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Abstract

Persistent homology provides a new approach for the topological simplification of big data via 

measuring the life time of intrinsic topological features in a filtration process and has found its 

success in scientific and engineering applications. However, such a success is essentially limited 

to qualitative data classification and analysis. Indeed, persistent homology has rarely been 

employed for quantitative modeling and prediction. Additionally, the present persistent homology 

is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we 

outline a general protocol to construct object-oriented persistent homology methods. By means of 

differential geometry theory of surfaces, we construct an objective functional, namely, a surface 

free energy defined on the data of interest. The minimization of the objective functional leads to a 

Laplace-Beltrami operator which generates a multiscale representation of the initial data and 

offers an objective oriented filtration process. The resulting differential geometry based object-

oriented persistent homology is able to preserve desirable geometric features in the evolutionary 

filtration and enhances the corresponding topological persistence. The cubical complex based 

homology algorithm is employed in the present work to be compatible with the Cartesian 

representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent 

homology method is extensively validated. The consistence between Laplace-Beltrami flow based 

filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a 

large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami 

flow based cubical complex filtration approach are analyzed over various spatial and temporal 

mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study 

the intrinsic topology of proteins and fullerene molecules. Based on a quantitative model which 

correlates the topological persistence of fullerene central cavity with the total curvature energy of 

the fullerene structure, the proposed method is used for the prediction of fullerene isomer stability. 

The efficiency and robustness of the present method are verified by more than 500 fullerene 

molecules. It is shown that the proposed persistent homology based quantitative model offers good 

predictions of total curvature energies for ten types of fullerene isomers. The present work offers 

the first example to design object-oriented persistent homology to enhance or preserve desirable 
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features in the original data during the filtration process and then automatically detect or extract 

the corresponding topological traits from the data.
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Computational topology; Variation; Laplace-Beltrami flow; Protein; Fullerene; Total curvature 
energy

I Introduction

In mathematical science, homology is a general procedure to associate a sequence of abelian 

groups or modules to a given topological space and/or manifold.26, 39 The idea of homology 

dates back to Euler and Riemann, although homology class was first rigorously defined by 

Henri Poincaré, who built the foundation of modern algebraic topology. The topological 

structure of a given manifold can be studied by defining the different dimensional homology 

groups on the manifold such that the bases of the homology groups are isomorphic to the 

bases of the corresponding topological spaces. In computational perspective, a given 

manifold can be approximated by a triangulated simplicial complex, on which homology 

groups can be further defined. The triangulation of a manifold or a topological space can be 

realized through a number of methods, such as the Delaunay triangulation. There are many 

triangulation software packages, such as TetGen and CGAL. In scientific computing, the 

Cartesian representation is one of the most important approaches in numerical analysis. 

Consequently, cubical complex based homology analysis has also become a popular 

research topic in the past decade. A systematic description of homology analysis in the 

cubical complex setting has been given by Kaczynski et al.42

Persistent homology creates a multiscale representation of topological structures via a scale 

parameter relevant to topological events.25, 29, 61, 99 In the past decade, persistent homology 

has been developed as an efficient computational tool for the characterization and analysis 

of topological features in large data sets.25, 99, 100 Topological persistence over the filtration 

process can be captured continuously over a range of spatial scales in persistent homology 

analysis. Unlike commonly used computational homology which results in truly metric-free 

or coordinate-free representations, persistent homology is able to embed geometric 

information into topological invariants so that the “birth” and “death” of isolated 

components, circles, rings, loops, pockets, voids or cavities at all geometric scales can be 

monitored by topological measurements. Compared with traditional computational 

topology12, 44, 91 and/or computational homology, persistent homology inherently has an 

additional dimension, namely, the filtration parameter, which can be utilized to embed some 

crucial geometry or quantitative information into the topological invariants. Barcode 

representation has been proposed for the visualization of topological persistence,32 in which 

various horizontal line segments or bars are utilized to represent the persistence of the 

topological features. Efficient computational algorithms such as, the pairing algorithm,22, 25 

Smith normal form26, 99 and Morse reduction,37, 38, 72 have been proposed to track 

topological variations during the filtration process.7, 22, 23, 26, 50 Some of these persistent 

homology algorithms have been implemented in many software packages, namely 

Perseus,50, 52 JavaPlex71 and Dionysus. In the past few years, persistent homology has been 
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applied to image analysis,5, 9, 58, 67 image retrieval,30 chaotic dynamics verification,42, 49 

sensor networks,66 complex networks,40, 45 data analysis,8, 47, 53, 60, 73 computer vision,67 

shape recognition24 and computational biology.21, 31, 43, 86

Nevertheless, the applications of persistent homology have been essentially limited to 

qualitative classification and analysis. Indeed, there is little literature about the use of 

persistent homology as a quantitative tool, i.e., for mathematical modeling and physical 

prediction, to our best knowledge. Recently, we have introduced molecular topological 

fingerprints (MTFs) as a quantitative tool for revealing topology-function relationships in 

protein folding,86 modeling and prediction of the stability of proteins86 and nano particles,85 

and resolving ill-posed inverse problems in cryo-electron microscopic (cryo-EM) structure 

determination.88 We have proposed resolution based persistent homology89 and 

multidimensional persistence87 for biomolecules.

In the past few decades, geometric analysis, which combines differential equations and 

differential geometry, has become a popular approach for data analysis, signal and image 

processing, surface generation and computer visualization.27, 33, 48, 56, 64, 65, 69, 93 Geometric 

partial differential equations (PDEs),83 i.e., the Laplace-Beltrami flows, are efficient ap-

paratuses for data analysis and geometric processing in applied mathematics and computer 

science.11, 20, 68 Osher and Sethian55, 65 have devised level set as a computational tool for 

solving geometric PDEs. An alternative approach is to make use of the Euler-Lagrange 

variation to derive a desirable set of geometric PDEs from a functional, such as a Mumford-

Shah functional,51 for image or surface analysis.6, 10, 46, 57, 62, 63 Wei introduced some of the 

first families of high-order geometric PDEs for image analysis in 1998.77 Mathematical 

analysis of high-order geometric PDEs was reported in the literature.34, 35, 41, 90 Geometric 

PDE based high-pass filters was pioneered by Wei and Jia by coupling two nonlinear 

geometric PDEs.79 Recently, this approach has been extended to a more general formalism, 

the PDE transform, for image and surface analysis.74–76, 96

Curvature-controlled PDEs was introduced by Wei and co-workers for the construction of 

biomolecular surfaces in 2005.80 Based on differential geometry, the first variational 

solvent-solute interface: the minimal molecular surface (MMS), was proposed for molecular 

surface representation in 2006.2–4 Since the surface free energy is the product of surface 

tension and surface area, the minimization of the surface free energy leads to the Laplace-

Beltrami operator. One then obtains the Laplace-Beltrami flow by adopting an artificial 

time. The Laplace-Beltrami flow approach has been used to calculate both solvation 

energies and electrostatics of proteins.1, 4, 18 We have proposed potential-driven geometric 

flows, which admit non-curvature-driven terms, for biomolecular surface construction 

subject to potential interactions.1 Our approaches were employed by many others19, 92, 94, 95 

for biomolecular surface and electrostatics/solvation modeling.

The above idea was utilized to construct differential geometry based multiscale models.78 

The essential idea is to use the differential geometry theory of surfaces as a natural means to 

geometrically separate the macroscopic domain of the biomolecule from the microscopic 

domain of the solvent, and to dynamically couple the continuum treatment of the solvent 

from the discrete description of the biomolecule. In the past few years, differential geometry 
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based multiscale models have been implemented for nonpolar solvation analysis,18 full 

solvation analysis,15–17 proton transport,13, 14 ion permeation across membrane channel 

proteins.59, 81, 82, 97, 98 The performance of our methods has been extensively validated with 

experimental data, including solvation energies and current-voltage (I–V) curves.

