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Several properties of food webs—the networks of feeding links between

species—are known to vary systematically with the species richness of the

underlying community. Under the ‘latitude–niche breadth hypothesis’,

which predicts that species in the tropics will tend to evolve narrower

niches, one might expect that these scaling relationships could also be affected

by latitude. To test this hypothesis, we analysed the scaling relationships

between species richness and average generality, vulnerability and links per

species across a set of 196 empirical food webs. In estuarine, marine and terres-

trial food webs there was no effect of latitude on any scaling relationship,

suggesting constant niche breadth in these habitats. In freshwater commu-

nities, on the other hand, there were strong effects of latitude on scaling

relationships, supporting the latitude–niche breadth hypothesis. These con-

trasting findings indicate that it may be more important to account for

habitat than latitude when exploring gradients in food-web structure.
1. Introduction
Food webs—networks of feeding links between species—have been used for

several decades to summarize the structure of ecological communities [1–3],

and to understand how that structure relates to environmental variables such

as habitat type [4,5], primary productivity [6–8] and climate [9,10]. The latter

variables in turn have strong gradients over latitude, with productivity and

temperature both being higher in the tropics, while climate is more variable

at high latitudes [11]. These variables affect both the resources available and

species’ metabolisms [12–15], and have been proposed as determinants of

the strength of interspecific interactions [16–18]. By modulating interactions

between species, latitudinal gradients may also shape food-web structure.

Indeed, these latitudinal environmental gradients have been put forward as

potential drivers for the latitudinal gradient in species richness, one of the

most general and robust patterns in ecology [16,19,20].

One proposed link between species richness and latitude is the ‘latitude–niche

breadth hypothesis’ [21]. This hypothesis predicts that decreased seasonality in

the tropics should lead to more stable populations, which in turn should evolve

smaller niches [21]. These narrow niches should therefore allow more species to

coexist in the tropics than at higher latitudes. Alternatively, the higher productivity

of the tropics [22] may result in a broader niche space [23], which could also

sustain greater biodiversity even if niche sizes are globally similar. Although the

assumptions of the latitude–niche breadth hypothesis are only equivocally sup-

ported [21], it remains a compelling potential mechanism for the latitudinal

gradient in species richness [24–26].

If the latitude–niche breadth hypothesis is correct, then there should also be

direct relationships between latitude and the degree of specialization (i.e. the

breadth of the Eltonian niche [27,28]) of species within food webs. Specifically,

narrower niches in the tropics would equate to greater specialization (narrower

niches), while constant niche sizes but greater productivity would translate to

constant specialization and niche width across latitude (figure 1). Attempts

to unravel these effects, however, are complicated by known relationships
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(a) scaling of link density with species richness

(b) latitudinal niche–breadth hypotheses

(c) consequences for scaling relationships
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Figure 1. (a) We show the known scaling relationship between link density (links per species) and species richness. This scaling relationship is a power law and
therefore linear in a log – log plot. (b) We show two versions of the latitudinal – niche breadth hypothesis that have been proposed to explain this gradient. Hypoth-
esis 1 posits that greater environmental stability in the tropics will allow species to evolve narrower niches (indicated by parabolas) than those at the poles.
Hypothesis 2 suggests that species will have constant niche sizes over latitude but that greater primary productivity in the tropics creates a larger niche space
such that each species still occupies a smaller proportion of the total niche space. These two hypotheses have different implications for the scaling of food-
web properties such as the number of feeding links per species with species richness. (c) If hypothesis 1 is true, then the exponent of the scaling relationship
between link density and species richness should be larger towards the poles, where each additional species in the food web will have a larger niche (i.e. more
feeding links). If hypothesis 2 is true, then the exponent of this distribution should not vary significantly over latitude.
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between species richness and many other network properties

[29]. For example, narrower niches imply fewer links per

species (i.e. greater specialization) in the tropics [30,31] (but

see [18]). However, average numbers of links per species

tend to increase in larger food webs [29,32]. This means

that a latitudinal effect on specialization may be obscured

by a latitudinal gradient in species richness.

If this is the case, it may still be possible to uncover effects

of latitude on specialization by examining the shape of the

scaling relationship between specialization and species rich-

ness over changing latitude. By testing whether latitude

affects the scaling of each property with species richness, we

test for the effects of latitude on specialization predicted by

the latitude–niche breadth hypothesis (figure 1). If the scaling

of specialization with species richness is weaker in the tropics

(i.e. if species gain fewer links, predators or prey as the size

of the network increases), then this will indicate narrower

niches at the tropics. If, however, the scaling of specialization

with species richness does not vary over latitude, this will
indicate that niches are similarly sized worldwide but that

