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Understanding the growth and spatial expansion of (re)emerging infectious

disease outbreaks, such as Ebola and avian influenza, is critical for the effective

planning of control measures; however, such efforts are often compromi-

sed by data insufficiencies and observational errors. Here, we develop a

spatial–temporal inference methodology using a modified network model in

conjunction with the ensemble adjustment Kalman filter, a Bayesian inference

method equipped to handle observational errors. The combined method is

capable of revealing the spatial–temporal progression of infectious disease,

while requiring only limited, readily compiled data. We use this method to recon-

struct the transmission network of the 2014–2015 Ebola epidemic in Sierra Leone

and identify source and sink regions. Our inference suggests that, in Sierra Leone,

transmission within the network introduced Ebola to neighbouring districts

and initiated self-sustaining local epidemics; two of the more populous and

connected districts, Kenema and Port Loko, facilitated two independent

transmission pathways. Epidemic intensity differed by district, was highly corre-

lated with population size (r¼ 0.76, p¼ 0.0015) and a critical window of

opportunity for containing local Ebola epidemics at the source (ca one month)

existed. This novel methodology can be used to help identify and contain the

spatial expansion of future (re)emerging infectious disease outbreaks.
1. Introduction
The 2014–2015 West African Ebola epidemic is the most severe Ebola outbreak

on record. It is believed to have emerged in the Guéckédou region of Guinea

during December 2013 [1], and spread to adjacent nations, Liberia in March

[2] and Sierra Leone (SL) in May [3,4]. On 25 May 2014, SL reported its first con-

firmed Ebola case from Kailahun [3], a district on the border, south of Guinea

and west of Liberia. By 26 April 2015, 12 371 Ebola cases and 3899 deaths had

been reported in SL [5].

Quantification of local growth rates and the geographical spread of

(re)emerging infectious diseases are crucial for determining the level and

speed of intervention needed to contain an epidemic. Previous studies have

used models to simulate and project the propagation of infectious diseases,

such as influenza, over national and larger scales and to infer key spatial and

temporal epidemiological characteristics of these outbreaks [6–10]. Detailed

data resolving population structure and movement are typically needed to cali-

brate these models; however, such data are not readily available in West Africa

[11,12]. Furthermore, observations of Ebola incidence and mortality have been

error-laden and biased; indeed, the US Centers for Disease Control and Preven-

tion estimated that only 40% of Ebola cases have been reported [13], and the

underreporting rate could vary by region over time. To address these chal-

lenges, we here develop a modified patch network model of intermediate
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complexity for Ebola transmission, which we use in conjunc-

tion with a Bayesian inference method, implemented via data

assimilation, and district-level incidence data for SL. The

combined model-inference system enables simulation and

inference of the spatial–temporal spread and characteristics

of Ebola in SL.
publishing.org
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2. Results
2.1. Framework of the spatio-temporal inference system
A number of epidemiological model structures have been used

to simulate Ebola transmission [6,7,13–20]. For Ebola, a person,

initially susceptible (S) to the disease, becomes infected when

exposed (E) to the virus, then becomes infectious (I) following

an incubation period, and is finally removed (R) from the

diseased pool owing to recovery or death. Accordingly, we

model the propagation of Ebola through a population using

a susceptible–exposed–infectious–removed (SEIR) compart-

mental model [21]. This choice is also based on our previous

work indicating that more parsimonious model structures,

such as the SEIR model, tend to be more easily optimized

than more complex modelling frameworks [22,23]. In a net-

work of multiple districts, residents within each district may

contract the disease locally or when traveling to other districts.

For instance, new infections at district 1 within a three-district

network would occur at a rate of

b1 � Î1 �
c11S1

Ŝ1

� Ŝ1

N̂1

þ b2 � Î2 �
c21S1

Ŝ2

� Ŝ2

N̂2

þ b3 � Î3 �
c31S1

Ŝ3

� Ŝ3

N̂3

,

ð2:1Þ

where the single digit subscripts are district indices; b is

the transmission rate; Î, Ŝ and N̂, respectively, denote the

number of infectious, susceptible and total number of people

present in each district at a given time, i.e. including both

local residents and visitors; c11, c21 and c31 are, respectively,

the proportions of residents of district 1 that stay local and

that travel to districts 2 and 3. The summation (equation

(2.1)) includes the number of cases infected locally (first sum-

mand) and those infected outside their home district (the

second and third summands). This formula assumes that the

subpopulation within each district is well mixed, and that

new infections in a given district are allocated to local residents

and visitors in proportion to their corresponding percentages

among the total number of susceptibles; for instance, the

total new infection rate in district 1 is b1 � Î1 � ðŜ1=N̂1Þ, with a

portion, c11S1=Ŝ1, local residents.