In this work, the above ideas in variational geometric PDEs and computational topology are 

combined to develop object-oriented persistent homology methods for proactively extracting 

desirable topological traits from biomolecular data. As a general procedure, we construct an 

objective functional to optimize desirable features in data. In our specific example, such an 

optimization is realized through a geometry-embedded filtration process and leads to an 

object-oriented persistent homology method. As a proof of principle, we utilize differential 

geometry theory of surfaces to minimize the surface free energy, which results in an object-

oriented partial differential equation, i.e., the Laplace-Beltrami flow. The evolution of the 

Laplace-Beltrami flow creates a multiscale representation of a nano-bio object, which 

naturally constitutes a filtration and gives rise to a differential geometry based persistent 

homology method. The proposed differential geometry based persistent homology is utilized 

to analyze nano-bio data. The topological invariants of a given nano-bio object are extracted 

from the evolutionary profiles of the Laplace-Beltrami flow. Then topological persistence is 

analyzed to identify the intrinsic topological signature of a given data. Such information is 

further utilized to unveil quantitative topology-function relationships. It is well known that 

geometric PDEs can be designed to preserve certain geometric features in the time 

evolution.77 Specifically, Laplace-Beltrami flow minimizes the mean curvature or surface 

area.4 As a result, topological invariants computed from the geometric PDE based filtration 

enhance the corresponding features. This idea is potentially useful and powerful for 

automatic feature detection and extraction from big data. In particular, the current 

framework can be utilized for analyzing the topological structure of the cubical data, such 

as, cryo-EM density maps, which are of fundamental importance in structure biology.

The rest of this paper is organized as follows. In Section II, we give a brief introduction to 

the theory of Laplace-Beltrami flows for nano-bio systems, such as proteins and carbon 

fullerene molecules. A computational protocol, including numerical implementation, for 

integrating the evolution of Laplace-Beltrami flow is described in detail. In Section III, a 

brief review of homology and persistent homology theories are given in the cubical complex 

setting. The construction of object-oriented persistent homology is discussed in Section IV. 

As a specific example of this new method, we propose the Laplace-Beltrami flow based 

persistent homology. The validity of the proposed method is carefully carried out in Section 

V using carbon fullerene data. The consistence with radius based filtration and the numerical 

convergence are verified. The proposed method is applied to the analysis of proteins and 

fullerene molecules in Section VI. We consider the topological persistence of a beta barrel, 

which has an intrinsic ring structure. We demonstrate that the specific intrinsic feature of the 

beta barrel, namely the inner ring structure, is enhanced during the time evolution. Whereas, 

some undesirable topological feature due to the Vietoris-Rips complex can be effectively 

suppressed in the present approach. We further apply this differential geometry based 

persistent homology to the quantitative prediction of fullerene isomer total curvature 

energies. This paper ends with a conclusion.
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II Laplace-Beltrami flows for nano-bio systems

In this section, we provide a brief summary of differential geometry based Laplace-Beltrami 

flows. To this end, we discuss differentiable manifolds and curvature, followed by the 

construction of Laplace-Beltrami operator using an objective functional. The 

implementation of the Laplace-Beltrami flow for biomolecular data is described in detail.

II.A Differentiable manifolds and curvatures

Consider an immersion of an open set U ⊂ ℝ3 to ℝ4 via a differentiable hypersurface 

element f : U → ℝ4. Here the hypersurface element is a vector-valued C2 function: f(u) = 

(f1(u), f2(u), f3(u), f4(u)) and u = (u1, u2, u3) ∈ U.

Tangent vectors (or directional vectors) of f are . The Jacobi matrix of the mapping f 
is given by Df = (X1, X2, X3).

As a symmetric and positive definite metric tensor of f, the first fundamental form is I := 

(gij) = (Df)T · (Df), where matrix elements are gij =< Xi, Xj >. Here <, > is the Euclidean 

inner product in ℝ4, i, j = 1, 2, 3.

The Gauss map ν : U → S3 is defined by the unit normal vector ν(u)

(1)

where the cross product in ℝ4 is a generalization of that in ℝ3. Here ⊥uf is the normal space 

of f at point p = f(u). It is easy to verify that

Locally at p, the normal vector ν is perpendicular to the tangent hyperplane Tuf:

Note that Tuf ⊕ ⊥uf = Tf(u)ℝ
3, which is the tangent space at point p. The second 

fundamental form is of crucial importance and can be defined by means of the normal vector 

ν and tangent vector Xi,

(2)

The definition of the second fundamental form can be systematically generalized by using 

the Weingarten map, a shape operator of f:
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Since ℒ is a self-adjoint operator, we have

(3)

The third and fourth fundamental forms are conveniently given in terms of the shape 

operator

(4)

(5)

The Laplace-Beltrami can be calculated by

(6)

where we use the Einstein summation convention, and (gij) denotes the inverse matrix (gij) = 

(gij)−1.

Principal curvatures κi (i = 1, 2, 3) are defined as the eigenvalues of Weingarten map ℒ with 

eigenvectors being unit tangent vectors. Appropriate organization of the principal curvatures 

gives rise to the first three Laplace-Beltramis

(7)

(8)

(9)

where  is the Laplace-Beltrami and K3 = K = Det(ℒ) is the Gauss-

Kronecker curvature or Gauss curvature. The local property of the Gauss curvature is used 

to classify the point as elliptic, hyperbolic, parabolic, etc. The combination of Gauss and 

Laplace-Beltramis has been used to characterize protein surfaces and predict protein-ligand 

binding sites.28, 84 It follows from the Cayley-Hamilton theorem that the first four 

fundamental forms satisfy: IV – 3HIII + 3K2II – KI = 0.

We discuss an iterative procedure to generate a family of hypersurfaces that have vanishing 

Laplace-Beltrami except at the boundary. Let U ⊂ ℝ3 be an open set with a compact closure 
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Ū and boundary ∂U. Consider a family of hypersurface elements fε : Ū → ℝ4 (ε > 0) 

generated by deforming f in the normal direction with speed of the Laplace-Beltrami:

(10)

Equation (10) is iterated until H = 0 in all of U, except at boundary ∂U, which can be a set of 

atomic surface constraints. This procedure leads to a minimal hypersurface.4

As discussed above, the hypersurface element is a vector-valued function which is 

cumbersome in biophysical application. We therefore construct a scalar hypersurface 

function by setting f(u) = (x, y, z, S), where S(x, y, z) is a hypersurface function of interest. 

The first fundamental form can be explicitly computed

(11)

Matrix tensor (gij) has the inverse

(12)

where  is the Gram determinant. From Eq. (1), the normal 

vector is given by

(13)

The second fundamental form, the Hessian matrix of S, is obtained as

(14)

Using Eq. (6), one can obtain the Laplace-Beltrami

(15)

II.B Laplace-Beltrami flow

II.B.1 Laplace-Beltrami equation—According to differential geometry theory of 

surfaces, a surface area is minimized if and only if the Laplace-Beltrami is zero everywhere 
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on the surface except for a set of boundary points. Following Eq. (10), we construct a family 

of hypersurfaces Sε as

(16)

The iteration of the hypersurface function so that Se(x, y, z) → S(x, y, z), i.e., , 

leads to the desired minimal hypersurface function S.

A more general procedure is to construct an objective functional, i.e., a surface free energy 

functional, for the molecular data of interest

(17)

where ∂Ω is the boundary of the molecule, γ is the surface tension and . 

Using the Euler Lagrange equation, we minimize the surface free energy density 

with respect to S

(18)

Since γ ≠ 0 in general, we arrive at the vanishing of the mean curvature operator 

 again.

From the computational point of view, the iteration process can be efficiently achieved by 

introducing an artificial time variable t so as to change the elliptic PDE into a parabolic one. 

Specifically, instead of iterating Eq. (16), we set the hypersurface function S to be S(x, y, z, 

t) in the computational perspective and construct the following Laplace-Beltrami equation

(19)

A similar approach is to set  as |∇S|, leading to another popular form of the Laplace-

Beltrami equation4

(20)

These equations were employed to construct minimal molecular surfaces of proteins and 

other biomolecules.1, 4, 15, 84

II.B.2 Initial value and boundary condition for nano-bio Laplace-Beltrami flows
—In the present work, we generate a family of hypersurface functions indexed by the 
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artificial time t by using Laplace-Beltrami equataion (19). We call this family of 

hypersurface functions the profiles of Laplace-Beltrami flows. Note that we do not seek the 

minimal molecular surfaces described in our earlier work.1, 4, 15, 84 Instead, we look for a 

geometric PDE or Laplace-Beltrami flow representation of nano-bio molecules. To apply 

this approach to proteins and nano-molecules, we start with a given set of N atomic 

coordinates {ri}, (i = 1, 2, ⋯, N), which can be obtained from the Protein Data Bank (PDB). 

