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Navigation for aquatic and airborne species often takes place in the face of

complicated flows, from persistent currents to highly unpredictable storms.

Hydrodynamic models are capable of simulating flow dynamics and provide

the impetus for much individual-based modelling, in which particle-

sized individuals are immersed into a flowing medium. These models yield

insights on the impact of currents on population distributions from fish

eggs to large organisms, yet their computational demands and intractability

reduce their capacity to generate the broader, less parameter-specific, insights

allowed by traditional continuous approaches. In this paper, we formulate

an individual-based model for navigation within a flowing field and apply

scaling to derive its corresponding macroscopic and continuous model. We

apply it to various movement classes, from drifters that simply go with the

flow to navigators that respond to environmental orienteering cues. The utility

of the model is demonstrated via its application to ‘homing’ problems and,

in particular, the navigation of the marine green turtle Chelonia mydas to

Ascension Island.
1. Introduction
More than a century ago, Charles Darwin [1] remarked on the astonishing

voyages of adult green turtles, during their migration through open ocean to

‘home’ and nest at isolated spots such as Ascension Island (AI) in the mid-Atlantic

(see also [2]). Journeys of this nature are not uncommon in the animal kingdom,

with other notable examples being the pole-to-pole migrations of Arctic terns

and the return of mature salmon to spawn at natal grounds. Uncovering the

cues that provide the necessary orienteering information—celestial, geomagnetic,

topographic, chemical, etc.—is a key concern: determining the mechanistic basis

for navigation sheds light on challenging ecological questions, such as the impact

of environmental change on populations (e.g. [3]).

A complicating factor is the flow in the surrounding medium, from ocean and

river currents for aquatic organisms to wind for airborne populations [4–6]. Flow

can be benevolent or malevolent: on the one hand, movement is energetically

demanding and currents provide a useful conveyor belt; on the other, a power-

ful current or storm could transport population members into inhospitable or

unfamiliar environments. Whether they assist or hinder, effective navigation

clearly demands a finely tuned navigational system capable of correcting or

compensating for currents [6].

Understanding these processes requires integration and interpretation of

various data sources. Ocean currents and air movements can be obtained from

direct measurements or hydrodynamic models. Regarding navigation, recent

years have led to the wide-scale adoption of GPS-based telemetry for tracking

animal movements at global scales and over inaccessible environments. Datasets

are immense, yet allow paths to be evaluated in terms of key statistical quantities,

including average speeds, turning rates and angles. Coupled to controlled

behavioural studies and knowledge of the flows encountered, we are certainly

better equipped to understand the basics of navigation.
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Figure 1. (a) Adult green turtles migrate from coastal South America to nest at AI (ocean current velocity indicated by scale and arrows, averaged over January
2014). (b) IBM simulations. Simulated paths over 50 days following an individual’s displacement from AI (star), where the individual acts as a drifter, a weak or
a strong navigator: only the latter reaches AI within the simulation time; the displayed ocean currents are averaged over the 50 day period. (c,d ) Population
distribution snapshot of the (c) IBM and (d ) continuous model (75 days post-release): simulation details in figure 7. (Online version in colour.)
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1.1. Modelling movement in ecology
Despite advances in data acquisition, field studies remain

difficult and costly and the complementary use of modelling

has become commonplace: modelling provides a framework

through which hypotheses can be tested and the impact of per-

turbations simulated. Access to powerful computing has led to

a marked increase in the use of individual-based models

(IBMs), where each population member is tracked as it moves

through its environment [7]. The adaptability of IBMs is clearly

to their advantage, generating tailor-made data that can be

fitted/validated against experimental sources.

For organisms in a fluid environment, a typical approach

is to ‘immerse’ an IBM into an imposed flow, so that

self-propelled movement becomes augmented by the flow.

Lagrangian-based particle models are often employed for the

IBM, with each individual indexed by its instantaneous position

and velocity: navigation can be incorporated via a directio-

nal bias according to orienteering cues. Currents can be

obtained from widely available datasets and models based on

these principles have been applied to understand move-

ment dynamics across aquatic and airborne populations: the

advection-dominated movement of fish larvae [8]; the role of

current-directed movement in jellyfish blooms [9]; the influence

of directed movement on turtle drifting within ocean currents

[10,11]; the Atlantic movements of eel larvae [12]; how wind

influences the choice of staging sites during red knot migration

[13]; the exploitation of favourable winds by high-flying insects

[14]. For many further references and examples, see [15,16].

Assessing a strategy’s effectiveness demands some

measure and a standard approach is to define ‘Lagrangian

targets’, against which simulation output can be evaluated

[15]: for example, what proportion of a population reach

some place (e.g. a spawning site) by some time (e.g. the spawn-

ing season)? Yet given that an individual’s path is subject to

significant intrinsic (e.g. imprecision in the navigating mechan-

ism) and extrinsic (e.g. turbulence of currents) variability,

care must be paid to the number of simulated organisms

for meaningful information to be drawn. Coupled to their

limited analytical tractability, it can become hard to draw

broad insights from IBMs without recourse to computationally

demanding simulations.

An alternative is to propose a fully continuous and macro-

scopic model, for example via an equation for the population

density: for movement within a flowing medium, partial

differential equations (PDEs) based on systems of diffusion–

advection–reaction equations would be a natural choice.
With their roots in classical applied mathematics, they yield

to analytical investigation and are typically efficient to solve

numerically. In the present context, PDE models have been

used in problems ranging from predicting tuna distributions

[17] to the persistence of stream populations in the face of

fast currents [18] and the dispersal of moths [19].

