster with its

expected group (activation). Overall, this reveals broad co-

evolution within the two modules, as would be expected.

Notably, however, we could also identify statistically signifi-

cant coevolutionary relationships that bridge the activation

and deactivation modules. This points to the adaptive need

to harmonize the dynamics of activation and deactivation

of the system.
(c) Future directions
Similar analyses of other molecular systems are necessary to

further unravel the influence of signalling dynamics on

natural selection. The present work depended on the avail-

ability of a high-quality mathematical model of the

phototransduction system. Critically, the model gives

focus to the proteins, rather than second messengers, and

it consists primarily of low-level descriptions of the reac-

tions rather than mathematically convenient, albeit more

abstract, empirical formulae. Future studies will require

models of a similar scale and detail to help to elucidate

any general trends in the influence of system dynamics on

molecular evolution.

While this phototransduction model was constructed

from the most up-to-date information available on the

system, future research may serve to fine-tune the parameter

estimates or to reveal currently unknown mechanisms.

However, the core network of this system is widely agreed

upon and, to this end, the model has already proved to accu-

rately simulate a large range of experimental conditions,

indicating that it is largely correct [18]. Therefore, we believe

that subsequent iterations of the model will not greatly dis-

rupt our results. Rather, they will allow the addition of other

proteins to the analysis (e.g. phosducin or the guanylate

cyclases) and a more accurate assignment of model par-

ameters to specific proteins, especially in the cases of

protein complexes.

While we believe the model to be largely accurate, it

nevertheless remains a model. Its primary utility in this

case was to rapidly assay the effects of many functional per-

turbations across the whole system. Such tests of functional

importance of molecular dynamics and nonlinear interactions

on the scale of entire systems remains challenging in a

laboratory environment, and thus such simulation-based

approaches provide a convenient means to make meaningful

predictions on which to base targeted experiments. In par-

ticular, it is hoped that the insights gained in the present

study will help to guide future investigations into the

evolution of phototransduction proteins. For example, bio-

chemical assaying of the dynamically sensitive proteins

from diverse mammalian species may reveal functional

differences.
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(d) Conclusion
This investigation has offered an intriguing insight into mol-

ecular evolution in the context of biochemical systems. It is

intuitive that the complex dynamics of protein interactions

will influence their evolution. However, until now, it has

been difficult to show this. With modern advances in compu-

tational power along with an ever-increasing depth of

knowledge of biochemical pathways, we can begin to assess

the role of system dynamics in natural selection by in silico
means. In this study, we have found that the dynamic sensi-

tivities of proteins of the phototransduction pathway show a

relationship with their rates of molecular evolution. Surpris-

ingly, we found that the relationship was the inverse of our

expectations: genes encoding proteins with stronger control

over high-level system properties have higher rates of evol-

ution. Furthermore, we found evidence for epistatic

interactions arising from these dynamics that highlight the

tight functional coupling between proteins of the system.

An implication of this finding is that adaptive tuning of

signalling pathways can be rapidly affected by few mutations

in dynamically sensitive proteins. Nevertheless, it is likely

that most such mutations would be detrimental. The presence

of epistatic interactions in the system would promote the fix-

ation of compensatory mutations in other proteins in the

system, resulting in coevolution of these proteins during

species divergence. In the present study of the phototrans-

duction system, we found that there are indeed many pairs

of proteins showing evidence of having coevolved, including

pairs that do not physically interact, supporting the notion of

system-level epistasis. A model can then provide quantitative

insight into the cause of this protein coevolution by offering

the means to assay the effects of simultaneous functional

changes in associated kinetic rates.

In the case of highly dynamic and nonlinear biochemical

systems such as signalling pathways, it is insufficient to con-

sider the evolution of proteins as static, isolated units. We

have shown that the concerted activity of proteins in shaping

the phenotype may have a notable influence on natural selec-

tion. This broadens our understanding of the multitudinous

determinants of molecular evolutionary patterns, while open-

ing new methods for investigating evolution on a systems level.
4. Material and methods
(a) Model implementation and simulations
A previously developed model of mammalian phototrans-

duction was used for all simulations [18] (BioModels:

MODEL1501210000). The model comprises a system of ordinary

differential equations that deterministically track the time evol-

ution of 72 molecular species in 96 reactions and using

62 parameters. It was implemented using SBTOOLBOX2 for

MATLAB (http://www.sbtoolbox2.org) [32]. Simulations were

run from automatically generated and compiled C-code

models, based on the CVODE integrator from SUNDIALS [33].

The primary output of the model is the suppression of the

energy induced by the dark-circulating electrical current

(measured in change in joules, DJ ) across the membrane of the

photoreceptor outer segment after a stimulus.