there is a broader niche space in the tropics. Additionally,

as food webs describing different ecosystem types may differ

in their topology [5,33], we also explored the differences in

scaling relationships across ecosystem types. Here, we use

three measures of specialization: mean links per species,

mean generality (number of prey) and mean vulnerability

(number of predators).
2. Material and methods
(a) Dataset
We compiled a list of 196 empirical food webs from multiple

sources (see the electronic supplementary material, appendix S1

for web origins and selection criteria). We recorded study site lati-

tude from the original source where possible or, where study sites

were described but exact coordinates were not given, obtained

estimated coordinates using Google Earth [34]. If a range of
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latitudes (e.g. 428–498 N) was provided, we used the midpoint

of this range. We grouped food webs by ecosystem type (stream,

n ¼ 71; lake, n ¼ 47; marine, n ¼ 28; estuarine, n ¼ 18; terrestrial,

n ¼ 31) according to their designation in previous aggregations

of food webs (i.e. [35–37]).

As the food webs in this dataset are derived from a variety

of sources and were compiled over many decades, it is likely that

they vary in their resolution and in the amount of sampling effort

invested in their assembly. Many analyses of food-web structure

attempt to reduce this variation by using food webs composed of

‘trophic species’—aggregations of species with identical sets of pre-

dators and prey—rather than species per se [8,33,37,38]. As our study

is concerned directly with the number of species at a particular lati-

tude, however, we did not ignore species with identical sets of

interactions. We therefore analysed both original (i.e. without aggre-

gating any species) and trophic species (i.e. after aggregating species

with identical predators and prey) versions of the dataset, in each

case using the number of species and feeding links in each web to cal-

culate the mean link density (number of links per species), mean

generality (number of prey per species) and mean vulnerability

(number of predators per species) of the web. The version of the data-

set used did not qualitatively change the results, suggesting that the

scaling relationships between species richness and specialization

across ecosystem type and latitude are very similar whether or not

species with identical sets of predators and prey are included. For

simplicity, we present here only the results for the original webs.
(b) Gradients over latitude
To put our dataset in the context of other research on latitudinal

gradients in species richness, we first examined simple linear

relationships between latitude and each of species richness, links

per species, generality and vulnerability. We fitted models of the

form

Si ¼ a0 þ a1Li þ a2Ei þ a3LiEi þ ei, ð2:1Þ

where Si is the species richness of web i, Li its absolute latitude

(degrees north or south regardless of direction), Ei is a categorical

variable indicating the ecosystem type of network i (comprising

terms for stream, marine, lake and terrestrial networks with estu-

arine networks corresponding to Ei ¼ 0) and ei is a residual error

term. We next calculated the AIC of the maximal model as well

as the AICs of a suite of candidate simplified models identified

using the R [39] function dredge from package MUMIN [40].

Simplified models were obtained by systematically removing all

possible combinations of terms from the full model. The best-

fitting model was then determined to be the model with the

fewest terms where DAIC , 2, as this model is the least likely to

suffer from over-fitting.
(c) Scaling relationships with species richness
The scaling relationship between link density (Z ) and species

richness (S) has been shown to be a power law [29] of the form

Zi � aSb
i , ð2:2Þ

which is often re-expressed in logarithmic form

log Zi � logaþ b log Si: ð2:3Þ

As the two forms imply a statistical fit of the data to different

error distributions, neither of which has strong a priori justifica-

tion in our dataset, we followed the recommendations in [41]

to compare the two model formulations explicitly (see the elec-

tronic supplementary material, appendix S2 for details). The

logarithmic form (equation (2.3)) provided the better fit to the

data, as did the logarithmic forms of similar models for the scal-

ing of generality and vulnerability. We therefore used and

present logarithmic models throughout the rest of the analyses.
(d) Effect of latitude on scaling
After determining the appropriate form of the scaling relationship,

we then assessed the impact of latitude on the scaling relationships

between species richness and link density, generality and vulner-

ability. In the context of the scaling relationships above, note that

this implies that we wished to determine the effect of latitude on

the scaling exponent b. We included a categorical variable for eco-

system type (stream, lake, terrestrial, marine or estuary), as well as

interactions between food-web type and latitude.

We therefore began by considering models of the form

Zi ¼ aSb0þb1Liþb2Eiþb3LEi
i þ ei, ð2:4Þ

where Si is the species richness of web i, Li its absolute latitude

(degrees north or south regardless of direction), Ei is a categorical

variable indicating the ecosystem type of network i (comprising

terms for stream, marine, lake and terrestrial networks with estu-

arine networks corresponding to Ei ¼ 0) and ei is a residual error

term. The logarithmic formulation of this model is

log Zi ¼ logaþ b0 log Si þ b1L log Si þ b2E log Si

þ b3LE log Si þ ei: ð2:5Þ

We then simplified versions of equation (2.5) for link density,

generality and vulnerability following the procedure described

above. As a supplemental check to ensure that variation in

sampling effort across food webs was not responsible for the

trends we observed, we then repeated our analyses using jack-

knifed datasets in which we (i) sequentially removed each food

web in the dataset and (ii) sequentially removed sets of food

webs that shared a common author. The first jackknife essentially

controls for the influence of any single outlier, whereas the second

controls for the influence of particular research groups, some of

which contributed large numbers of food webs (up to 27) to the

dataset. Parameter estimates for the simplified models varied

very little across either jackknife test (see the electronic supplemen-

tary material, appendix S3 for details), indicating that the trends

we observed were not due to either strong outliers or to substantial

differences in sampling effort across research groups.
3. Results
Link density (mean number of feeding links per species),