Weighed against their analytical tractability, continuous

models prove problematic with respect to parametrization

and validation against individual-level data. Consequently,

a third route is to formally connect an IBM with a PDE

model via some scaling-based approach: by drawing clear

lines between the data-friendly IBM and the terms and

parameters of a macroscopic model, their distinct advantages

can be exploited. We refer to [20,21] for recent reviews with

regards to biological movement; in the context of the present

article, we particularly mention [22,23].
1.2. Outline
The main aim here is to model organism movement in a flow-

ing field: see figure 1 for a schematic. We follow the standard

protocol for the IBM by immersing a Lagrangian-based

particle model into a flowing medium. The IBM confers a

navigating capacity, with individuals orienting according to

spatially and temporally varying cues. Section 2 summarizes

this model and the scaling methods that yield a macroscopic

continuous model for the population density, which is of

drift-anisotropic diffusion form. In §3, we tailor this approach

to certain movement classes, including passive drifters and

active navigators. Sections 4 and 5 consider an expository

application to homing behaviour, beginning with an idealized

scenario and followed by a preliminary data-driven study

into green turtle homing to AI. Numerical simulations confirm

the method’s validity, highlighting its capacity to generate data

at both an individual and population level. Moreover, the con-

tinuous model’s greater tractability is exploited, demonstrated

via the use of characteristics to quantify the ‘navigational

strength’ required by organisms: if the internal compass is

too weak, individuals fail to home.
2. Individual and continuous models
2.1. The individual-based model
Each individual is a point particle exerting negligible effect on

the surrounding flow, with the position of the ith individual
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denoted by xi [ Rn (n is the space dimension). Positional

changes are due to (i) passive movement (the external flow)

and (ii) active movement (swimming/flight). Generally, n ¼ 3,

since organisms move freely in three-dimensional space; how-

ever n ¼ 2 is often sufficient: for example, many oceanic

populations spend the majority of their time at the same depth.

For passive movement, we define uðt, xÞ [ Rn as the

medium flow at time t and position x. Active movement fol-

lows a velocity-jump random walk [24], in which smooth

runs through space with a constant active velocity v [ Rn are

punctuated by ‘turning’ and new velocity selection. Turning

is regarded as instantaneous and the time between successive

turns assumed to follow a Poisson distribution, with (con-

stant) turning rate parameter l. The new active velocity is

selected from a distribution q(vjt, x) and can incorporate

orienteering: navigating cues enter via a bias into specific

active velocities. We implicitly assume that the previous

active velocity has no impact on the new active velocity,

although this can be accounted for by extending to

qðvjt, x, v0Þ for previous velocity v0.

Mathematically, if individual i is at position xi(t) and has

active velocity vi(t) at time t, then at time t þ Dt (assuming Dt
is sufficiently brief ), we have

xiðtþ DtÞ ¼ xiðtÞ þ DtðviðtÞ þ uðt, xiÞÞ;

viðtþ DtÞ ¼
qðvjtþ Dt, xiðtþ DtÞÞ with probability lDt,
viðtÞ otherwise:

�
ð2:1Þ

Here, we assume individuals move with the same fixed

active swimming/flight speed, s: only a new active direction is

chosen at a turn. This simplification reduces burdensome par-

ameters and allows us to set v ¼ sn, where n ¼ v/jvj is the

unit vector describing the active direction. The distribution

q over velocity space V can be redefined as a directional

distribution ~q over all possible directions (i.e. on the unit

sphere, S
n�1):

qðvjt, xÞ :¼
~qðnjt, xÞ

sn�1

for active direction n ¼ v=jvj [ S
n�1:

ð2:2Þ

2.2. The continuous model
Model (2.1) offers an individual-level model of movement at

a ‘mesoscopic’ scale. Many navigational problems, however,

play out for large populations at macroscopic scales: green

turtles take weeks to migrate to breeding grounds thousands

of kilometres away. Simulating IBMs can be costly at these

larger scales and obtaining an equation for the population

density distribution, m(t, x), becomes attractive.

The process for doing so is intricate yet relatively common-

place: we therefore leave details in the electronic supplementary

material and refer to [21]. In brief, we first propose a continuous,

mesoscopic formulation of the IBM (the ‘transport model’)

and then apply scaling to derive the macroscopic equation

for m(t, x). This takes the form of the drift-anisotropic

diffusion model:

mðt, xÞt þr � ððaðt, xÞ þ uðt, xÞÞmðt, xÞÞ
¼ rrðDðt, xÞmðt, xÞÞ : ð2:3Þ

Here, u(t, x) is the previously defined external flow while the

advective velocity, a(t, x), and anisotropic diffusion tensor,
Dðt, xÞ, derive from the active movement. Specifically, they

relate to statistical properties of the turning distribution:

aðt, xÞ ¼
ð

V
vqðvjt, xÞdv,

¼ s
ð

Sn�1
n~qðnjt, xÞdn; ð2:4Þ

Dðt, xÞ ¼ 1

l

ð
V
ðv� aðt, xÞÞðv� aðt, xÞÞTqðvjt, xÞdv,

¼ 1

l

ð
Sn�1
ðsn� aðt, xÞÞðsn� aðt, xÞÞT~qðnjt, xÞdn: ð2:5Þ

In other words, a is the direction of an ‘average’ swimmer,

encoded in the underlying directional distribution, while

the diffusion tensor derives from the inaccuracies stemming

from directional choice. Formally, a(t, x) is the expectation

and Dðt, xÞ is 1/l multiplied by the variance–covariance

matrix of q. Consequently, the macroscopic equations

depend explicitly on two statistical quantities that can be

drawn from observations of individual movement.

Equation (2.3) is a parabolic differential equation, yet it

can still be useful to study the characteristics of the net flow

field. Doing so offers a continuous path back to individual

detail: they can be interpreted as equations of motion for

an ‘average’ individual and their (relatively) simple form is

analytically amenable. For (2.3), we have

dx

dt
¼ uðt, xÞ þ aðt, xÞ � r �Dðt, xÞ : ð2:6Þ

We use this equation later to derive a condition for successful

navigation towards a target (see §4.4.2).