We define a set by , where Bε(ri, ri) is the ball centered at ri of radius ri = 

εrvdW. Here ε > 0 is a parameter and rvdW is the van der Waals radius of the ith atom.

The initial value of the hypersurface S can be chosen in a number of ways. One choice is

(21)

Remark 1: The initial radii of an atom εri in a molecule can be adjusted by parameter ε. For 

different applications, one can choose different initial radii. In our earlier work, ε > 1 was 

used.1, 4, 15, 84 In the present work, we set .

Alternatively, another choice is a heaviside function θ

(22)

where μ0 is a cutoff value and μ(r) is a rigidity function54

(23)

Here wi is a weight associated with the atomic type of the ith atom and is set to 1 in the 

present work. Additionally, correlation functions Φ(|r – ri|; ηi) are monotonically decreasing 

radial basis functions, such as generalized exponential functions or generalized Lorentz 

functions.54 The scaling function ηi can be set to ηi ∝ rvdW and should be systematically 

adjusted for different choices of Φ.

Obviously, the other choice of the initial value is to directly use the rigidity function

(24)

The initial values given by Eq. (22) are smoother than those given by Eq. (21). However, 

Eq. (24) provides the smoothest initial values. The results reported in this work are based on 

Eq. (21). However, our tests indicate that other two types of initial values work well.

Both the Dirichlet boundary (S(r, t) = 0 ∀r ∈ ∂U) or the Neumann boundary ( 

can be employed. The solution of Eq. (19) gives a family of hypersurface functions S(x, y, z, 
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t). We extract desirable nano-bio information from S by using two different procedures. One 

is to take an iso-surface for a given iso-value, i.e., S = c, which can be extracted by the level 

set method. For our applications, the iso-value of the hypersurface for carbon fullerene 

molecules is set to be c = 0.1, and that for protein molecules is set c = 0.01. The other 

approach is to evaluate the structural information contained in S(x, y, z, T) at a given time T 

≫ 0. We typically set T to be a quite large value so the hypersurface profile is well 

developed. However, to avoid boundary effect, T should not be too large.

III Cubical complex based homology and persistent homology

In this section, a brief review of the homology and persistent homology in the cubical 

complex setting is provided. The reader is referred to the literature42, 70 for more 

comprehensive discussion and treatment.

III.A Geometric building blocks

The cubes are the basic geometric building blocks of the homology and persistent homology 

theory in the cubical complex setting. First of all, we need to introduce a few basic concepts 

about cubes.

• An elementary non-degenerate interval is a closed interval I ⊂ ℝ of the form I = 

[m, m + 1] (or I = [m] for simplicity) for some integer m. An elementary degenerate 

interval is a point I = [m, m].

• An elementary cube Q or d cube is a d-product of elementary intervals, i.e.,

where each Ii, i = 1, 2, …, d is an elementary interval of non-degenerate or 

degenerate type, and d is called the embedding number of Q, denoted as emb Q = d. 

The dimension of Q, denoted by dim Q, is defined to be the number of non-

degenerate components in Q, and k denotes the set of all k dimensional 

elementary cubes. Let  be the set of all elementary cubes, and d be 

the set of all elementary cubes in ℝd.

• The set of k-dim cubes with embedding number d is . Obviously, if 

 and , then .

With the above building blocks, we say that set X ⊂ ℝd is cubical if X can be written as a 

finite union of elementary cubes.

For a given cubical set X ⊂ ℝd, we define the following cubical set (X) and k-cube set 

k(X) of X:
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The elements of k(X) are called the k-cubes of X.

III.B Algebraic building blocks

With the above geometric building blocks, we define the algebraic operations on the 

building blocks, following the line of Kaczynski et al.42

First, each elementary k-cube  is associated with an algebraic object Q̂ which is 

called an elementary k-chain of ℝd. The set of all elementary k-chains of ℝd is

and the set of all elementary chains of ℝd is

Second, addition operation and boundary operator are defined for the further algebraic 

treatment of the cubical complex.

III.B.1 Addition operation—To define the addition operation on elementary chains, first, 

the following k-chains, i.e., a linear combination of k-chain,

is allowed for any given finite collection { }, and, if all the ai = 0, then we 

set c = 0.

The set of all the above k-chains is denoted by . The addition of two k-chains is defined 

by:

It is easy to check for ∀ k-chains , there is an inverse element 

 with the property c + (−c) = 0, note the addition operation is commutable, 

thus  is an abelian group.
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III.B.2 Boundary operator—Before we define the boundary operator, the scalar product 

and cubical product operation on the k-chain group  need to be defined.

Definition III.1: Let , where  and . The scalar product 

of chains c1 and c2 is defined as:42

Definition III.2: For all elementary cubes  and , the cubical product 

between P, Q is defined to be:42

And for all chains  and , the cubical product is:

and .

For the cubical product, the following important factorization property holds:42

Lemma III.1: For ∀Q̂ ∈ 𝒦d̂ with d > 1. There exists unique elementary cubical chains Î and 

P ̂ with emb I = 1 and emb P = d − 1, such that Q̂ = Î * P̂.

With the above preparation, the boundary operation can be defined inductively in the 

following way.42

Definition III.3: For k ∈ ℤ, the cubical boundary operator

is a homomorphism of abelian groups, defined for an elementary chain  by 

induction on the embedding number n as follows:

• For n = 1, Q is an elementary interval, i.e., Q = [m] or Q = [m, m + 1] for some m 

∈ ℤ, and one defines:
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• For n > 1, let I = I1(Q) and P = I2(Q) × ⋯ × In(Q) so that Q̂ = Î * P̂, then one 

defines:

By linearity this can be extended to chains, i.e., if , then:

Theorem III.1: The boundary operator operator satisfies:

which is consistent with the simplicial complex setting.

Now, for a given cubical set X ⊂ ℝd, let {K̂
k(X) := Q̂|Q ∈ k(X)} and let Ck(X) be the 

subgroup of  generated by the elements of K̂
k(X), which is called the set of k-chains of X. 

The boundary operator maps Ck(X) to a subset of Ck−1(X), thus one can restrict the boundary 

operator to the cubical set X.

Definition III.4: The boundary operator for the cubical set X is defined to be:

obtained by restricting  to Ck(X).

Definition III.5: The cubical chain complex for the cubical set X ⊂ ℝd is

where Ck(X) are the groups of cubical k-chains generated by k(X) and  is the cubical 

boundary operator restricted to X.

III.C Homology of cubical sets—As discussed above, one has the corresponding k-

chains group Ck(X), for a given cubical set X, now one can define two subgroups of Ck(X).

• k-cycle group .
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• k-boundary group .

Following from ∂k ∘ ∂k−1 = 0 ∀k > 1, one has Bk(X) ⊂ Zk(X). Therefore, one has the 

following homology group.42

Definition III.6: The kth homology group of the cubical set X is the quotient group:

The kth Betti number is defined as the rank of the kth homology group,

From the topological point of view, Hk(X) describes k-dimensional holes of X, e.g., H0(X) 

measures connected components, H1(X) measures loops and H2(X) measures voids. In other 

words, β0 is the number of connected components, β1 is the number of loops, β2 is the 

number of voids, and so on. We are particularly interested in behavior of β0, β1 and β2 for 

proteins and fullerenes.

III.D Persistent homology of cubical complex—Homology gives a characterization 

of a manifold, while it does not distinguish different holes in the same dimension. To 

measure these topological features, the concept of persistent homology was proposed based 

on the simplicial complex. Persistence measures the birth, death and the lifetime of the 

topological attributes during the filtration process.

To define the persistent homology, first we need a filtration, i.e., a complex K together with 

a nested sequence of sub-complexes {Ki}0≤i≤n, such that

Each sub-complex Ki in the filtration has an associated chain group , cycle group  and 

boundary group , and thus one has the following definition.70

Definition III.7: The p-persistent kth homology group of Ki is:

Here  captures the topological features of the filtrated complex that persists for at least p 

steps in the filtration.
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IV Object-oriented persistent homology

In this section, we propose a general procedure for constructing object-oriented persistent 

homology. We start with an objective functional for the data of interest. By the optimization 

of the objective functional, we arrive at one or a set of object-oriented operators, or object-

oriented PDEs. The number of operators depends on how the objective functional is 

parametrized. The action of the objective operators leads to a series of objective-embedded 

representations of the original data. We then utilize such objective-embedded 

representations for the filtration of original data to construct object-oriented persistent 

homology. We illustrate this procedure by a flow chart in Fig. 1

As discussed in Section II.B, the minimization of the surface free energy functional gives 

rise to the mean curvature operator for the biomolecular data. We formulate the Laplace-

Beltrami flow to computationally minimize the surface free energy. The integration of the 

Laplace-Beltrami flow leads to a family of minimal surface representations of the original 

data. In this part, we construct a filtration {KT}T≥1 of the data of interest based on the 

Laplace-Beltrami flow. Here, T = 0, 1, 2, ···, are the time steps. For a given initial structure, 

we embed it in an enlarged bounding box, which defines the whole computational domain. 