The proportions form a matrix, e.g.
c11 c12 c13

c21 c22 c23

c31 c32 c33

2
4

3
5 for a

three-district network, which represents the connectivity

among districts. Previous studies [10,24] have computed the

raw interdistrict commute flow using a gravity formula

c0ij ¼ u
Nt1

i Nt2

j

dr
ij

, ð2:2Þ

where Ni and Nj are the population size for the two districts, dij

is the distance between the two districts, u is a proportionality

constant and the exponents t1, t2 and r together determine the

connectivity between the two districts [8,10]. The model is then

calibrated using detailed human mobility data (e.g. ground
commute flow) and the raw numbers ðc0ijÞ are adjusted to com-

pute the [cij] matrix (as detailed in the Material and methods

section). As commuter data are not available for SL, we nor-

malize all inputs for population size and distance such that

the proportionality constant, u, which heavily relies on mobi-

lity data, is eliminated. Further, we use the area of each

district to gauge local mobility (see Material and methods for

details of the modified gravity model).

We then couple this modified gravity connection formula

with the SEIR network model, and use the ensemble adjust-

ment Kalman filter (EAKF), in conjunction with district-level

incidence data, to estimate all state variables (i.e. S, E, I, for

each district) and model parameters, including the trans-

mission rate b for each district, the incubation period, the

infectious period and the three exponents (t1, t2 and r) for

the gravity model. The EAKF [15,23,25–27] is a data assimila-

tion method that uses an ensemble of system replicas to

represent the distribution of possible model state and par-

ameter values. It approximates a Bayesian update to the

model states and parameters using the observational data

and an estimate of the errors in the data. When tested against

a model-synthesized dataset resembling the incidence record

for SL, our inference method was able to sensibly estimate

the state variables and model parameters (see electronic

supplementary material, figures S1–S3).
2.2. Model fitting to the district epidemic curves
We applied the inference method to district-level incidence

data from the week ending 25 May 2014, the first week of

the Ebola epidemic in SL, to the week ending 25 January

2015. Of the 14 SL districts, four in the northwest (Western

Area Urban, Western Area Rural, Port Loko and Bombali)

recorded the greatest numbers of Ebola cases; the peripheral

districts, Bonthe and Pujehun, only had sporadic cases; the

remaining districts had moderate outbreaks. The epidemic

started from Kailahun [3], then spread west to Kenema and

Bo, and then to the rest of SL. Our inference framework is

able to recreate the epidemic trajectories for each of the 14 dis-

tricts (figure 1), and our estimates of key model parameters

(table 1) are in line with past studies [28,29]. Note, however,

that estimates for the three exponents in the gravity model are

not comparable to previous studies [10,30]; this discrepancy

is not unexpected as our gravity model is framed differently

(see Material and methods).
2.3. The Ebola transmission network in Sierra Leone
To sort out the transmission path of Ebola from district to dis-

trict, we compute the number of new cases infected locally

versus externally for each district during each week. This com-

putation allows identification of the source of self-sustained

local epidemic transmission, as well as the source of the first

cases in each district (see electronic supplementary material,

table S3). Here, we focus on the former issue. We posit that

importation of cases is critical at the very beginning of each

local outbreak before transmission is sustained locally. Accord-

ingly, we define the week that a district acquired over 80% of its

new infections locally, following the onset of local outbreak, as

the onset of self-sustained transmission (Tss), and identify the

district that contributed the largest number of new infections

prior to Tss as the most likely source of infection (see Material
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Figure 1. Epidemic trajectories and model fits generated by the SEIR-network-EAKF. Weekly incidence records for each district are shown as coloured ‘x’; solid line in
the corresponding colour is the average simulated incidence over 300 500-member ensemble runs. Dates shown on the x-axis (dd/mm/yy) are endings of epidemic
weeks.
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and methods and electronic supplementary material for

sensitivity analysis).