(b) Simulated electrophysiological measurements
In order to measure changes in the photoresponse upon pertur-

bation of the system, we required means of quantifiably
characterizing the model output. We chose four high-level prop-

erties, two each for measuring non-saturating and saturating

photoresponses. For the former case, we measured signal ampli-

fication via the peak amplitude (maximum change in current

from the dark-adapted level) after a dim stimulus; and we quan-

tified the recovery from this peak via the time constant (trec) of a

single exponential fit to the second half of the recovery phase of

the response to a dim stimulus. For the saturating paradigm, we

measured the saturation time (Tsat), the total time the current

spends at more than 90% of its peak amplitude after a bright

stimulus; and we quantified recovery from saturation via tD,

measured as the change in Tsat with logarithmically increasing

stimulus intensities [34]. All four metrics are commonly used

in experimental research to assess phototransduction

performance.

Dim-light responses were generated from a simulated stimu-

lus causing 6.536 photoisomerizations per second (R*s21). Tsat

was determined for simulated responses to a flash generating

1808 R*s21. tD was computed as the slope of a least-squares fit

of the Tsat values measured for responses to stimuli resulting in

403.43 to 1808 R*s21, increasing by half-log units. All flash

stimuli had a duration of 0.02 s.

(c) Parameter sensitivity analysis
Local parameter sensitivity analysis was performed empirically

for each parameter at its default, ‘wild-type’ value by measuring

the effect of a small ‘mutation’ of the parameter value on each of

the four electrophysiological properties. Lists of parameters

associated with each of the proteins of the system were then com-

piled (electronic supplementary material, table S1). For each gene

encoding these proteins, sensitivity values were calculated as the

means of the log-transformed sensitivities of the associated

parameters, for each of the four electrophysiological properties.

Additionally, an average sensitivity across the four properties

was computed for each gene. For a full mathematical description,

see the electronic supplementary material.

(d) Evolutionary constraint
The evolutionary constraints acting on each gene were estimated

according to the ratio of the rates of non-synonymous (dN ) to

synonymous (dS) substitution. dN/dS values for the genes in

this study were retrieved from a previous publication [12].

These values were computed for a phylogenetic tree of nine

mammalian species: human, chimpanzee, gorilla, orangutan,

macaque, marmoset, mouse, rat and dog. Sequences had been

retrieved from the Ensembl database (release 60) or from DNA

resequencing. Rates were computed using CODEML model M0

of the PAML package v. 4.4c [35]. This model computes a

single dN/dS ratio for the entire tree, treating all sites in the

alignment as having evolved at the same rate. While the model

is simple, it is relatively conservative and can be used to capture

general trends in the evolutionary rates during a phylogenetic

divergence. This ratio, in the common case of values less than

one, can be taken as an overall measure of the strength of

purifying selection [8,36].

(e) Non-additive phenotypic effects
Non-additive dynamic effects were measured by comparing the

output of simulations in which a pair of parameters was

perturbed to the expected output given independent effects of

the perturbations. Specifically, for each pair of parameters, we

generated a model with both parameter values increased by

1% as well as models with each of the two parameter values

individually increased by 1%. The measurements of the electro-

physiological properties of the photoresponses generated from

these ‘mutant’ models were then computed. The effect sizes of

http://www.sbtoolbox2.org
http://www.sbtoolbox2.org
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both of the ‘single-mutant’ models were computed as the differ-

ence between the measurement for that ‘mutant’ model and

the corresponding measurement for the ‘wild-type’ model. The

two ‘single-mutant’ effect sizes were added to the ‘wild-type’

measurement to form the expected measurement value given

strictly linear interaction. The magnitude of deviation from line-

arity for each parameter pair and empirical phototransduction

measurement was then computed as the base-2 logarithm of

the ratio of the ‘double-mutant’ measurement to the expected

measurement given a linear interaction.

( f ) Coevolution
Coevolution between the genes was estimated by comparing the

similarity of their phylogenetic trees using the MirrorTree

algorithm [25]. The amino acid sequences of all one-to-one ortho-

logues within the mammalian clade of the human genes were

fetched from ENSEMBL (v. 77). Sequences containing chains of

five ambiguous residues or more were discarded. Multiple

sequence alignments were created using MAFFT v. 7.205 [37]

and then filtered and used to produce phylogenetic trees using

TREEBEST v. 1.9.2 with the default species tree (http://treesoft.

sourceforge.net/treebest.shtml).

MirrorTree correlation values were then computed for each

pair of genes. These correlations were converted to z-scores

using Fisher’s r-to-z transformation, following Edgar et al. [38].

For a full mathematical description, see the electronic supple-

mentary material. Because a general trend of coevolution

between G proteins and their receptors has been described
previously, we chose the MirrorTree correlation between the

reference pair RHO–GNAT1 for the basis of comparison in the

r-to-z transformation [26]. Protein pairs with MirrorTree corre-

lation coefficients that are significantly less than this reference

value, as determined by a significant z-score with a confidence

of 0.05, should then be considered to have not coevolved.
(g) Statistical analyses
Correlations were tested by computing Spearman’s r. All

statistical calculations were performed using R v. 3.2.1.
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