3. Drifters to navigators
Our framework accounts for various movement classes and

we tailor it for the following:

— Drifters—particles without active motion that simply

move with the flow of the surrounding medium.

— Random movers—self-propelled organisms with negligi-

ble orientating bias in their movement paths (at the level

of observation).

— Navigators—self-propelled organisms showing biased

movement paths, generated from following navigating cues.

Here, we restrict to two-dimensional scenarios, relevant

to aquatic (airborne) populations that predominantly swim

(fly) at the same depth (height): movements through the

depth column occur, but are assumed negligible over the

time and space scales considered. For example, while

occasional deeper dives (to around 10–20 m) occur, tracking

of green turtles indicates that most swimming is at or near

the surface [25]. We note that the extension to three dimen-

sions is relatively straightforward, yet is beyond the aims

and applications of this paper. For two dimensions, we con-

sider a polar coordinate system: velocities are given by

v ¼ sn ¼ sðcosa, sinaÞ where a [ ½0, 2pÞ is the angle cor-

responding to direction n. For the turning response, we

specify a circular distribution, ~qðaÞ:

3.1. Movement classes
3.1.1. Drifters
A pure drifter is a particle without active movement. Few

organisms are truly drifters (e.g. ballooning spiders), yet
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various studies approximate as such if active movement is

believed negligible compared to the flow (e.g. [12]). Drifters

simply correspond to zero speed, s ¼ 0, and expressions (2.4)

and (2.5) are zero, regardless of the turning distribution. The

macroscopic model is a pure drift equation due to the

medium flow:

mðt, xÞt þr � uðt, xÞmðt, xÞ ¼ 0 : ð3:1Þ
ing.org
J.R.Soc.Interface

12:20150647
3.1.2. Random movers
Organisms with self-propulsion but no orientation undergo

an unbiased Pearson random walk [24]: an individual moves

some distance in one heading before selecting a new one,

favouring all new directions equally. Consequently, we

consider in this case the uniform turning distribution:

~qðaÞ ¼ 1

2p
:

Substituting into (2.4) and (2.5) and integrating yields

aðt, xÞ ¼ 0 and Dðt, xÞ ¼ s2

2l
I2 :

In the above, I2 is the 2 � 2 identity matrix and we obtain a

drift-(isotropic) diffusion equation in the macroscopic model:

mðt, xÞt þr � uðt, xÞmðx, tÞ ¼ dr2mðt, xÞ , ð3:2Þ

where the diffusion coefficient d ¼ s2/(2l).
3.1.3. Navigators
In practice, most organisms receive navigating information

from their environment. We can account for guidance cues

through biasing the turning distribution: an external cue is

assumed to guide individuals in some dominant direction,

denoted by the unit-length vector wðt, xÞ [ Rn, with bias

parameter kðt, xÞ � 0: k(t, x) measures the navigational strength
and indicates the directional accuracy: at k ¼ 0, the choice is

random (and we recover a random mover); increasing k
allows the dominant direction to be chosen with increasing

accuracy, culminating in ‘perfect navigation’ when the domi-

nant direction is always selected. k(t, x) and w(t, x) are

expected to be position and time dependent, assuming

spatio-temporal variation in the intensity and direction of a

navigating cue. Further, these parameters can also be chosen

to explicitly depend on some factor, such as the geomagnetic

field or chemical signals. For clarity of presentation, we drop

these notational dependencies in the following.

In two dimensions, we consider a distribution on the unit

circle. The von Mises distribution, as a circular analogue

to the normal distribution, offers a de facto standard for

describing directional datasets and has been widely adopted

in the analysis and modelling of animal navigation (e.g.

[21,26–29]). In circular coordinates, we choose w ¼ (cos A,

sin A), where A(t, x) defines the dominant angle, and the von

Mises distribution is given by

~qðajk, AÞ ¼ 1

2pI0ðkÞ
ek cosða�AÞ: ð3:3Þ

Ij(k) denotes the modified Bessel function of first kind (and

of order j). Here, kðt, xÞ [ ½0, 1Þ, where k ¼ 0 corresponds

to zero bias and k! 1 yields perfect navigation. From
(2.4)–(2.5) (see [21]), we find

aðk, AÞ ¼ s
I1ðkÞ
I0ðkÞ

ðcos A, sin AÞ ,

Dðk, AÞ ¼ s2

2l
1� I2ðkÞ

I0ðkÞ

� �
1 0

0 1

� �

þ s2

l

I2ðkÞ
I0ðkÞ

� I1ðkÞ2

I0ðkÞ2

 !
cos2 A cos A sin A

cos A sin A sin2 A

 !
:

9>>>>>>>>>>=
>>>>>>>>>>;
ð3:4Þ

The active advection is in the same direction as the dominant

direction, whereas the diffusion tensor is split into isotropic

and anisotropic components, where the anisotropy also

depends on A.

Finally, we remark that for instances of multiple preferred

directions, e.g. competing orienteering cues, we can choose

a turning distribution composed from linear combinations

of (3.3). Subsequently, advection and diffusion terms will

come from linear combinations of (3.4).

3.2. Data to macroscopic measures
We demonstrate the von Mises distribution via converting

data into macroscopic measures for theoretical and genuine

populations (figure 2a). In the top row, we consider a popu-

lation with no dominant orientation, while a genuine dataset

is shown in the bottom row: the swimming orientation of

juvenile green turtles (Chelonia mydas) exposed to magnetic

fields encountered during ocean travels (reproduced from

fig. 2 of [30], ‘Northern Field’ dataset).