Then a uniform Cartesian mesh is employed for our computation:

The initial values of the grid points that are inside the initial geometric object is set to be 1, 

and 0 for grid points outside the object.

Under the geometric flow action, the following vertex set can be constructed at each 

evolution time:

where S0 is the threshold value for extracting the iso-surface.

Furthermore, let ṼT : = ∪0≤t≤T Vt, which is the set of vertices that have value greater than the 

threshold value at time T.

The Tth component of the filtration is set to be:

Based on the above construction, it is obvious that KT ⊂ KT+1, ∀ T ≥ 0.

Remark 2: Neumann boundary condition is utilized to make the Laplace-Beltrami flow 

computationally well posed. Since the Laplace-Beltrami flow is dispersive, when the 
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evolution time is large enough, the value of S will be less than a given S0 for all the grid 

points. Therefore the evolutionary flow based filtration is upper bounded.

IV.A Laplace-Beltrami flow based persistent homology

IV.B Computing Laplace-Beltrami flow based persistent homology

The object-oriented persistent homology on the cubical complex can be computed by 

existing software packages. In the present work, we utilize Perseus50 for persistent 

homology calculation. The sparse grid data structure is utilized as the input data format for 

the Perseus software in the present work.

Remark 3: Since the Laplace-Beltrami flow minimizes the surface area of the surface 

defined on the initial data, the persistence of topological features associated with minimal 

surfaces is enhanced in the Laplace-Beltrami flow based persistent homology approach.

V Validation

V.A Topological invariant analysis

In this subsection, we examine accuracy and reliability of the proposed geometric flow 

based persistent homology method. To this end, we consider a fullerene molecule, C60, 

which has distinct topological loops, namely pentagon and hexagon loops. The structural 

data of fullerene molecules and isomer total curvature energies36 used in our tests are 

downloaded from the webpage: fullerene-isomers. In these structural data sets, coordinates 

of fullerene carbon atoms and isomer total curvature energies are given. The atoms of all 

these molecules form only two types of polygons, namely, pentagons and hexagons. For the 

fullerene cage composed only of pentagons and hexagons, according to Euler 

Characteristics, the number of pentagons must be 12 and that of hexagons is , where N 

is the number of atoms of the fullerene molecule.

Figure 2 depicts six frames extracted from the solution of the Laplace-Beltrami equation for 

C60 fullerene molecule. Note that the initial setting is a set of balls with half van der Waals 

radii as described in Eq. (21). It is seen that during the time evolution, many pentagonal 

rings disappear followed by the disappearance of hexagonal rings. Table 1 gives a summary 

of topological invariants in these six frames. From this table we notice that pentagons persist 

in the time interval [0, 0.15] and the hexagon persist in the time interval [0, 0.67]. The 

difference of the last two frames is that the second last frame has a cavity, whereas the last 

frame has no cavity.

The evolution of the topological features of carbon fullerene C60 under the geometric flow is 

demonstrated in Fig. 3. As a comparison, we also plot the result generated by using the Rips 

complex. In β0 panels, one sees a long-lasting bar from the present method, while a 

reduction from 60 bars to one bar in the Rips complex representation. This behavior is 

expected because the starting point of the present method is a set of connected balls as 

described above, while Rips complex filtration starts from the zero radius. In the β1 panels, 

there is a good consistency between two approaches. One sees 12 short-lived bars, which 

correspond to 12 pentagonal rings. However, there are only 19 relatively long bars for 20 
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hexagonal rings because one of H1 element can be expressed as the combination of other H1 

basis elements. Finally, in β2 panels, the present method provides a single relatively long-

lived bar for the inner cavity, while the Rips complex filtration gives rise to additional 20 

short-lived bars for 20 hexagons. The disappearance of the short-lived β2 bars in the present 

approach is due to the cubical complex used in our calculation. Short-lived bars are often 

regarded as topological noise in the literature, while used in our models for physical 

modeling.86 However, in the present work, we only need the long-lasting β2 bar for our 

quantitative modeling as discussed in Section VI.B.

Remark 4: The persistent homology derived from the Laplace-Beltrami flow results in 

nonlinear modification of certain topological features. Because the geometric PDE is able to 

preserve certain geometric features,77 the persistence of the corresponding intrinsic topology 

can be amplified. This feature is a fundamental property of the object-oriented persistent 

homology constructed in this work. It is possible to design object-oriented PDEs to 

selectively enhance and/or extract other desirable topological features from big data.

V.B Convergence analysis

Figures 4 and 5 demonstrate the numerical convergence of of proposed Laplace-Beltrami 

flow approach for computing the persistence of β1 invariants. We present the time evolution 

of the persistence of β1 invariants collected over a sufficiently long period at different grid 

sizes. It can be seen that the persistent pattern at grid size 0.25Å is essentially the same as 

that at grid size 0.125Å, which shows the convergence with respect to grid spacing 

variations.

As another validation of the proposed Laplace-Beltrami flow based persistent homology 

method, we examine the numerical convergence of the proposed method. Additionally, we 

demonstrate that topological invariants computed from our Laplace-Beltrami flow method 

converge to the right ones, where we regard the β1 barcodes obtained via the conventional 

Rips complex filtration based on the growth of the radius of the point cloud data as the 

benchmark. To this end, we consider the persistent homology of the two approaches for two 

fullerene structures, namely, C36 and C100. The coordinates of these fullerene structures are 

downloaded from Web fullerene-isomers and are saved. For isomers, the first structure in 

the isomer family is used. These fullerene molecules contain pentagon and hexagon loops, 

which give rise to appropriate β1 bars.

It remains to show that our persistent homology results converge to the right ones. As shown 

in Figures 4 and 5, there are a total of 12 pentagon β1 bars. The numbers of hexagon bars are 

7 and 39, respectively for C36 and C100, as expected. Therefore, the proposed geometric 

flow based filtration captures the intrinsic topological features of fullerenes. Additionally, 

the Rips complex based filtration is employed as a reference with a fine atomic radius 

growth rate of 0.001Å per step. The comparison of topological invariants computed from the 

proposed method and that obtained from the Rips complex is given in Figures 4–5. Clearly, 

persistent patterns obtained by Laplace-Beltrami flow based method capture all topological 

features generated from the Rips complex, which indicates the reliability of the proposed 

method.
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In fact, we have carried out similar tests for many other fullerenes, including C38, C40, C44, 

C52, C84, C86, C90 and C92. Although these results are omitted for simplicity, our findings 

are the same.

The above validations verify that the Laplace-Beltrami flow based filtration in conjugation 

with the cubical complex setting is convergent and accurate. The resulting topological 

invariants are consistent with those obtained with the Rips complex using radius based 

filtration. On the other hand, our results also indicate that the Laplace-Beltrami flow based 

method is very sensitive to grid resolution. Some topological features barely show up at the 

grid size of 0.5Å. Therefore, the grid resolution better than 0.25Å is recommended for nano-

bio data.

VI Application

Having verified the reliability, accuracy and efficiency of the present Laplace-Beltrami flow 

based persistent homology analysis, we utilize it for the study of proteins and nano-material 

in this section.

VI.A Protein structure analysis

VI.A.1 Protein 2GR8—In this subsection, we explore the topological structures and their 

persistence of the protein molecules using the Laplace-Beltrami flow based persistent 

homology. We consider a beta-barrel protein (PDB ID: 2GR8).

Figure 6 shows the initial structure of protein 2GR8 in both secondary structure and atomic 

representations. Clearly, it is a beta barrel with 12 twisted beta strands coiled together in an 

antiparallel fashion to form a cylindrical structure in which the first strand is hydrogen 

bonded to the last. However, inside the beta barrel, there are also three alpha helices as 

shown in the left chart of Fig. 6. The topological structure is complicated due to the presence 

of these alpha helices.