generality (mean number of prey per species) and vulner-

ability (mean number of predators per species) were

strongly and positively correlated (R2 ¼ 0.891 for link density

and generality, R2 . 0.999 for link density and vulnerability,

and R2 ¼ 0.890 for generality and vulnerability). Contrary to

the expected latitudinal gradient, the best-fitting version of

equation (2.1) did not include a significant effect of latitude

on species richness for any ecosystem type. Further, there

were no significant relationships between link density, gener-

ality and vulnerability with latitude for any ecosystem type.

Each measure of specialization increased with increasing

species richness (b0 ¼ 0.637, p , 0.001; b0 ¼ 0.553, p , 0.001;

and b0 ¼ 0.637, p , 0.001, respectively; figure 2). For estuarine,

marine and terrestrial food webs, the strength of this scaling

did not vary with latitude (bLatitude ¼ 20.001, p ¼ 0.365 for

link density; bLatitude ¼ 20.001, p ¼ 0.535 for generality;

bLatitude ¼ 20.001, p ¼ 0.366 for vulnerability; figure 3).

In lake food webs, however, the scaling of each property was

stronger towards the poles (bLatitude Lake ¼ 0.004, p ¼ 0.019;

bLatitude Lake ¼ 0.005, p ¼ 0.004; and bLatitude Lake ¼ 0.004, p ¼
0.018, respectively). In stream food webs, generality increa-

sed more rapidly towards the poles (bLatitude Stream ¼ 0.007,

p ¼ 0.001) while link density and vulnerability did not vary
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Figure 2. Scaling relationships for re-scaled link density, generality and vulnerability relative to the species richness of a food web. Link density, generality and
vulnerability were each re-scaled to remove the effects of latitude and ecosystem type. As these relationships take the form of power laws, we did this by dividing
the food-web property (e.g. link density) by species richness raised to an exponent including the effects of latitude and, where applicable, ecosystem type and the
interaction between ecosystem type and latitude. Note that in all cases estuarine food webs were treated as the baseline ecosystem type, but that at most two
ecosystem types had interactions between ecosystem type and latitude retained in the best-fitting model (see Results for specifics). For each relationship, we show
the re-scaled values (white circles) as well as the overall scaling relationship using estuarine ecosystems as a baseline (black line; n ¼ 196 food webs). For a figure
with the uncorrected values, see the electronic supplementary material, figure S7 and appendix S4.
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with latitude (i.e. the interaction term bLatitude Stream was not

retained in the best-fitting models).
4. Discussion
The tendency of food-web structure to exhibit scaling

relationships with species richness has been well established

[29,33]. As species richness in particular is also known to vary
systematically over latitude [16,19,20,42], intuitively one

might suspect that any relationship between food-web prop-

erties such as generality might be due to the latitudinal

gradient in species richness. In this dataset, however, we

found no evidence to support latitudinal gradients in species

richness, links per species, generality or vulnerability.

The lack of a latitudinal gradient in species richness in this

dataset contrasts strongly with other studies [16,19,20,42]. As

numbers of species and links included in a food web vary
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strongly with sampling effort as well as with the underlying

diversity of the study area, it is possible that the lack of latitudi-

nal trends here is a result of researchers tending to expend

similar amounts of sampling effort across studies. This could

result in food webs describing species-rich tropical communities

omitting more species and links than studies of species-poor

arctic communities if research groups spend similar person-

hours assembling webs and can observe similar numbers of

species and links per person-hour. In addition, it is worth

noting that gradients in species richness are generally measured

for a single taxonomic group at a time [16,19,20,42]. It is possible

that these taxa are not well represented in our food webs and

that the dominant taxa that are represented do not have an

underlying latitudinal gradient in richness. In either case, the

lack of a strong association between observed species richness

and latitude in any ecosystem type in our dataset means that

any effect of latitude on other scaling relationships is not

being driven by the scaling of specialization with species rich-

ness in our food webs. This is fortunate because the lack of

confounding effects of latitude allows us to more clearly

assess effects of latitude on scaling with species richness.