Standard methods (e.g. [26]) are used to estimate k and A
in (3.3), shown in figure 2b. For the non-oriented population,

k is negligible and the distribution quasi-uniform. The genu-

ine dataset, however, yields a large k: this indicates a clear

bias in turtle orientation, suggesting a response to the magnetic

field. Calculations for similar datasets reported in [30–32] also

reveal clear orientational biases, with k � 0.522. Of course, one

should be cautious in subsequent applications of controlled

laboratory based data to real-world navigation problems.

Figure 2c illustrates advective velocities (a) and diffusion

tensors (D), calculated from (3.4). The former are represented

via the arrow lengths and directions; the maximum length is s
(outer dotted circle) and occurs for ‘perfect navigation’. Diffu-

sion tensors are exemplified by ellipses indicating the

diffusion in distinct axial directions. The quasi-uniform distri-

bution yields negligible advection and almost isotropic

diffusion. Oriented distributions generate large advective vel-

ocities in the dominant direction with reduced and

anisotropic diffusion: greatest orthogonal and lowest along

the axial direction of bias, due to limited movement against

the dominant direction.

Simulations of the macroscopic model (2.3) are shown

in figure 2d under these forms (setting s ¼ l ¼ 1). The

unbiased dataset generates a population that diffuses in

quasi-isotropic fashion, while the oriented population is

advected along the dominant direction; note the ‘stretching’

due to anisotropic diffusion.
4. Goal navigation under fixed external flows
We demonstrate the methods within a precise application: how

does external flow impact on navigation/homing to a goal?

Such problems occur in numerous examples, from pheromone
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following by moths to adult marine turtle homing. We begin

with a simple scenario, where a generic population attempts

to navigate to some goal under a fixed and uniform flow.

While idealized, this could perhaps be interpreted as a

hypothetical experiment, where a population’s movement is

studied in a tank or wind tunnel under a controlled flow, or

as an approximated description of a river environment with

a (relatively) steady flow. The principal aim is to explore

whether the continuous model captures population-level

detail of the IBM and investigate the critical navigational

strength for successful homing; we note that a study under

naturally occurring flows is performed in the next section.

4.1. Region and initial conditions
We suppose movement occurs within a two-dimensional rec-

tangular arena, ðx, yÞ [ ½�Lx, Lx� � ½�Ly, Ly�, and denote

x- and y-axes as ‘west to east’ and ‘south to north’, respect-

ively. We assume (0,0) marks the centre of the intended

goal, which forms a circular region of diameter 10, for

example, an island for turtle navigation.

At the edges, we assume no-loss boundary conditions: indi-

viduals leaving the arena are instantaneously ‘reflected’. In

practice, the arena is larger than the region where the principal

dynamics are taking place, so that edge effects have relatively

little impact: exploratory simulations with other boundary con-

ditions (e.g. absorbing) demonstrate the same general behaviour.

We consider two forms of initial condition for a population

of N individuals.

(1) Localized release. These simulate a ‘mark and release’

study, with individuals released from a given location.

For the IBM, an initial location is drawn from a bivariate

normal distribution with mean position (x0, y0) and sym-

metric variances s2. In the macroscopic model, this

translates to initial conditions of the form

mðx, y, 0Þ ¼ N
2ps2

exp �ðx� x0Þ2 þ ðy� y0Þ2

2s2

( )
:

(2) Uniform distribution. The population is uniformly distrib-

uted over a circle of radius R. For the macroscopic model,

we set

mðx, y, 0Þ ¼
N
pR2

if x2 þ y2 � R2

0 otherwise:

8<
:

Initial active velocities for the IBM are selected from the

turning distribution for active movement, based on their

initial location. Numerical methods have been adapted

from those developed previously [29] and details are in the

electronic supplementary material.

4.2. Active and passive movement parameters
Passive movement results from a uniform and constant external

flow from west to east: we set u ¼ (ux, 0) where ux � 0:A generic

cue navigates individuals towards the goal: we take the von

Mises distribution (3.3), with an individual at x ¼ (x(t), y(t))
experiencing a bias in the dominant direction w ¼ 2x/jxj.
For simplicity, we set k(x, y, t) ¼ const.: the cue exerts a uniform

navigational strength. In practice, we expect the cue’s strength to

vary, but leave these considerations for future studies.

We take a dimensionless form, with mean active speed and

turning rates fixed and scaled to unit values: s ¼ l ¼ 1. This

allows us to focus on the flow (ux) and navigational strength

(k). Specifically, we assume 0 � ux � s so that the flow is

between 0 and 100% of an individual’s active speed: our frame-

work also allows external currents to exceed the individual’s

active speed, as happens in the later application to AI

homing. We take k [ ½0, 3�: upper end values generate more

than half of the turns within +258 of the goal’s true bearing,

whereas at k ¼ 0.5 this drops to a quarter; estimates of k from

the datasets in [30–32] all fall comfortably inside this range.

Simulations of the IBM are conducted for t [ ½0, 1000�
and initial conditions:

(SW) A localized release at (x0, y0) ¼ (2100, 2100) (s ¼ 5),

southwest and up-current of the goal.
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above each plot. (b1) ‘Uniform’ set-up with individuals distributed across the circular region surrounding the goal (central dot). (b2 – b5) Initial locations of
individuals that reach the goal by t ¼ 1000 are marked by red dots for (b2) ux ¼ 0.25, k ¼ 1.0, (b3) ux ¼ 0.5, k ¼ 1.0, (b4) ux ¼ 0.75, k ¼ 1.0 and (b5)
ux ¼ 0.5, k ¼ 1.5. Note that we only show the centre of the full region, where Lx ¼ Ly ¼ 300. (Online version in colour.)
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(NE) A localized release at (x0, y0) ¼ (þ100, þ100) (s ¼ 5),

northeast and down-current of the goal.

(UD) A uniform distribution over the circle of radius R ¼ 100

surrounding the goal’s centre.

Population success is assessed via two Lagrangian targets:

P1000, the population percentage that reaches the goal by

t ¼ 1000; and T1/2, the time half the population has reached

the goal (T1/2 ¼1 if this is not achieved by t ¼ 1000).