We first consider the geometric evolution of protein 2GR8 under the Laplace-Beltrami flow 

and then compute its homology evolution. Figure 7 depicts some frames generated from the 

time evolution process of the Laplace-Beltrami flow. The first two frames exhibit much 

atomic detail. As time progress, the atomic features disappear while beta strands are clearly 

demonstrated in frames 3–6. In fact, beta strand features diminish at the last two frames and 

the global cylindrical feature dominates. Therefore, the Laplace-Beltrami flow generates a 

multiscale representation of the protein as illustrated in our earlier work.80,84

Table 2 gives the corresponding time evolution of topological invariants of the six frames 

for protein 2GR8. One sees a large number of β1 rings in the first frame. However, there is 

just one ring, in the second frame. The number of cavities reaches the highest values in the 

second frame (among six frames) and gradually reduces to zero. From Table 2, we note that 

there is a ring in Frames 2–5. However, we cannot determine whether it is the same ring or 

not from the classical homology theory. There may be a different ring generated at each of 

Frame 2–5. Persistent homology is designed to reserve this issue. The persistence of the 

topological invariants during the time evolution process is illustrated in Fig. 8. It is 
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confirmed that the ring initially exists and is not generated in intermediate steps of the 

evolution. However, this ring is not a global one because it lasts for a relatively short period 

during the time evolution.

VI.A.2 A beta barrel—We next create a pure beta barrel by removing three alpha helices 

from protein 2GR8, which enables us to observe the beta barrel ring geometry and topology 

clearly. The initial structure of the beta barrel is shown in Fig. 9. The time evolution of the 

beta barrel is illustrated in Fig. 10. Again, one sees atomic details in the first few frames and 

global features in later frames. Obviously, there is a large ring structure in the beta barrel.

Table 3 lists the corresponding topological invariants of six frames for the beta barrel. 

Although the number of β2 varies dramatically, that of β1 does not change over a long time 

period, indicating the global ring structure of the beta barrel.

The persistence of the topological invariants over time evolution process for the beta barrel 

is illustrated in Fig. 11. The β1 panel has a long-lasting bar. A comparison with the time 

scale in the β1 panel of Fig. 8 confirms that the present long-lasting bar corresponds to the 

intrinsic global structure of the beta barrel.

The above results demonstrate that the proposed Laplace-Beltrami flow based persistent 

homology is an efficient tool for analyzing the topological structures of protein molecules.

VI.B Fullerene total curvature energy prediction

Having demonstrated the utility of the proposed Laplace-Beltrami flow based persistent 

homology method for protein characterization, we are interested in the further application of 

this topological tool for quantitative analysis of carbon fullerene molecules. In particular, we 

explore the application of the present persistent homology method to the prediction of the 

total curvature energies of the carbon fullerene isomers. Fullerene molecules admit a large 

number of isomers, especially when the number of atoms is large. Different isomers with the 

same chemical formula have different geometric structures which leads to the variations in 

their total curvature energies. The stability of each given fullerene isomer is determined by 

its total curvature energy. In general, the higher energy isomer is less stable.

We assume that different isomers of a fullerene molecule have the same surface area. This 

assumption is reasonable because all isomers share the same set of atoms and bonds. 

However, these isomers may have different enclosed volumes as some isomers are more 

spherical than others. Those isomers that deviate from the spherical shape must have high 

curvature energies. The more deviation from the sphericity in the structure, the higher 

curvature energy an isomer has. Additionally, by the iso-perimetric inequality we know that 

for a class of isomers of a given surface area, the volume is maximized when the isomer is a 

perfect sphere. For fullerene isomers, more deviation from the sphericity in the structure, the 

earlier in the time evolution the β2 bar dies, which leads to a shorter β2 bar length. Therefore, 

we can establish a relationship between the persistence of β2 invariant and the total curvature 

energy of a fullerene isomer.
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In this work, the persistence or bar length of Betti 2, which essentially measures the size of 

the central cavity, is employed to predict the total curvature energy of carbon fullerene 

isomers. The Laplace-Beltrami flow is discretized with time stepping size 0.001 and grid 

spacing size 0.25. To quantitatively verify our prediction, the least squares method is 

employed to fit our predictions of the total curvature energies with the values provided in the 

web mentioned above. The accuracy of our prediction is evaluated by the correlation 

coefficient (cc)

(25)

where Li represents the bar length of β2 generated by the Laplace-Beltrami flow based 

persistent homology method for the ith fullerene isomer of a given carbon fullerene family, 

L̄ is the average of the bar length of β2 over all the isomers of the fullerene, Ei is the total 

curvature energy of the ith fullerene isomer, Ē is the average of the total curvature energy 

over all the isomers of the fullerene. Note that we only count the β2 bar that is due to the 

central cavity.

We consider a total of ten different fullerene families with more than 500 fullerene isomers 

in this study, where the data are chosen from the following rules:

• For a specific carbon fullerene family, if it has less than or equal to 100 isomers, all 

the data are utilized.

• For a given carbon fullerene family, if there are more than 100 isomers, the first 

100 isomer molecules listed in the web are utilized.

The predicted results and the corresponding total curvature energies are illustrated in Figs. 

12 and 13. Table 4 gives the correlation coefficients and standard deviations of the predicted 

total curvature energies based on the proposed persistent homology theory and the total 

curvature energy data. Our results for ten different fullerene molecules show good 

predictions of our differential geometry based persistent homology model.

To test the reliability and robustness of our method in the isomer total curvature energy 

prediction, we have carried out our analysis with different grid spacing sizes and time 

stepping sizes for 15 C36 isomers. Table 5 lists the lengths of β2 bars obtained with different 

time stepping sizes (Δt) and the total curvature energies of C36 isomers. A uniform spatial 

spacing size of h = 0.25 is used in this test. Similarly, Table 6 gives the lengths of β2 bars 

computed with different grid spacing sizes h and the total curvature energies of C36 isomers. 

A given time stepping size of Δt = 0.0001 is adopted in this validation. Again, we see good 

consistency among our results.

Based on the above spatial and temporal convergent analysis, it is clear that our results are 

robust and reliable. Therefore, the persistence of Betti 2 has a strong correlation with the 

total curvature energies of fullerene isomers. These results demonstrate that the persistence 

of Betti 2 is indeed inversely proportional to the total curvature energies of fullerene 

isomers. Additionally, the proposed Laplace-Beltrami flow based persistent homology 
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approach performs extremely well in quantitative prediction of topology-function 

relationship for fullerene isomers.

VII Conclusion

It is well known that topology typically does not distinguish a doughnut and a mug, which 

implies there is too much reduction in the geometric information. Indeed, topology is seldom 

used for quantitative description and modeling. In contrast, geometry gives rise to very 

detailed models for the physical world. At nano scale and/or atomic scale, geometry based 

models often involve too many degrees of freedom such that their simulations become 

intractable for many real world problems. Persistent homology is a new branch of algebraic 

topology that has recently become quite popular for topological simplifications in scientific 

and engineering applications. Its essential idea is to embed topological invariants in a 

minimal amount of geometric variation, i.e., a filtration parameter. As a result, persistent 

homology bridges the traditional topology and geometry.

In the past, most successful applications of persistent homology have been limited to 

classification and analysis in the literature. Indeed, persistent homology has been rarely 

employed for quantitative prediction. In our recent work,86 we have introduced molecular 

topological fingerprints, which treat all barcodes in an equal footing for data classification 

and analysis. We have also proposed topology-function relationships, which utilize 

persistent homology as an efficient tool for the physical modeling and quantitative 

prediction of biomoelcular systems.

In this work, a general procedure is introduced to construct object-oriented persistent 

homology approaches for the detection, extraction and/or enhancement of desirable 

topological traits in data. Our essential idea is to define an objective functional to optimize 

desirable properties. The optimization leads to a set of operators whose actions enforce the 

objective functional and give rise to a multiscale representation of the original data. When 

such a multiscale representation is utilized for filtration, the resulting object-oriented 

persistent homology automatically detects, extracts and/or amplifies the corresponding 

topological persistence of the data. As a proof of principle, we use the differential geometry 

theory of surfaces to construct a surface energy functional. The optimization of this 

functional leads to the Laplace-Beltrami operator, which is able to provide a geometry-

embedded filtration of the data of interest. The resulting persistent homology enhances the 

corresponding geometric structure in topological persistence. The proposed method is 

intensively validated using benchmark tests and structures with known topological 

properties.