A clear transmission network emerges (figure 2). Two

major transmission paths exist, one spreading from Kailahun

to the west and the other from Western Area Urban to the

east. The first path emerged on the week ending 25 May 2014

in Kailahun, then spread to adjacent Kenema, over the weeks

ending 15 June through 6 July 2014 and produced 21267%

of incidence each week in Kenema during those four weeks

prior to Tss (the range shows the minimum and maximum

weekly contributions over the period, same elsewhere). The

other adjacent district, Kono, also imported a substantial

number of cases (32241%) during 25 August27 September

2014, followed by local, sustained transmission. From

Kenema, the Ebola epidemic spread farther westwards to Bo

(23 June27 September 2014, 30272%), southwards to Pujehun

(18 August221 September 2014, 13227%) and northwards to

Tonkolili (4224 August 2014, 11214%). These findings are

consistent with a recent field investigation that reported the

emergence of Ebola epidemic in Sierra Leone, in particular,

the spread from Kailahun to Kenema [31].

The second path initiated from Western Area Urban, which

encompasses the Capital Freetown, during 5 July23 August

2014. This was a relatively quiet period with only two to six
cases recorded each week. Ebola incidence then increased

rapidly and spread to other districts in western SL. Western

Area Rural likely imported a small number of cases from the

capital area during the week ending 17 August 2014, prior to

Tss (see electronic supplementary material, figure S5 and figure

S7). Ebola emerged in Port Loko, the largest district near Western

Area Urban, around the same time; our estimates indicate that

14217% of Port Loko cases each week during 21 July23 August

2014 were imported from Western Area Urban. Port Loko then

served as a source of transmission for the region: the epidemic

spread from there southwards to Moyamba (1221 September

2014, 14223%), likely contributed to the spread of Ebola in

Kambia (8 September 2014211 January 2015, 20262%), and

may have seeded Bombali (the week ending 24 August 2014,

17%). The importation to Bombali was less obvious; two-thirds

of simulations (n ¼ 300) suggest that the epidemic in the district

started locally rather than from Port Loko. These first cases could

have originated zoonotically, from outside the country (a source

not included in our model), or could have been imported from

other districts through longer-distance travel. Regardless,

the epidemic then spread from Bombali to Koinadugu

(13 October228 December 2014), and importation from Bombali

may have enhanced the transmission in Tonkolili during 1221

September 2014 (15217%).



Table 1. Estimates of key epidemiological parameters. These estimates are aggregated over 300 500-member ensemble runs and shown as mean and standard
deviation ( parentheses). The SEIR-network-EAKF updated the estimates each week as new weekly incidence data were assimilated; consequently, parameter
estimates are shown at four different time points: (i) the onset, defined as the first of three consecutive weeks with non-decreasing numbers of cases; (ii) self-
sustained transmission (Tss), defined as the first week during which over 80% of cases are infected locally; (iii) the maximum epidemic forcing, defined as the
week with the highest effective reproductive number Re; and (iv) the week ending 25 January 2015. Re was treated as an independent parameter for each
district, whereas other parameters were treated as common parameters for all districts. The three time points vary by district; common parameters were
estimated at the time points as defined for Western Area Urban. The times for each district are available in the electronic supplementary material, table S2.

onset self-sustained (Tss) maximum epidemic forcing 25 Jan 2015

Re: Bo 1.26 (0.10) 1.31 (0.15) 1.65 (0.17) 1.08 (0.12)

Re: Bombali 1.03 (0.09) 1.10 (0.11) 1.87 (0.12) 0.76 (0.13)

Re: Bonthe 0.79 (0.16) — 0.85 (0.20) 0.85 (0.20)

Re: Kailahun 1.38 (0.05) 1.56 (0.10) 1.89 (0.18) 0.88 (0.15)

Re: Kambia 0.96 (0.13) 1.11 (0.21) 1.25 (0.21) 1.25 (0.21)

Re: Kenema 1.29 (0.11) 1.92 (0.29) 2.16 (0.19) 0.98 (0.17)

Re: Koinadugu 1.07 (0.11) 1.33 (0.11) 1.33 (0.11) 0.78 (0.12)

Re: Kono 1.00 (0.1) 1.12 (0.13) 1.56 (0.20) 0.96 (0.16)

Re Moyamba 1.06 (0.15) 1.17 (0.17) 1.32 (0.29) 0.44 (0.20)

Re: Port Loko 1.07 (0.09) 1.21 (0.14) 1.82 (0.11) 0.90 (0.23)

Re: Pujehun 1.05 (0.11) 0.93 (0.12) 1.11 (0.15) 0.83 (0.14)