To exemplify this within a dimensional context, consider

an organism that swims with a mean speed 1 km h21 and

mean turning rate 1 h21. Then (under SW or NE), our indi-

viduals are initially released just over 140 km from a goal

of diameter 10 km, and we study their movement paths

over a period of about six weeks.

4.3. Individual-based model simulations
We release 1000 individuals SW or NE of the goal (figure 3a1).

Figure 3a2–a4 shows representative trajectories for k ¼ 1 and:

(a2) a weak flow (25% of the individual’s maximum speed);

(a3) a moderate flow (50%); and (a4) a strong flow (75%). For

weak flows, all individuals find the goal by t ¼ 1000 regardless

of release location, although (unsurprisingly) those initially

down-current experience a delayed passage. A critical tran-

sition occurs for moderate and strong flows, with only a few

reaching the goal for the former and none for the latter: the cur-

rent is too strong and most are swept away. For moderate

flows, increasing the bias parameter to k ¼ 1.5 drastically

increases the population’s success (figure 3a5).

We next consider a population (N ¼ 10 000) distributed

according to UD (figure 3b1). Figure 3b2–b5 shows initial

locations of individuals that succeed in reaching the goal,

for various (ux, k) combinations. Failure increases as the exter-

nal flow increases: for moderate/strong flows, only a small

upstream sector with advantageous initial locations succeed.
Increasing k to 1.5 for the moderate flow again drastically

increases population success (figure 3b5).

4.4. Continuous simulations
4.4.1. Individual-based model and macroscopic model

comparison
The simulations hint at a sharp population success/failure

transition, depending on flow and navigational strength par-

ameters. Can we exploit the macroscopic model to investigate

this systematically? Population densities drawn from the IBM

are compared with m(t, x), computed from (2.3), under an

identical scenario, with a typical result given in figure 4a,b.

An excellent quantitative match is observed between the

individual and continuous models: other comparisons pro-

duce similar results. We conclude that, for the time and

space scales considered, the macroscopic model recapitulates

population distributions of the IBM.

We hence exploit the numerical advantage of (2.3) to inves-

tigate population success as we sweep through parameter

space. Figure 5a plots P1000 for the three initial distributions:

SW; NE; and UD. As expected, high navigational strength

allied to slow flows permits easy goal navigation.

4.4.2. Critical navigating strength
Results in figure 5a–c reinforce the notion of a critical

success/failure transition and we quantify this by analysing

equations (2.6). For the problem at hand, we obtain D and

a from (3.4) and take u ¼ (ux, 0). Full details are shown in

appendix A, where we obtain the dynamical system

_x ¼ ux � c1
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p � c3

x
x2 þ y2

and _y ¼ �c1
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p � c3

y
x2 þ y2

:

9>>>=
>>>;

ð4:1Þ
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Coefficients c1 and c3 are given in equations (A 1) of appendix

A and depend on k (noting s ¼ l ¼ 1).

We test whether (4.1) adequately describes the movement

process by computing and comparing its trajectories with the

scenario of figure 3b: trajectories in figure 5b1–b4 are differen-

tiated according to whether they hit (solid red) or miss (dashed

black) the goal; the small arrows illustrate the net flow field of

(4.1), derived from the external flow u, the active orientation a

and diffusion gradient. Compared against figure 3b, we clearly

observe excellent qualitative and quantitative agreement.

Given this quantitative match, we conclude that (4.1)

closely describes the average individual behaviour and use

stability analysis (see appendix A) to obtain the following

approximate1 condition for population success:

s
I1ðkÞ
I0ðkÞ

. ux : ð4:2Þ

The left-hand side increases with k, saturating to s. For a

given flow, (4.2) provides a quantitative estimate for the

necessary navigational strength: the guiding signal must be

strong enough to compensate for the flow; moreover, naviga-

tion is unsuccessful for ux . s. We overlay this condition on

the results from parameter sweeps in figure 5a3: it clearly

delineates the regions between success and failure.

We have concentrated on steady/uniform flows, yet the

characteristic equations can also be applied to the non-trivial

flows often found in nature. As an example, we set

u ¼ gð66� 0:1x� y, x� 0:1y� 54Þ and the new characteristic

equations become

_x ¼ gð66� 0:1x� yÞ � c1
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p � c3

x
x2 þ y2

and _y ¼ gðx� 0:1y� 54Þ � c1
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p � c3

y
x2 þ y2

:

9>>>=
>>>;
ð4:3Þ

This creates a ‘whirlpool’, swirling anticlockwise towards the

point (60,60) and at a rate determined by g. In figure 5c, we con-

sider trajectories of (4.3), starting from (100,100) and with active

navigation to the goal. For figure 5c1–c4, we increase the whirl-

pool’s strength: if weak, trajectories hit the goal (figure 5c1,c2),

yet when stronger they are sucked into the whirlpool

(figure 5c3,c4); note that the convergence points do not coincide

exactly with the whirlpool centre, due to the active movement.
5. Natal homing to Ascension Island by green
turtles

As illustrated by figure 5c, complicated currents can heavily

impact on movement paths and we move to a genuine, data-

driven application: the homing of green turtles (C. mydas) to

AI, a volcanic island of less than 100 km2 and more than a

1000 km from the nearest landmass (figure 1a).

Adult turtles make this journey once every few years [33],

travelling over 2000 km from South American waters to nest

at their natal beach (figure 1a). Nesting starts December/

January and continues through to June/July [34], with

many females laying multiple clutches [33]. How this naviga-

tional feat is accomplished remains an outstanding question

and various theories have been proposed, from following

odours emanating from the island [35] to geomagnetic field

orientation [36]. In this expository study, we focus neither
on the full journey nor the precise navigating mechanism,

rather we test our methodology and examine the ease of

finding the island inside the final few hundred kilometres.