The application of the proposed geometric flow based topological method is considered to 

both the qualitative analysis and quantitative modeling of proteins and carbon fullerene 

molecules. We first employ the present method for the analysis of a beta barrel protein. The 

structure of the beta barrel has a large ring. Topologically, it is interesting to observe a long-

lived Betti-1 bar during the time evolution of the Laplace-Beltrami flow.

Another application of the proposed method is the total curvature energy prediction of 

fullerene isomers. We propose a model to correlate isomer total curvature energy and its 
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structural sphericity. The latter is measured by the length of the Betti 2 bar of the isomer 

central cavity. Essentially, a more distorted isomer has a higher total curvature energy and a 

shorter period of persistence of the central cavity Betti 2 bar. In our quantitative energy 

prediction, we have utilized a total of ten sets of fullerene isomers. Our results indicate that 

both the proposed Laplace-Beltrami flow based persistent homology method and the present 

quantitative model work extremely well. All the correlation coefficients are very high.

The present differential geometry based persistent homology opens a new approach for the 

topological simplification of big data. We expect that other objective functionals can be 

designed and corresponding object-oriented persistent homology methods can be developed 

for specific purposes in data sciences. This approach will also lead to the construction of 

new object-oriented partial differential equations (PDEs), geometric PDEs and topological 

PDEs in the future.
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Appendix

As stated above, all fullerene data are downloaded from a web page: fullerene-isomers. 

However, it is well known that a web page may not exist after certain time. We therefore 

present fullerene isomers and their total curvature energies used in the present work in the 

following tables. The corresponding structure data are available up on request.

Table 7

Fullerene C36 isomers and total curvature energies

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C36(C2)1 25.937 C36(D2)2 29.424 C36(C1)3 24.938 C36(Cs)4 25.524

C36(D2)5 26.013 C36(D2d)6 24.335 C36(C1)7 24.031 C36(Cs)8 24.025

C36(C2v)9 22.965 C36(C2)10 24.152 C36(C2)11 23.469 C36(C2)12 23.027

C36(D3h)13 24.620 C36(D2d)14 22.493 C36(D6h)15 22.688

Table 8

Fullerene C38 isomers and total curvature energies

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C38(C2)1 26.613 C38(D3h)2 27.745 C38(C1)3 25.120 C38(C1)4 26.564

C38(C1)5 24.288 C38(C2)6 25.564 C38(C1)7 25.520 C38(C1)8 24.184

C38(D3)9 25.843 C38(C2)10 23.853 C38(C1)11 24.185 C38(C2v)12 24.665

C38(C2)13 23.440 C38(C1)14 23.111 C38(C2v)15 24.069 C38(C3v)16 22.610

C38(C2)17 22.603
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Table 9

Fullerene C40 isomers and total curvature energies

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C40(D5d)1 30.194 C40(C2)2 27.771 C40(D2)3 29.686 C40(C1)4 26.838

C40(Cs)5 26.233 C40(C1)6 27.587 C40(C1)7 27.587 C40(C2v)8 26.421

C40(C2)9 24.856 C40(C1)10 24.933 C40(C2)11 27.092 C40(C1)12 25.038

C40(Cs)13 24.830 C40(Cs)14 24.165 C40(Cs)15 24.343 C40(C2)16 25.035

C40(C1)17 24.549 C40(C2)18 26.062 C40(C2)19 25.165 C40(C3v)20 24.271

C40(C2)21 24.356 C40(C1)22 24.031 C40(C2)23 25.232 C40(Cs)24 23.522

C40(C2)25 24.377 C40(C1)26 23.301 C40(C2)27 23.805 C40(Cs)28 24.700

C40(C2)29 23.416 C40(C3)30 24.163 C40(Cs)31 23.205 C40(D2)32 25.212

C40(D2h)33 26.042 C40(C1)34 23.946 C40(C2)35 23.560 C40(C2)36 22.994

C40(C2v)37 23.015 C40(D2)38 22.522 C40(D5d)39 23.206 C40(Td)40 23.300

Table 10

Fullerene C44 isomers and total curvature energies

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C44(C2)1 29.456 C44(D2)2 32.322 C44(D3d)3 31.727 C44(C2)4 28.076

C44(C2)5 27.881 C44(C2)6 28.085 C44(C1)7 27.359 C44(C1)8 26.901

C44(C1)9 28.635 C44(C1)10 27.949 C44(Cs)11 27.882 C44(C2)12 27.618

C44(C2v)13 26.848 C44(C2)14 27.270 C44(C1)15 26.036 C44(C1)16 26.020

C44(C1)17 27.492 C44(C1)18 25.806 C44(C1)19 25.968 C44(C2)20 26.256

C44(C1)21 26.389 C44(C1)22 24.685 C44(C1)23 25.012 C44(D2)24 25.872

C44(C1)25 25.218 C44(C1)26 25.950 C44(C1)27 25.505 C44(Cs)28 24.845

C44(C1)29 24.164 C44(C1)30 24.487 C44(C1)31 25.802 C44(C2)32 24.446

C44(Cs)33 25.314 C44(C2)34 27.070 C44(D3)35 31.214 C44(C2)36 24.669

C44(D3h)37 25.905 C44(D3d)38 25.964 C44(C2v)39 24.944 C44(C1)40 24.708

C44(C1)41 25.793 C44(C1)42 24.935 C44(C1)43 25.754 C44(C2)44 25.488

C44(C2)45 25.834 C44(C2)46 26.079 C44(C1)47 24.285 C44(C1)48 25.210

C44(C2)49 24.380 C44(C1)50 24.960 C44(C1)51 24.174 C44(C1)52 23.454

C44(Cs)53 25.790 C44(Cs)54 24.117 C44(C2v)55 23.983 C44(C1)56 24.320

C44(C1)57 23.831 C44(C1)58 24.991 C44(C1)59 23.427 C44(C1)60 24.054

C44(C2)61 24.844 C44(C1)62 24.170 C44(C1)63 24.061 C44(C1)64 24.537

C44(C1)65 24.804 C44(C2)66 26.402 C44(C1)67 23.276 C44(C2)68 23.218

C44(C1)69 22.958 C44(Cs)70 23.619 C44(Cs)71 24.168 C44(D3h)72 22.846

C44(T)73 24.076 C44(C2)74 23.621 C44(D2)75 22.582 C44(C2)76 23.848

C44(C1)77 22.900 C44(C1)78 23.065 C44(C2)79 23.463 C44(D3)80 23.159

C44(C2)81 24.389 C44(S4)82 23.258 C44(D2)83 23.903 C44(Cs)84 24.040

C44(D2)85 25.617 C44(D3d)86 28.214 C44(C2)87 23.220 C44(C1)88 23.049

C44(D2)89 22.513
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Table 11

Fullerene C52 isomers and total curvature energies

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C52(C2)1 32.862 C52(D2)2 35.990 C52(Cs)3 30.452 C52(C1)4 30.393