Re: Tonkolili 1.08 (0.10) 1.18 (0.13) 1.56 (0.13) 0.89 (0.12)

Re: Western Area Rural 0.95 (0.10) 0.95 (0.10) 1.85 (0.38) 0.81 (0.11)

Re: Western Area Urban 1.00 (0.10) 1.00 (0.10) 2.22 (0.09) 0.71 (0.25)

incubation period (days) 14.27 (0.94) 14.27 (0.94) 9.64 (1.06) 10.72 (1.11)

infectious period (days) 12.35 (0.79) 12.35 (0.79) 11.32 (0.98) 10.92 (2.53)

gravity model: t1 0.47 (0.03) 0.47 (0.03) 0.46 (0.04) 0.49 (0.08)

gravity model: t2 0.50 (0.03) 0.50 (0.03) 0.50 (0.04) 0.51 (0.06)

gravity model: r 8.04 (0.37) 8.04 (0.37) 7.93 (0.79) 7.13 (1.28)
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2.4. Spatial expansion characteristics
The two transmission paths converged in Tonkolili; however,

it took the Kailahun path three months (25 May224 August

2014) to reach Tonkolili, compared with less than two months

for the Western Area Urban path (28 July221 September

2014). For both paths, spread occurred more readily to adja-

cent districts, and a strong source region existed along the

path, i.e. Kenema in the east and Port Loko in the west,

which borders and facilitated spread to many other districts.

This finding indicates that control of outbreaks prior to their

spread to these critical, well-connected source districts might

delay or reduce importation to surrounding districts and

reduce overall case levels. Here, we estimate this window

of opportunity as having been approximately one month

(25 May26 July 2014, i.e. the time lag of self-sustained trans-

mission between Kailahun and Kenema) for the Kailahun

transmission path, but much shorter for the Western Area

Urban path, which traversed a region of greater population

and connectedness.

To explore potential differences in local transmission

characteristics, we estimated the effective reproductive

number, Re, independently for each district. Re is the average

number of secondary cases arising from a primary case, and

thus an indicator of force of infection. To sustain an epidemic,

Re should be above 1. Re is marginally above 1 for most districts

at the onset of local epidemic (table 1); at its maximum, Re

ranges from 0.85+0.20 (mean+ s.d., same elsewhere) in
Bonthe, where only sporadic cases were recorded, to 2.22+
0.09 in Western Area Urban, where the largest number of

cases were reported. These maximum Re estimates are highly

correlated with the population size of each district (r ¼ 0.76,

p ¼ 0.0015), and less so with population density (r ¼ 0.46,

p ¼ 0.10). Note this finding is not an artefact of the built-in

population information in the gravity network connectivity

model (see equation (4.2) in Material and methods), as Re

was evaluated at its maximum when local transmission has

become the major force of infection. Indeed, the most popu-

lated districts (figure 2), i.e. Western Area Urban (16.4% of

the nation’s total population), Kenema (10.3%), Port Loko

(8.8%) and Bombali (7.8%) also had the largest Re and the high-

est incidence. This finding indicates that areas with larger

populations were more likely to sustain more intense outbreaks

and serve as major source regions (e.g. Western Area Urban,

Kenema and Port Loko) to neighbouring areas, which is con-

sistent with the transmission network shown in figure 2; it

again highlights the importance of early control in these

areas. Western Area Rural, where the third largest number of

cases was reported, has the second smallest population size.

Our estimates indicate that 7.2+2.7% of cases were infected

while travelling in the neighbouring epidemic centre, Western

Area Urban (table 2).

For each district, the relative contributions of new infections

from other districts varied over the course of the epidemic.

For instance, Kenema initially seeded infection in Pujehun;
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Figure 2. Transmission network within Sierra Leone, inferred by the SEIR-network-EAKF. The arrows denote the sources of infection, color-coded by different
transmission paths. Transmission paths in red originated in Western Area Urban and those in blue originated in Kailahun. The width of the arrow is proportional
to contribution from the source ( percentage associated with the end of each arrow) during the dates (dd/mm/yy) indicated next to the percentages. A solid arrow
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however, later in the epidemic, Bo became the primary source

of imported infections for Pujehun. In contrast, some districts

remained strong sources throughout the epidemic. For

example, Kailahun produced 9.0+0.95% of all cases in

Kenema, more than half of all imported cases (table 2).