For further theories on marine turtle navigation, see [2,37].
5.1. Region and initial conditions
AI lies approximately 78570 S and 148220 W and we set this as

the centre of our region. We say that simulated turtles success-

fully reach the island if they arrive within 15 km of its centre

(approx. 10 km from its coastline): at this distance, we

assume short-range cues (e.g. sound or smell based) lead

them to the island. Initially, we apply controlled releases at

locations (+38, +38) northeast (NE), southeast (SE), southwest

(SW) and northwest (NW) of the goal (simulating mark and

release experiments). As before, our plots focus on a compact

region centred on the island, yet simulated turtles move

within an extended region (with no-loss boundary conditions).

The initial time is set early in the nesting season: most

simulations use a start date of 1 January 2014 (according to

ocean current data) and this is defined as ‘time zero’; later

releases are indicated by þX days. Simulations are performed

for 150 days, corresponding to a time towards the end of the

nesting season.
5.2. Passive movement: ocean flow data
Ocean flows can be obtained from a variety of sources: here, we

use data (downloaded from http://pdrc.soest.hawaii.edu/

data/data.php) provided by global HYCOM (the global

Hybrid Coordinate Ocean Model [38]), an ocean forecasting

model forced by factors such as wind speed and heat

flux and assimilated with measurements from satellites,

floats, moored buoys, etc. to yield ‘hindcast’ model output.

HYCOM has a spatial resolution capable of reproducing both

large-scale currents and localized (temporally and spatially)

phenomena such as meandering currents and eddies: poten-

tially significant for turtle navigation to a small island. In its

application, we linearly interpolate HYCOM data (1/128 and

a daily time step) to that required for model simulations:

here, we use its output starting from 1 January 2014 as the

earliest date for our simulations. We stress that HYCOM

remains a model and its currents do not fully replicate real-

world complexity: a possible future investigation would be

comparing how simulations using HYCOM data differ with

other data sources, including direct measurements based on

Lagrangian drifters. For example, in [39], a systematic investi-

gation into the sensitivity of simulated trajectories to the

resolution of ocean current data was performed.
5.3. Active movement: navigation
Active movement is parametrized by s and l, along with those

defining the turning distribution. Following marine turtles is

understandably difficult and definitive values are speculative,

yet logical arguments can provide ranges. We assume individ-

uals have a (unspecified) navigating capacity and periodically

reorient towards the island: new active headings are chosen

from (3.3) with dominant direction pointing to the island

centre from their current location. Note that this assumes

individuals correct for drift (periodic reassessment of active

heading), but do not specifically compensate for it: the latter

requires detection of the flow direction (see also Discussion).

http://pdrc.soest.hawaii.edu/data/data.php
http://pdrc.soest.hawaii.edu/data/data.php
http://pdrc.soest.hawaii.edu/data/data.php
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This assumption lies in accordance with conclusions from

tracking studies [40,41]. We assume k [ ½0, 3� as previously.

We take active speed s [ ½0, 80� km d21 [42]: s ¼ 0 corre-

sponds to a passive drifter while upper values lie at the

energetic limits for sustained swimming. We set l ¼ 12 d21

(one turn every 2 h): this would generate an average swim

length between turns of up to 5 km. Our rationale is that

large-scale navigating cues are unlikely to significantly

change over shorter lengths; on the other hand, less frequent

assessment would be less than optimal for drift correction.

We remark that direct sources for estimating l could be

based on a turtle re-estimating its direction each time it

surfaces [43], or through careful analysis of tracking study

data: this will be considered in a future, more refined study.
5.4. Individual model simulations
The IBM generates both individual and population data

(figure 6). We consider various scenarios in which popu-

lations (for each, N ¼ 100) are simultaneously released NE,

SE, SW and NW from the island. For each row, the left-

most panel shows representative tracks from each release

location, while other panels show histograms for island arri-

val times. We also tabulate two population success statistics:
T1/2, the time half the population has arrived at the island;

and P100, the percentage that have reached the island 100

days post-release.

For figure 6a, we set s ¼ 50 km d21, k ¼ 1 and a release at

time zero: this represents a stronger swimmer, with the mean

swimming speed lying above the average underlying current,

although there are times and locations where the latter may

be considerably faster (ocean current snapshots can be seen

in figure 7). Consequently, paths can be highly circuitous

before reaching the island (e.g. tracks 3 and 8), despite con-

sistent reorientation with respect to the island goal. Overall,

however, populations are successful in eventually reaching

the island.

We observe a broad spectrum of arrival times between the

different populations: T1/2 ranges from approximately 23 days

(for the SE population) to approximately 90 days for the NW

population; histograms range from tightly clustered (e.g. SE)

to scattered (e.g. NE, NW). We also observe considerable vari-

ation within a population: for example, the NE population has

arrival times varying from 20 days to more than 100. Differ-

ences between the tracks from two individuals at a single

release location stem from (smallish) variations in their exact

starting location and randomness entering their active move-

ment path, along with the different currents encountered.
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Compared against the fairly consistent tracks produced for

constant/uniform flows (e.g. figure 3a), the large variations

are undoubtedly down to magnification by currents. We high-

light trajectories 7 and 8 (both NE) in figure 6a: while these

turtles have identical release times, active movement par-

ameters and close starting locations, turtle 7 more or less

directly homes by the 25th day, whereas turtle 8 becomes

enveloped in an eddy before homing on the 83rd day.

This current impact can be further investigated via a later

release date (þ28 days) (figure 6b). Populations remain suc-

cessful overall yet particular statistics change enormously:

NW, NE and SE populations all have an easier island passage

yet the SW population is significantly delayed (T1/2 is almost

doubled). Hence, changes in the currents can be expected to

significantly impact on island navigation. Note that the SE

population typically appears the most successful, suggesting

that releases from this position receive optimal currents.