C52(C2)5 30.646 C52(Cs)6 29.299 C52(C1)7 29.177 C52(C1)8 28.759

C52(C1)9 30.445 C52(C1)10 29.177 C52(C1)11 28.855 C52(C1)12 29.210

C52(C1)13 30.490 C52(C1)14 30.907 C52(C2)15 31.612 C52(C1)16 29.602

C52(C1)17 31.948 C52(C1)18 29.269 C52(C1)19 28.916 C52(C1)20 29.258

C52(C2)21 29.903 C52(C2)22 28.553 C52(C1)23 27.864 C52(C1)24 27.635

C52(C1)25 28.527 C52(C1)26 28.045 C52(C1)27 28.271 C52(C1)28 28.514

C52(C2)29 28.955 C52(C1)30 28.527 C52(C2)31 30.073 C52(C1)32 30.317

C52(C1)33 28.577 C52(C1)34 27.383 C52(C1)35 26.944 C52(C1)36 29.248

C52(C1)37 27.645 C52(Cs)38 29.592 C52(C1)39 27.276 C52(Cs)40 26.724

C52(C1)41 27.721 C52(C1)42 27.676 C52(C2)43 26.717 C52(Cs)44 27.455

C52(C1)45 30.622 C52(C1)46 27.524 C52(C1)47 28.032 C52(C1)48 27.408

C52(C1)49 27.529 C52(C2)50 28.618 C52(C1)51 27.005 C52(C1)52 27.127

C52(C1)53 26.929 C52(C1)54 26.754 C52(C1)55 26.705 C52(C1)56 26.846

C52(C1)57 26.919 C52(D2)58 32.111 C52(C1)59 28.477 C52(C1)60 23.375

C52(C1)61 29.172 C52(C1)62 25.762 C52(C1)63 26.041 C52(C1)64 27.762

C52(C1)65 26.077 C52(Cs)66 25.729 C52(Cs)67 27.443 C52(C1)68 26.383

C52(C1)69 27.389 C52(C1)70 25.753 C52(C1)71 27.405 C52(C1)72 26.846

C52(C1)73 26.857 C52(C1)74 25.468 C52(C1)75 26.336 C52(C1)76 27.267

C52(C1)77 29.103 C52(C1)78 25.652 C52(C1)79 27.349 C52(C1)80 25.765

C52(C1)81 26.857 C52(C2)82 26.813 C52(C2)83 28.263 C52(C2)84 25.361

C52(C1)85 27.436 C52(C1)86 25.508 C52(C1)87 27.288 C52(C2)88 27.449

C52(C1)89 25.532 C52(C1)90 26.098 C52(C1)91 26.693 C52(Cs)92 25.805

C52(C1)93 26.103 C52(D2d)94 26.864 C52(Cs)95 25.937 C52(C1)96 26.124

C52(C1)97 26.130 C52(C1)98 25.646 C52(C2)99 27.367 C52(C1)100 26.255

Table 12

Fullerene C84 isomers and total curvature energies

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C84(D2)1 24.281 C84(C2)2 23.593 C84(Cs)3 22.389 C84(D2d)4 22.607

C84(D2)5 22.910 C84(C2v)6 22.408 C84(C2v)7 22.270 C84(C2)8 22.167

C84(C2)9 22.124 C84(Cs)10 22.043 C84(C2)11 22.088 C84(C1)12 22.011

C84(C2)13 22.109 C84(Cs)14 22.250 C84(Cs)15 22.012 C84(Cs)16 22.019

C84(C2v)17 22.124 C84(C2v)18 22.159 C84(D3d)19 22.090 C84(Td)20 22.453

C84(D2)21 21.950 C84(D2)22 21.854 C84(D2d)23 21.829 C84(D6h)24 21.990
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Table 13

Fullerene C86 isomers and total curvature energies

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C86(C1)1 23.258 C86(C2)2 23.553 C86(C2)3 23.473 C86(C2)4 22.862

C86(c1)5 22.576 C86(C2)6 22.933 C86(C1)7 22.528 C86(Cs)8 22.562

C86(C2v)9 22.556 C86(C2v)10 22.285 C86(C1)11 22.242 C86(C1)12 22.256

C86(C1)13 22.169 C86(C2)14 22.292 C86(Cs)15 22.178 C86(Cs)16 22.348

C86(C2)17 22.211 C86(C3)18 22.320 C86(D3)19 22.123

Table 14

Fullerene C90 isomers and total curvature energies

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C90(D5h)1 25.081 C90(C2v)2 24.092 C90(C1)3 23.808 C90(C2)4 23.846

C90(Cs)5 23.521 C90(C2)6 23.080 C90(C1)7 22.894 C90(C2)8 23.407

C90(C1)9 22.716 C90(Cs)10 22.612 C90(C1)11 23.094 C90(C2)12 23.120

C90(C2v)13 23.672 C90(C1)14 23.195 C90(C1)15 23.180 C90(C2v)16 23.355

C90(Cs)17 23.147 C90(C2)18 23.023 C90(C2)19 22.687 C90(C1)20 22.625

C90(C1)21 22.561 C90(C1)22 22.695 C90(C2)23 22.569 C90(C1)24 23.020

C90(C2v)25 23.096 C90(C1)26 22.621 C90(C1)27 22.700 C90(C2)28 22.715

C90(C1)29 22.960 C90(C1)30 22.565 C90(C2)31 22.989 C90(C1)32 22.559

C90(Cs)33 23.060 C90(Cs)34 22.737 C90(Cs)35 22.497 C90(C2v)36 22.939

C90(C2)37 22.748 C90(C1)38 22.614 C90(C2v)39 22.742 C90(C2)40 22.227

C90(C2)41 22.190 C90(C2)42 22.222 C90(C2)43 22.177 C90(C2)44 22.443

C90(C2)45 22.174 C90(C2v)46 22.225

Table 15

Fullerene C92 isomers and total curvature energies

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C92(D2)1 25.193 C92(C1)2 23.825 C92(C2)3 24.330 C92(C2)4 23.995

C92(Cs)5 23.695 C92(Cs)6 23.638 C92(C2)7 23.316 C92(C1)8 23.051

C92(C2)9 23.351 C92(C1)10 22.769 C92(C1)11 22.837 C92(C1)12 22.888

C92(C1)13 23.188 C92(Cs)14 22.969 C92(Cs)15 22.675 C92(Cs)16 22.913

C92(C2)17 23.831 C92(C1)18 23.325 C92(C2)19 23.336 C92(C1)20 23.448

C92(C2)21 24.031 C92(C2v)22 24.207 C92(C2)23 23.276 C92(Cs)24 22.850

C92(C2)25 23.895 C92(C2)26 23.023 C92(C2)27 23.263 C92(D3)28 23.566

C92(D2h)29 24.174 C92(C1)30 22.941 C92(C2)31 22.878 C92(C1)32 22.733

C92(C1)33 22.922 C92(C2)34 22.706 C92(C2v)35 23.380 C92(C2)36 22.903

C92(C1)37 23.056 C92(C1)38 22.529 C92(C1)39 22.930 C92(C1)40 22.894

C92(C1)41 25.793 C92(C1)42 24.935 C92(C1)43 25.754 C92(C2)92 25.488
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Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C92(C2)45 25.834 C92(C2)46 26.079 C92(C1)47 24.285 C92(C1)48 25.210

C92(C2)49 24.380 C92(C1)50 24.960 C92(C1)51 24.174 C92(C1)52 23.454

C92(Cs)53 25.790 C92(Cs)54 24.117 C92(C2v)55 23.983 C92(C1)56 24.320

C92(C1)57 23.831 C92(C1)58 24.991 C92(C1)59 23.427 C92(C1)60 24.054

C92(C2)61 24.892 C92(C1)62 24.170 C92(C1)63 24.061 C92(C1)64 24.537

C92(C1)65 24.804 C92(C2)66 26.402 C92(C1)67 23.276 C92(C2)68 23.218

C92(C1)69 22.958 C92(Cs)70 23.619 C92(Cs)71 24.168 C92(D3h)72 22.846

C92(T)73 24.076 C92(C2)74 23.621 C92(D2)75 22.582 C92(C2)76 23.848

C92(C1)77 22.900 C92(C1)78 23.065 C92(C2)79 23.463 C92(D3)80 23.159

C92(C2)81 24.389 C92(S4)82 23.258 C92(D2)83 23.903 C92(Cs)84 24.040

C92(D2)85 25.617 C92(D3d)86 28.214

Table 16

Fullerene C100 isomers and total curvature energies

Name Energy (eV) Name Energy (eV) Name Energy (eV) Name Energy (eV)