Throughout the epidemic, imported infections remained a sig-

nificant force of infection for most districts, particularly those

with moderate outbreaks, e.g. Koinadugu (39+7.9%),

Kambia (37+14%) and Moyamba (33+10%) (table 2).
3. Discussion
During the 2014–2015 Ebola epidemic, a number of issues

complicated and potentially obfuscated modelling efforts.

First, owing to the scope of the outbreak and the limited sur-

veillance and public health infrastructure in the three most

affected West African countries—Guinean, Liberia and SL—

observational error, particularly underreporting [13], was
unavoidable. This observational error undermines model infer-

ence; however, data assimilation methods, such as the EAKF

used here, are equipped to handle and explicitly account for

observational error [25]. To further allow for observational

error effects, we considered six filter settings, running simu-

lations with three different levels of observation error

variance (see Material and methods), and used the agreement

of inference among the six settings as an indicator of the

confidence, or reliability, of the inference (figure 2).

A second concern involves system stochasticity [32], see-

mingly random processes that arise owing to variations of

behaviour or changes in the intensity of intervention measures.

To account for these effects, modelling studies have used sto-

chastic model structures [14,17,20,32]. The SEIR network

model used here is deterministic; however, the EAKF, used

in conjunction with the model, to some extent introduces sto-

chasticity to the system through its ensemble formulation

and the random selection of initial state variable and parameter

conditions. Indeed, we alternatively built and tested our



Table 2. Transmission contributed from other districts in the network. The numbers of cases infected locally as well as externally from each of the other
districts were summed from 25 May 2014 to 25 January 2015; the percentage of imported infections, the most likely source of these infections and the
contribution of that source were then calculated. Estimates are aggregated over 300 simulation runs and shown as mean and standard deviation ( parentheses).

district percentage imported (%) most likely source percentage from the most likely source (%)

Bo 17 (4.3) Kenema 14 (2.2)

Bombali 7.2 (3.5) Port Loko 3.4 (1.8)

Bonthe 20 (12) Moyamba 12 (5.2)

Kailahun 3.9 (1.2) Kenema 3.4 (1)

Kambia 37 (14) Port Loko 33 (11)

Kenema 16 (2.8) Kailahun 9 (0.95)

Koinadugu 39 (7.9) Bombali 25 (3.6)

Kono 7.3 (2.1) Kailahun 3.7 (0.54)

Moyamba 33 (10) Port Loko 12 (3.6)

Port Loko 18 (5.6) Western Area Urban 9.4 (2.7)

Pujehun 17 (7.7) Bo 8.8 (3.8)

Tonkolili 13 (6.3) Bombali 5.5 (2.4)

Western Area Rural 7.2 (2.7) Western Area Urban 7.2 (2.7)

Western Area Urban 0.018 (0.023) Western Area Rural 0.018 (0.023)
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network model-inference framework using a stochastic SEIR

model as the core (see electronic supplementary material).

Findings with this alternative stochastic structure generated

similar transmission networks and parameter estimates

(electronic supplementary material, figure S4 and table S1).

Additional complicating issues, which were not resolved

observationally nor represented in the model structure,

include differences in transmission risk in different settings

(e.g. community, hospital, versus funeral), heterogeneity in

population mixing and contact patterns and resulting vari-

ations in infection risk at differing geographical scales,

potential asymptomatic infections and pre-existing immunity

owing to undetected prior circulation of Ebola in the region.

Our parsimonious SEIR-network model does not represent

these processes; however, despite its simplicity, the system

was able to identify major transmission pathways of Ebola

spread between districts as well as key characteristics of

source regions. For instance, our inference suggests that dis-

tricts with higher spatial connectivity and larger populations

(e.g. Kenema and Port Loko) could be key regional source

districts for control. Future work may construct more com-

plex models to investigate the aforementioned issues, were

detailed data available to constrain the system. Future work

may also apply the model-filter framework to district-level

data for Guinea and Liberia, two other countries with intense

Ebola transmission, to further test the findings reported here.

In addition, our findings may be tested as more detailed viral

sequence data, and field investigations become available.

Detailed, timely understanding of the spatial–temporal pro-

gression of (re)emerging infectious disease is needed to devise

effective control and containment strategies of these outbreaks.

Here, we have presented a novel spatial inference system that

enables estimation of this spatial–temporal progression of dis-

ease. The method uses only district-level incidence data, as

well as the area and population of each district and interdistrict

distances. All these data can be compiled in near real-time, even

during a public health crisis. The core network model presented

here uses a normalized, non-dimensional framework that could
be easily applied to other diseases and different regions. In the

future, this methodology can be used to help public health

officials more effectively combat (re)emerging infectious disease.