To test the impact of active movement characteristics, we

reduce s: in figure 6c, we set s ¼ 30 km d21, k ¼ 1 and a release
at time zero. The balance between passive and active move-

ment is shifted from the latter to the former and navigation

becomes troublesome: paths are tortuous and only a tiny frac-

tion reach the island (in the timeframe). A similar finding is

obtained when reducing k. These findings echo those earlier,

that a critical transition in population success occurs according

to movement/flow characteristics.

5.5. Individual to macroscopic model
We compare the IBM and continuous model, testing the latter’s

capacity to predict distributions of the former. Simulations

in figure 7 are based on a NE release at time zero, s ¼
30 km d21 and k ¼ 1. Figure 7a plots the data from the IBM,

superimposing simulated turtle positions on the ocean currents

at various times following release. In figure 7b, we plot m(t, x),

obtained by solving equation (2.3) subject to the same currents

and (3.4) calculated using the same active movement par-

ameters. A movie of these simulations is available (electronic

supplementary material, movie S1).
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The closeness between distributions suggests that the

macroscopic model offers an excellent quantitative approxi-

mation for population statistics of the IBM: investigations

for other scenarios yield a similarly close match, with further

examples and movies in the electronic supplementary

material, including for a pure drifter and a stronger swimmer.

As a point of note, the simulation using (2.3) takes the order

of minutes, while that of the IBM takes more than an hour2:

the latter’s inefficiency stemmed from frequent interpolation

between an individual’s position and drift data, burdensome

as the population increases.

We exploit the efficiency of the macroscopic model to inves-

tigate population success as s and k are varied across their full

ranges (figure 8). The simulations focus on a release date of

time zero: broadly, releases at other times generate similar con-

clusions yet exact statistics change due to the different currents,

as noted above. As for the idealized case, we again observe a

fairly sharp transition between overall population success

and failure. The lines s ¼ 0 and k ¼ 0 correspond to ‘drifter’

and ‘random mover’ populations, respectively. Neither are

successful: a tiny fraction are assisted by fortuitous currents,

yet the vast majority fail. Navigation is understandably

straightforward at the largest values of s and k: populations

arrive within very short times (order of a week to two

weeks). However, while the upper swimming speeds

(approx. 0.9 m s21) are feasible short term, whether they

remain so over days to weeks is less certain. Similarly, upper

values of k represent a fairly precise orienteering mechanism,

with more than half of the turns falling within less than

+258 of the true bearing.

Of course, population success does not require both

speeds and turning rates to lie at the upper reaches of these

ranges: close to 100% of the populations can arrive at the

island inside 100 days for more moderate combination of

k ¼ 1.5 and s ¼ 40 km d21. Further, the nature of the curve

between success and failure suggests that a weak navigator

can compensate by fast swimming, while a slower mover

can compensate via a precise navigation. We should note,

however, that 100 days is quite a long time and our model

does not allow individuals to ‘give up’, nor does it consider

‘blind spots’ in the navigating information: our present

study is purposefully simple to concentrate on the essential

relationship between navigation and currents.
6. Discussion
The aim has been to describe a common framework for mod-

elling navigation in flowing environments. We achieve this

by connecting IBMs to continuous models: the former

allows individual-level data to be generated, while the
latter offers an efficient path to population statistics. Further,

the continuous model can be analysed via the method of

characteristics, creating a route back to ‘average’ individual-

level movement. This process formally connects data inputs

for the IBM (e.g. ocean currents, tracking studies) to the

macroscopic model and will allow formal testing of different

hypotheses for navigation, through comparing simulation/

analytical predictions with empirical observations: for similar

studies, see [44].

We illustrated this for generic movement classes: drifters,

random movers and navigators. Formally, drifters are

organisms/particles that simply float and are convected by

currents: certain studies assume this if active movement is

smallish (e.g. [12]), yet it must be considered carefully since

even small amounts of oriented swimming can alter overall

behaviour [10,11]. A navigator corresponds to an organism

that actively swims, periodically assessing its environment

and biasing its active direction accordingly. The oriented

turning response was incorporated via a von Mises distri-

bution, and the macroscopic model is of drift-anisotropic

diffusion form. The von Mises distribution is a standard in

the field, although other forms are available and different

models may result [27].

For the examples here, the continuous model closely

matched the statistics of the IBM. This good agreement, how-

ever, cannot be expected a priori: for example, if the problem

length and time scales are not sufficiently macroscopic. Inter-

actions between individuals should also be considered, as the

formal process assumes these are negligible: this appears

reasonable for dispersed marine turtles, yet becomes less certain

for, say, fish schooling or bird flocking. Overall, these warnings

highlight the advantages of a twin approach: macroscopic

models offer analytical convenience, yet may not apply to the

full spectrum of situations allowed by the underlying IBM.

To demonstrate the methodology within a concrete

problem, we primarily focused on ocean navigation. The fra-

mework, however, is general and can be extended to other

scenarios, such as flight navigation: indeed, an earlier appli-

cation of our approach was used in [29] to investigate

butterfly hilltopping, albeit for negligible wind. IBM models

based on principles similar to those here have been extensively

applied to bird and insect navigation (e.g. [13]), and it would

be intriguing to adapt our model to accommodate the

peculiarities of these applications: for example, by incorporat-

ing ‘resting phases’ in response to unfavourable atmospheric

conditions, or flight adaptation towards favourable winds.