C100(C2)1 32.862 C100(D2)2 35.990 C100(Cs)3 30.4100 C100(C1)4 30.393

C100(C2)5 30.646 C100(Cs)6 29.299 C100(C1)7 29.177 C100(C1)8 28.759

C100(C1)9 30.445 C100(C1)10 29.177 C100(C1)11 28.855 C100(C1)12 29.210

C100(C1)13 30.490 C100(C1)14 30.907 C100(C2)15 31.612 C100(C1)16 29.602

C100(C1)17 31.948 C100(C1)18 29.269 C100(C1)19 28.916 C100(C1)20 29.258

C100(C2)21 29.903 C100(C2)22 28.553 C100(C1)23 27.864 C100(C1)24 27.635

C100(C1)25 28.1007 C100(C1)26 28.045 C100(C1)27 28.271 C100(C1)28 28.514

C100(C2)29 28.955 C100(C1)30 28.1007 C100(C2)31 30.073 C100(C1)32 30.317

C100(C1)33 28.577 C100(C1)34 27.383 C100(C1)35 26.944 C100(C1)36 29.248

C100(C1)37 27.645 C100(Cs)38 29.592 C100(C1)39 27.276 C100(Cs)40 26.724

C100(C1)41 27.721 C100(C1)42 27.676 C100(C2)43 26.717 C100(Cs)44 27.455

C100(C1)45 30.622 C100(C1)46 27.1004 C100(C1)47 28.032 C100(C1)48 27.408

C100(C1)49 27.1009 C100(C2)50 28.618 C100(C1)51 27.005 C100(C1)52 27.127

C100(C1)53 26.929 C100(C1)54 26.754 C100(C1)55 26.705 C100(C1)56 26.846

C100(C1)57 26.919 C100(D2)58 32.111 C100(C1)59 28.477 C100(C1)60 23.375

C100(C1)61 29.172 C100(C1)62 25.762 C100(C1)63 26.041 C100(C1)64 27.762

C100(C1)65 26.077 C100(Cs)66 25.729 C100(Cs)67 27.443 C100(C1)68 26.383

C100(C1)69 27.389 C100(C1)70 25.753 C100(C1)71 27.405 C100(C1)72 26.846

C100(C1)73 26.857 C100(C1)74 25.468 C100(C1)75 26.336 C100(C1)76 27.267

C100(C1)77 29.103 C100(C1)78 25.6100 C100(C1)79 27.349 C100(C1)80 25.765

C100(C1)81 26.857 C100(C2)82 26.813 C100(C2)83 28.263 C100(C2)84 25.361

C100(C1)85 27.436 C100(C1)86 25.508 C100(C1)87 27.288 C100(C2)88 27.449

C100(C1)89 25.532 C100(C1)90 26.098 C100(C1)91 26.693 C100(Cs)92 25.805

C100(C1)93 26.103 C100(D2d)94 26.864 C100(Cs)95 25.937 C100(C1)96 26.124

C100(C1)97 26.130 C100(C1)98 25.646 C100(C2)99 27.367 C100(C1)100 26.255
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Figure 1. 
A flow chart for the construction of object-oriented persistent homology.
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Figure 2. 
Selected frames of fullerene C60 generated from the time evolution of the Laplace-Beltrami 

flow. Charts from left to right and from top to bottom are frames 1 to 6, respectively. 

According to Table 1, the second last frame has a central cavity while the last frame has no 

void.
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Figure 3. 
Comparison of the topological evolution and persistence of the C60 molecule. Top row: 

Barcodes obtained from the proposed Laplace-Beltrami flow based filtration; Bottom row: 

Barcodes obtained from the Rips complex filtration.
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Figure 4. 
Comparison of the persistence of β1 barcodes obtained from the growth of atomic radius 

filtration and from the geometric flow based filtration for fullerene C36. Top left: Atomic 

radius filtration; Top right: Geometric flow filtration, h = 0.5Å; Bottom left: Geometric flow 

filtration, h = 0.25Å; Bottom right: Geometric flow filtration, h = 0.125Å.

Wang and Wei Page 35

J Comput Phys. Author manuscript; available in PMC 2017 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Comparison of the persistence of β1 barcodes obtained from the growth of atomic radius 

filtration and from the geometric flow based filtration for fullerene C100. Top left: Atomic 

radius filtration; Top right: Geometric flow filtration, h = 0.5Å; Bottom left: Geometric flow 

filtration, h = 0.25Å; Bottom right: Geometric flow filtration, h = 0.125Å.
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Figure 6. 
The initial structure of protein 2GR8. Left chart: Secondary structure representation; Right 

chart: atomic representation. Colors indicate different types of atoms.
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Figure 7. 
Geometric evolution of protein 2GR8 under the Laplace-Beltrami flow. Charts from left to 

right and from top to bottom are frames 1 to 6, respectively.
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Figure 8. 
The time evolution of the topological invariants of protein 2GR8 under the Laplace-Beltrami 

flow.
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Figure 9. 
The initial structure of a beta barrel. Left chart: Secondary structure representation; Right 

chart: atomic representation. Colors indicate different types of atoms.
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Figure 10. 
The geometric evolution of a beta barrel under the Laplace-Beltrami flow. Charts from left 

to right and from top to bottom are frames 1 to 6, respectively.
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Figure 11. 
The evolution of the topological invariants of the beta barrel under the Laplace-Beltrami 

flow.
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Figure 12. 
The comparison of fullerene isomer total curvature energies and persistent homology theory 

predictions.
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Figure 13. 
The comparison of fullerene isomer total curvature energies and persistent homology theory 

predictions
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Table 1

The evolution of the topological features of C60 molecule under the time evolution of the Laplace-Beltrami 

flow.

Frame Time β0 β1 β2

1 0.01 1 31 0

2 0.07 1 30 0

3 0.15 1 19 0

4 0.57 1 18 0

5 0.67 1 0 1

6 2.31 1 0 0
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Table 2

The time evolution of the topological invariants of protein 2GR8 under the Laplace-Beltrami flow.

Frame Time β0 β1 β2

1 0.10 1 263 12

2 0.50 1 1 21

3 1.00 1 1 9

4 1.50 1 1 2

5 1.70 1 1 1

6 1.80 1 0 0
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Table 3

The evolution the topological invariants of the beta barrel under the geometric flow.

Frame Time β0 β1 β2

1 0.01 1 137 0

2 0.10 1 62 4

3 0.15 1 23 2

4 1.00 1 4 0

5 2.00 1 1 0

6 29.0 1 0 0
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Table 4

The correlation coefficients and standard deviations of the predicted values with respect to total curvature 

energy data.

Fullerene molecule Correlation coefficient Standard deviation

C36 0.9668 0.4345

C38 0.9280 0.5263

C40 0.9665 0.4394

C44 0.9485 0.6211

C52 0.9477 0.5721

C84 0.9389 0.1932

C86 0.9737 0.0998

C90 0.8956 0.2469

C92 0.9326 0.2253

C100 0.9253 0.2364
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Table 5

Total curvature energies of C36 isomers vs lengths of the β2 bar (L(β2)) obtained with different time stepping 

sizes.

Total curvature energy (eV) L(β2) (Δt = 0.0001) L(β2) (Δt = 0.0002) L(β2) (Δt = 0.0004) L(β2) (Δt = 0.0008)

22.493 6.435 6.436 6.436 6.440

22.688 6.464 6.464 6.464 6.464

22.965 6.601 6.602 6.600 6.608

23.027 6.422 6.422 6.424 6.432

23.469 6.159 6.560 6.164 6.160

24.025 6.240 6.240 6.240 6.248

24.031 6.122 6.124 6.124 6.128

24.152 6.044 6.044 6.048 6.056

24.335 6.122 6.124 6.124 6.128

24.620 6.292 6.292 6.296 6.304

24.938 5.928 5.930 5.928 5.936

25.514 5.852 5.852 5.856 5.856

25.937 5.608 5.606 5.608 5.608

26.013 5.760 5.760 5.760 5.760

29.424 4.901 4.902 4.904 4.904

Correlation coefficient 0.9668 0.9643 0.9669 0.9659

Standard deviation 0.4345 0.4499 0.4339 0.4401
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Table 6

Total curvature energies of C36 isomers vs lengths of the β2 bar (L(β2)) obtained with different spatial spacing 

sizes

Total curvature energy (eV) L(β2) (h = 0.15) L(β2) (h = 0.20) L(β2) (h = 0.25) L(β2) (h = 0.30)

22.493 6.837 6.704 6.435 6.178

22.688 6.845 6.729 6.464 6.410

22.965 6.771 6.621 6.601 6.149

23.027 6.728 6.541 6.422 6.283

23.469 6.638 6.441 6.159 6.002

24.025 6.564 6.440 6.240 5.986

24.031 6.363 6.039 6.122 5.751

24.152 6.359 6.345 6.044 5.762

24.335 6.363 6.309 6.122 5.751

24.620 6.621 6.459 6.292 5.926

24.938 6.291 6.067 5.928 5.723

25.514 6.260 6.048 5.852 5.740

25.937 6.042 5.936 5.608 5.515

26.013 6.087 5.822 5.760 5.626

29.424 5.385 5.186 4.901 4.918

Correlation coefficient 0.9715 0.9804 0.9668 0.9501

Standard deviation 0.4030 0.3349 0.4345 0.5300
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