4. Material and methods
4.1. Data
Weekly incidence data for each of the 14 districts in SL were

obtained from the Sierra Leone Ministry of Health and Sanitation.

These data were compiled based on each patient’s district of origin,

as opposed to the district of report. For instance, although the

index case in SL was sent for testing at Kenema Government Hos-

pital and reported in Kenema district [1], this patient case was

originally from Kailahun district and thus counted as a case for

Kailahun. Incidence records are the same as released in the Ebola

situation reports [33] and include numbers of suspected, con-

firmed and probable cases, as defined by the World Health

Organization [34], from the week ending 25 May 2014 to the

week ending 25 January 2015. We combined these three categories

for the simulations reported in the main text.

4.2. Network transmission model
We used an SEIR model to simulate the propagation of Ebola in

each district, as our previous work suggests that parsimonious

model forms, when used in conjunction with data assimilation

methods and observations, can be more easily constrained [22].

Transmission between districts is formulated as a patch network

model [35]. We assume that interdistrict transmission occurs

when susceptible individuals travel from their home district to

other districts and interact with infectious individuals therein.

Specifically, the SEIR-network model is formulated as follows

dSi

dt
¼ � Si

Xndist

j

bjc jiÎj

N̂j

0
@

1
A� a

dEi

dt
¼ Si

Xndist

j

bjc ji Îj

N̂j

0
@

1
A� Ei

Z
þ a

dIi

dt
¼ Ei

Z
� Ii

D
,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð4:1Þ
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where the single digit subscripts (i or j ) denote district; Si, Ei, Ii

are, respectively, the number of susceptible, exposed and infec-

tious people in district i; bi is the local transmission rate in

district i; a is transmission from outside the network domain,

e.g. from outside SL or zoonotic spillover, and is arbitrarily set

to one per 10 days in this study (we also tested lower values

for a and the difference in model estimates was nominal); Z is

the incubation period, D is the infectious period, and both vari-

ables are assumed the same for all districts; the basic

reproductive number for district i, R0i, is linked to the trans-

mission rate and infectious period through the relationship

R0i ¼ bi.D; cji is the proportion of residents of district i travelling

to district j; a hat sign (^) over a variable denotes the number of

people present in the district at a given time point, regardless of

home district; N̂i is the number of people present in district i at

time t, i.e. N̂i ¼
Pndist

j cijNj with Nj as the population size for dis-

trict j and ndist as the total number of districts (i.e. ndist ¼ 14 for

SL); Îi is the number of infectious people present in district i at

time t, and is approximated as Ii, because symptomatic individ-

uals are less likely to travel to other districts (except for

medical transfer for treatment) and cause infections elsewhere.

Note that the approximation of Îi with Ii here is not a choice of

convenience; rather, without this approximation, e.g. Îi calcu-

lated as done for N̂i, symptomatic, infectious individuals are

assumed to have the same interdistrict mobility, which is less

likely given the severity of Ebola virus disease.
4.3. Modified gravity model
The quantities cij (i ¼ 1,. . ., ndist, j ¼ 1, . . . , ndist) in equation (4.1)

form a matrix, C ¼ [cij]i ¼ 1, . . . , ndist, j¼ 1, . . . , ndist, that represents

the strength of connection between each district pair. Past studies

[8,10,24] have used gravity type formulations to compute inter-

locale commuter flow rates (e.g. equation (2.2)). Population size

for each district in SL and interdistrict distances are publicly

available [33,36]; however, mobility data, previously used to cali-

brate the four parameters in the gravity model (equation (2.2))

[10] are not available for SL. As such, we reframed equation

(2.2) using scaled, proportions of population size and distance.