Scaling of links per species, generality and vulnerability

with species richness varied strongly across ecosystem

types. In estuarine, marine and terrestrial food webs, scaling

of each property varied little with latitude. This is consistent

with the idea that species’ niche breadths do not vary system-

atically with temperature and productivity but that the niche

space might be larger in species-rich communities [23].

Rather than niche space depending on temperature and pro-

ductivity, it may be that species diversity itself affects the

biotic niche space available to species (although climate

may affect speciation rates and therefore the diversity in a

region [43]). For example, as the plant diversity of a commu-

nity increases both the variety of food available to herbivores

and the structural variety of the habitat will also increase.

Unlike other ecosystem types, the scaling of generality in

lake and stream food webs was stronger (i.e. generality

increased more steeply with increasing species richness) in

higher-latitude food webs. In lake food webs, this trend

was echoed in the scaling relationships between species rich-

ness and vulnerability, and links per species. This means that

species in tropical freshwater communities gain fewer

additional feeding links per additional species in the web

and that species in tropical lakes also gain fewer predators,

and fewer links in general, per additional species than species

in high-latitude lakes. These trends are consistent with

the hypothesis that greater stability in the tropics leads to

narrower niches [21] and a higher proportion of specialists.

That freshwater food webs supported the hypothesis of

narrower niches in the tropics—while other ecosystem types

did not—is noteworthy given that these ecosystems (especially

streams) are known for being highly variable and that seasonal

variability is one of the proposed drivers of the latitude–niche

breadth hypothesis [21]. Both streams and lakes can experience

severe changes in water temperature and volume (e.g. floods,

drying, freezing) that remove food or other resources (notably

oxygen during freezing events) [44,45]. These events are often

linked to seasonal events such as snowmelts or summer

drought [44]. Further, both temperate streams and lakes tend

to experience seasonal strong pulses of allochthonous inputs

(e.g. fallen leaves, terrestrial invertebrates [46–48]). These

trends combined mean that, relative to estuarine and marine

communities, freshwater food webs may experience high
turnover in both community composition and productivity

[49–51]. Notable exceptions from the above trends are New

Zealand stream communities (representing 31 of the 71

stream food webs in our dataset), which experience unpredict-

able flooding and drying throughout the year and do not

receive seasonally pulsed subsidies [44,52]. However, as this

subset of webs is very tightly grouped in latitude (44.64–

46.418 S, within an overall range of 23.00–69.028 for stream

communities), it is unlikely that they have greatly influenced

our results (see also the electronic supplementary material,

appendix S3). Moreover, just as in highly variable communities

where said variation is more seasonal, New Zealand commu-

nities are dominated by ecological generalists [44,52],

implying that they appear to fit the general pattern of streams

worldwide.

Importantly, while terrestrial communities are also stron-

gly seasonal at high latitudes and can receive significant

allochthonous inputs [46], terrestrial consumers tend to be mor-

phologically specialized for feeding on particular prey [53]. This

means that primarily gape-limited aquatic consumers tend to

be more generalist across all types of aquatic habitats than

terrestrial consumers [5,53]. This trend also held in our data

(mAquatic ¼ 5.47, mTerrestrial ¼ 3.82; p ¼ 0.007 for mAquatic .

mTerrestrial). The key to this argument is therefore whether fresh-

water ecosystems experience more severe seasonal variation

than marine and estuarine ecosystems. Although we are not

aware of any study explicitly comparing seasonal variation in

freshwater and saltwater ecosystems at similar latitudes, we

believe that freshwater ecosystems are indeed likely to experi-

ence more severe changes because of their small size. While

oceans and estuaries certainly vary in terms of water tempera-

ture and nutrients over the course of a year [51], these changes

are likely to be slower and milder than in freshwater because

marine and estuarine communities are buffered by being

open to the ocean rather than isolated amid a terrestrial

matrix. Supporting this hypothesis, net primary productivity

is much more variable over the course of a year in non-

marine communities [11]. Thus suggests that niche breadths

may also be more variable over the course of the year.
5. Conclusion
Overall, our results were inconsistent with the latitude–niche

breadth hypothesis in estuarine, marine and terrestrial com-

munities, but consistent with the hypothesis of greater

specialization in the tropics in stream and lake food webs.

This suggests that different mechanisms may structure food

webs in different habitat types and that freshwater food

webs in particular may be strongly affected by seasonal vari-

ation. Freshwater food webs also appear to have different

predator–prey biomass ratios than other ecosystem types

[36]. Although it is not clear whether these ratios are related

to seasonality, this could be a promising avenue for future

research. In addition, different relationships between latitude

and niche breadth in different habitat types go some way

towards explaining the equivocal support for the opposing

hypotheses of narrower niches in the tropics [21] and broader

niche space in the tropics [23]. Our study indicates that both

have merit, but would appear to apply to different systems.
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