Our model has assumed that turtles simply correct for

flow by periodically reorienting in the direction of the

(island) goal. Whether an organism corrects or can actively

compensate (by detecting flow direction) is a significant

question [6]: a capacity to determine flow direction has
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been suggested for a variety of airborne (moths and song-

birds [45]) and aquatic species ( jellyfish [9] and juvenile

turtles [46]). Our framework can be adapted to investigate

such phenomena: for example, the navigational response

can be based on both the flow direction and the overall direc-

tion of some goal. More generally, our model can be extended

to explicitly include a proposed navigating cue(s): for

example, the varying geomagnetic field or a transported

chemical cue. Chemical cues are certainly well known in

the context of pheromone following, and ocean/wind-borne

signals have also been proposed as potential guidance cues

for marine turtles (e.g. [35,47]).

The homing problem can be understood as a mean free
passage time (MFPT) problem, used in ecology to estimate the

expected time for individuals to reach a target [48]. Recently,

Kurella et al. [49] considered active navigators with isotropic

diffusion and solved the MFPT problem via asymptotic

methods for small targets. This acts as a special case of our

problem, corresponding to conservative drift and isotropic

and constant diffusion. An interesting, yet non-trivial, question

emerges on formulating and solving the MFPT problem for

non-isotropic active movement within a non-conservative

and dynamic flow field, as relevant here.

We quantitatively assessed critical relationships for

successful homing: for both idealized and AI scenarios,

we obtain a relatively abrupt boundary between population-

level failure and success as key characteristic parameters

(flow, swim speed, navigating strength) are varied (figures 5

and 8). For populations with characteristic parameters lying

firmly inside the ‘success region’, navigation should be reason-

ably robust with respect to currents. Populations lying closer to

the boundary, however, may show sensitivity to currents and

large individual variations. Consequently, we expect the

impact of currents on homing to be highly variable from case

to case. In the context of AI, simulated turtles do home for rela-

tively moderate swimming speeds and navigating strength but

reasonable parameters may lie close to the boundary. We could

therefore expect a range between relatively straightforward

and convoluted homing when observed individually, echoing

the variability in re-homing attempts by displaced turtles

(e.g. [50]). Of course, such findings must be viewed cautiou-

sly given the simplistic framework here: a key aim is to

expand these preliminary findings and address the greater

complexities expected in the natural environment.
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Endnotes
1A precise condition is considerably harder to find: it would further
depend on parameters such as starting locations, goal size and simu-
lation timeframe.
2Neither method can be regarded as ‘optimal’ and this is not a formal
analysis: our intention is to stress that, generally, macroscopic models
are more efficient for population studies.
Appendix A. Method of characteristics
From (3.4), we introduce coefficients:

c1ðkÞ :¼ s
I1ðkÞ
I0ðkÞ

, c2ðkÞ :¼ s2

2l
1� I2ðkÞ

I0ðkÞ

� �

and c3ðkÞ :¼ s2

l

I2ðkÞ
I0ðkÞ

� I1ðkÞ2

I0ðkÞ2

 !
, ðA 1Þ

where c1(k) describes active drift and increases with k. c2(k)

defines the degree of isotropic diffusion and decreases with

k. c3(k) defines the degree of anisotropy, is negative and is

an order of magnitude smaller than c1 and c2.

The idealized scenario takes u(t, x) ¼ (ux, 0), where ux � 0,

and active orientation is towards the origin. Consequen-

tly, an individual at position (x, y) has active direction

�ðx, yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and, from (3.1) and (A 1), we find

aðt, xÞ ¼ �c1
x=r
y=r

� �
, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q

and

Dðt, xÞ ¼ c2
1 0
0 1

� �
þ c3

x2

r2

xy
r2

xy
r2

y2

r2

0
BB@

1
CCA:

The divergence of D is

r �D ¼ @iD
ij ¼ c3

r4

2xr2 � x22xþ xr2 � xy2y
yr2 � xy2xþ 2yr2 � y22y

� �
¼ c3

r2

x
y

� �
:

Hence, (2.6) is as given by equations (4.1) of the main text for

the ideal flow case.

To investigate the success/failure threshold, we perform a

steady-state analysis. The singular nature of (4.1) at (0, 0),

however, demands a modification: we multiply the right-

hand sides of (4.1) by x2 þ y2 to obtain the following

system with identical orbits:

_x ¼ uxðx2 þ y2Þ � c1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
� c3x

and _y ¼ �c1y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
� c3y: ðA 2Þ

Steady states and their stabilities are as follows.

(1) SS1 (0,0) is always unstable. Eigenvalues are

l1 ¼ l2 ¼ �c3 and, since c3 , 0, are positive. Naively

one would expect (0,0) to be an attractor, since it defines

the active heading. However, c3 is a coefficient of the var-

iance–covariance matrix and expresses uncertainty in the

direction choice. This uncertainty (mathematically)

means that the origin is always ‘just missed’.

(2) SS2 ðc3=ðux þ c1Þ, 0Þ lies in the negative half-plane, since

c3 , 0. SS2 is always a saddle point, with stability in

the x-direction and instability in the y-direction.

(3) SS3 If c1 . ux, then there exists a third steady state

ð�c3=ðc1 � uxÞ, 0Þ:

— if c1 . ux, it exists and forms a local and global attrac-

tor, defining the point of convergence for all orbits;

— if c1 , ux, all non-trivial orbits (except steady states

and stable orbits of SS2) are swept out of the domain.

Summarizing, we conclude:

Lemma A.1. When c1 . ux, trajectories converge to SS3.
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How does this translate to goal-finding? The above reveals

that all trajectories eventually hit the goal if SS3 lies inside it:

hence, given sufficient time and assuming the goal is sufficiently
large, lemma A1 guarantees success and condition (4.2) pro-

vides an approximate condition for the required navigational

strength k. Of course, we must stress its approximate nature,
yet for the present application it provides a more than reason-

able estimate (e.g. figure 5a3). One should also note that failure

to satisfy lemma A1 does not necessarily translate to overall

failure: a trajectory could still hit the goal during its passage,

even if it is eventually swept out of the domain, by virtue of

favourable initial conditions.
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