In so doing, the proportionality parameter u, which is heavily

dependent on commuter data, is eliminated and equation (2.2)

becomes

c0ij ¼
N0t1

i N0t2

j

d0rij
, ð4:2Þ

where the new dimensionless model inputs are

N0i ¼ Ni=Ntot, d0ij ¼ dij=rave (note that dii, the within-district dis-

tance, is computed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðarea of district iÞ=p

p
, with Ntot as the

national population in SL, and rave ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðarea of SLÞ=p

p
, a proxy

radius for the country). These quantities are then further

adjusted, so that the proportions of all residents in a given

home-district, i.e. those staying local (cii) plus those travelling

to each of the other districts (cij, i=j ), sum to 1. That is,

cij ¼
c0 ijPi¼ndist

i¼1 c0 ij
: ð4:3Þ

We use the proxy radius for each district (i.e. d0ii) to gauge

within-district versus interdistrict mobility, which partly accounts

for the effect of population density; that is, residents of more den-

sely populated districts (e.g. the capital region) are less likely to

travel to less populated regions (e.g. a remote district). Further-

more, as all inputs are normalized by the characteristic quantities

of the country (e.g. area and population of the country), the

model framework can be readily applied to other regions. For

instance, by using characteristic quantities for Guinea or Liberia,

the same model could also be used without relying on mobility

data for these countries.
Equations (4.2) and (4.3) are then used to calculate the con-

nectivity matrix needed for equation (4.1). Note, however, by

combing equations (2.2), (4.2) and (4.3), the scaling done in

equation (4.2) is not necessary, as the normalization in equation

(4.3) would cancel out the common factor Nt1 þ t2
tot = rrave. The expo-

nents t1, t2 and r, which determine the influence of donor and

recipient population size and distance, are estimated by the

data assimilation method described below.

4.4. Data assimilation method
We applied the EAKF [15,25] in conjunction with the SEIR-

network model and weekly incidence records for all 14 districts.

The EAKF uses multiple system replicas, termed ensemble mem-

bers, to represent the prior and posterior distributions of each

state variable and parameter. Each ensemble member is initialized

as a random draw from an initial distribution for each of the model

state variables and model parameters; it is then propagated per the

SEIR-network model (prediction step), and adjusted using weekly

incidence data from the 14 districts per the EAKF algorithm

(update step). This prediction–update cycle is done sequentially,

and an update is triggered by the arrival of new data (e.g.

weekly in this study). Specifically, the EAKF computes the pos-

terior ensemble mean per the Kalman filter update algorithm

[37] as follows

�xk,post ¼
s2

k,obs

s2
k,obs þ s2

k,prior

�xk,prior þ
s2

k,prior

s2
k,obs þ s2

k,prior

zk, ð4:4Þ

where the subscript k denotes week, and obs, prior and post,

denote the observation, prior and posterior, respectively; z is the

observed weekly incidence; x is the observed state variable, i.e.

the model counterpart of z calculated by the SEIR-network

model; �xk,post and �xk,prior are, respectively, the posterior and prior

ensemble mean; s2 is variance. Each ensemble member, xn
k,post, is

then adjusted towards the ensemble mean as follows

xn
k,post
¼ �xk,post þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

k,obs

s2
k,obs þ s2

k,prior

ð

vuut xn
k,prior � �xk,priorÞ: ð4:5Þ

This adjustment (equation (4.5)) ensures that the posterior var-

iance equals the value predicted by Bayes’ theorem [26,38]. Note

that the posterior ensemble mean is computed using the linear for-

mula (equation (4.4)) as prescribed by the Kalman filter [37];

however, the propagation of the ensemble per the underlying

dynamical model (e.g. the SEIR-network model in this study)

preserves much of the nonlinear dynamics of the system.

Initial priors for the model-filter runs were as follows:

Si � Unif [40%Ni, 100%Ni]; Ri � Unif [0.5, 3.5]; Z � Unif

[2, 14]; D � Unif [5, 14]; t1 � Unif [0.3, 0.7]; t2 � Unif [0.3, 0.7];

r � Unif [2, 8]; initial prior values for Ei and Ii were randomly

drawn from a truncated normal distribution (restricted to non-

negative values) with mean equal to the first observation, most

of which were zero, and standard deviation equal to twice the

observation standard deviation. Note that the ensemble can

migrate outside these prior ranges over the course of filtering.

To account for observational errors in the data, the EAKF was

run with or without adaptive covariance inflation [39,40], and at

three observation error covariance (OEV, i.e. s2
k,obs in equations

(4.4) and (4.5)) levels, i.e. six settings in total. Covariance inflation

intentionally widens the spread of the ensemble prior to avoid

filter divergence [41]. The three OEV levels were one, four or

four times the observation and thus varied through time with

observed incidence. Five hundred ensemble members were

used for each ensemble run. To account for the stochasticity in

initialization of the model, 50 model-filter ensemble runs, each

with a different set of initial model state variables and par-

ameters, were performed for each filter setting (i.e. combination

of covariance inflation and OEV), i.e. 300 ensemble runs in total.
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4.5. Inference of key epidemiological parameters
We applied the SEIR-network-EAKF framework to district-level

incidence data from the week ending 25 May 2014, the very begin-

ning of the Ebola epidemic in SL, to the week ending 25 January

2015. The SEIR-network model, used in conjunction with the

EAKF and data, constitutes a state-space, or hidden Markov,

model that allows estimation of unobserved, or latent, state vari-

ables (e.g. numbers of susceptible and exposed people) [42].

Estimates of all state variables (i.e. number of susceptible, infected

and infectious, at each week for each district) and model par-

ameters (i.e. the basic reproductive number R0 for each district,

the incubation period, Z, the infectious period, D and the three

exponents in the gravity model) are updated each week through

the EAKF filtering process. That is, the parameters are time-

varying and reflect potential fluctuations owing to exogenous

effectors such as timeliness of reporting/treatment and travel

restrictions over the course of the epidemic. However, when the

model-filter framework was run using fixed values for the incu-

bation period and infectious period (electronic supplementary

material, figure S5), the inferred transmission network was similar

as reported in figure 2. We treated R0 as an independent parameter

for each district to explore differences in the force of transmission

among districts.

In our model-filter framework, the filter can adjust the popu-

lation susceptibility to reflect changes in population vulnerable

to infection. For a disease such as Ebola, a decrease in population

susceptibility over time may occur owing to an increase of the

number of infected (i.e. depletion of actual susceptibles) or

from an increase in awareness of the disease and precautions

and intervention measures taken that reduce the chance of trans-

mission and effectively remove individuals from the susceptible

pool [43]. In addition, our previous study suggests that population

susceptibility and the basic reproductive number tend to compen-

sate for each other, whereas estimates of the effective reproductive

number (calculated as Re ¼ R0S/N for a non-network model) are

generally more accurate [23]. As such, we here focus on the effective

reproductive number Re, and did not analyse the population sus-

ceptibility or the basic reproductive number R0. The effective

reproductive number, Re, represents the number of secondary

cases arising from a primary case during the course of the epidemic.

It is an indicator of the observed force of transmission, given

population susceptibility, intervention measures in place and

the transmissibility of the infecting pathogen. In this study, we

calculated Re for each district as

Re,i ¼
R0,i Ŝi

N̂i
:

We defined the week with the maximum Re as the time of

maximum epidemic forcing. Estimates of Re at local outbreak

onset, Tss, the time of maximum epidemic forcing and the

week ending 25 January 2015 for each district are shown in

table 1. The incubation period, Z, infectious period D, and the

three exponents for the gravity model were assumed the same

for all districts; these parameters are presented using the time
points determined for the Western Area Urban, the district

with the largest number of Ebola cases in SL.
4.6. Construction of the transmission network among
districts

We posit that cross-district transmission is critical at the very

beginning of a local outbreak prior to sustained local transmission.

Accordingly, the most likely source of infection (referred to as the

source-district) is identified as the outside district that contributes

the largest number of new infections during the period from the

onset of the local outbreak to the week prior to self-sustained trans-

mission (Tss). We defined the onset of a local outbreak as the first of

three consecutive weeks with non-decreasing incident cases and

the onset of Tss as the week in which more than 80% of incidence

occurs locally. These identified timings for each district are

shown in electronic supplementary material, table S2.

To construct the transmission network among the 14 districts

in SL, we first computed the numbers of new cases infected locally

as well as in each of the other 13 districts during each week for each

district based on equations (4.1)–(4.3) and the state variables

and parameters estimated by the filter. We then recursively

identified each district’s source-district until no further source-

district could be identified. The terminal source-district is the

source-district of a transmission path. For each identified source-

district, we also calculated the percentage of new infections

contributed to a given sink-district from local outbreak onset to

the week prior to Tss. This route-searching procedure was carried

out separately for each of the 300 ensemble runs.

Some pathways were identified by all ensemble runs, whereas

some only by a fraction of runs. Transmission paths identified for

ensemble runs carried out with the same filter setting (i.e. the same

covariance inflation and OEV options) showed greater agreement

than among those with different filter settings. Therefore, we

grouped the ensemble runs to identify transmission paths by

each filter setting and used the agreement among filter settings

as an indicator of the reliability, or confidence, in the inference

(figure 2). Greater agreement for a particular transmission path

(e.g. all six filter settings identifying the same path) suggests

higher confidence in the inferred path and vice versa.
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