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SUMMARY

Embryonic stem cells (ESCs) repress the expression of exogenous proviruses and endogenous 

retroviruses (ERVs). Here, we systematically dissected the cellular factors involved in provirus 

repression in embryonic carcinomas (ECs) and ESCs by a genome-wide siRNA screen. Histone 

chaperones (Chaf1a/b), sumoylation factors (Sumo2/Ube2i/Sae1/Uba2/Senp6), and chromatin 

modifiers (Trim28/Eset/At-f7ip) are key determinants that establish provirus silencing. RNA-seq 

analysis uncovered the roles of Chaf1a/b and sumoylation modifiers in the repression of ERVs. 

ChIP-seq analysis demonstrates direct recruitment of Chaf1a and Sumo2 to ERVs. Chaf1a 

reinforces transcriptional repression via its interaction with members of the NuRD complex 

(Kdm1a, Hdac1/2) and Eset, while Sumo2 orchestrates the provirus repressive function of the 

canonical Zfp809/Trim28/Eset machinery by sumoylation of Trim28. Our study reports a genome-

wide atlas of functional nodes that mediate proviral silencing in ESCs and illuminates the 

comprehensive, interconnected, and multi-layered genetic and epigenetic mechanisms by which 

ESCs repress retroviruses within the genome.

Graphical abstract

Yang et al. Page 2

Cell. Author manuscript; available in PMC 2015 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

The expression of proviruses and endogenous retroviruses (ERVs) is restricted in pluripotent 

stem cells (Feuer et al., 1989; Niwa et al., 1983; Teich et al., 1977). This silencing has likely 

evolved for the protection of germline cells from insertional mutagenesis (Gaudet et al., 

2004; Walsh et al., 1998). The expression and DNA methylation profiles of the Moloney 

murine leukemia virus (MMLV) have been investigated in embryonic carcinoma cells (ECs) 

and embryonic stem cells (ESCs) (Niwa et al., 1983). DNA methylation is thought to repress 

the expression of viral genes in differentiated cells, while repression in pluripotent cells is 

mediated by both cis-acting de novo methylation of the integrated proviruses (Gaudet et al., 

2004; Walsh et al., 1998) and trans-acting transcriptional repressors (Petersen et al., 1991; 

Stewart et al., 1982; Walsh et al., 1998; Wolf et al., 2008a; Wolf and Goff, 2007).

It has been reported that many ERVs affect cellular gene activity by acting as alternative 

promoters or enhancers (Peaston et al., 2004). For example, MERVL is transiently activated 

during the mouse two-cell (2C) stage, regulating the expression of 2C-specific genes 

(Macfarlan et al., 2012). ERVs may also function in the reprogramming of somatic cells into 

induced pluripotent stem cells (iPSCs). Specific ERVs are re-activated during the 

reprogramming process, while other classes of ERVs have to be silenced to attain complete 

reprogramming (Friedli et al., 2014; Wissing et al., 2012). Together, these studies suggest 

that proviral silencing is a characteristic of the pluripotent state, and the precise expression 

of ERVs have critical roles during embryogenesis and development.

Various studies have implicated diverse epigenetic mechanisms in the silencing of 

retroviruses and ERVs. Repression is thought to be dependent on a conserved sequence 

element termed the primer binding site (PBS). Factors such as Zfp809, Trim28, and Eset are 

responsible for mediating the H3K9me3 repressive silencing mechanism (Friedli et al., 

2014; Rowe et al., 2010; Wolf and Goff, 2007, 2009; Wolf et al., 2008b). Eset was shown to 

be involved in the repression of retroviruses and subfamilies of ERVs, predominantly of 
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class I and II ERVs (Karimi et al., 2011; Matsui et al., 2010). More recently, viral-silencing 

factors such as the zinc finger protein Yin yang 1 (Yy1), Erb3 binding protein 1 (Ebp1), and 

the polycomb repressive complex 2 (PRC2) catalytic subunit Ezh2 (Schlesinger et al., 2013; 

Schlesinger and Goff, 2013; Wang et al., 2014) have been described. Other studies reporting 

the role of host factors governing ERVs in model organisms, such as Saccharomyces 

cerevisiae (Maxwell and Curcio, 2007) have also provided critical evolutionary insight into 

the dynamics of retroviral regulation.

Despite many efforts to identify the factors involved, many components of the epigenetic 

machinery required for stable silencing of proviruses and ERVs remains poorly 

characterized. To advance our understanding, we developed a powerful high-throughput 

screening approach based on a provirus MMLV-Gfp reporter (Schlesinger et al., 2013) and 

genome-wide small interfering RNA (siRNA) knockdown. Our screen identified 303 

determinants of viral silencing in mouse ESCs with high confidence and provides a genome-

wide functional interrogation of determinants mediating proviral silencing in pluripotent 

embryonic stem cells.

RESULTS

Unbiased Genome-wide siRNA Screen for Determinants of Proviral Silencing in Embryonic 
Carcinoma Cells

To define the factors involved in the silencing process, we developed a high-throughput 

screening approach based on a provirus MMLV-Gfp reporter and siRNA knockdown in F9 

ECs (Figure 1A). F9 cells were infected with the MMLV-Gfp virus and then reverse 

transfected with siRNA in 384-well plates. Expression of Gfp on day 4 post-infection 

indicated retrovirus activation.

We first confirmed the sensitivity of the reporter assay via knockdown of canonical 

repressive genes Trim28 and Eset. Consistently, imaging, and fluorescence-activated cell 

sorting (FACS) analysis showed that knockdown of both factors dramatically relieved the 

repression of retroviral Gfp (Figures S1A and S1B). We next carried out a pilot screen on 

the kinome siRNA library in F9 cells, using non-targeting (siNT) Trim28 and Eset siRNAs 

as controls. The kinome library screen was analyzed by Z-prime score (Figures S1C–S1F). 

From the screen, we identified both known (Trim28 and Cdk9) and undetermined factors 

(Chuk, Epha4, Csnk1e, Sgpp1, and Npp4a) responsible for retrovirus silencing (Figure 

S1G). Cdk9 was previously reported to interact with HIV-1 Tat protein and regulate HIV-1 

transcription (Kao et al., 1987).

Next, we carried out a whole genome siRNA screen targeting 20,000 genes in F9 cells 

(Figure 1A). Candidates that caused excessive cell death upon siRNA knockdown were 

excluded using a stringent nuclei number cut-off threshold. Based on the normalized Gfp 

signal cut-off value, which short-listed factors that had values larger than 2 SDs from the 

mean of the negative controls (Figure 1B), 650 factors were short-listed (Table S1). Among 

the hits are factors previously implicated in retroviral silencing process, such as Eset, 

Zfp809, Yy1, and Trim28. In addition, new candidates identified include Ube2i, Pcna, 

Hist1h3c, Mphosph8, Adcy6, Sh3bp1, and Thyn1 (Figure 1C).
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To validate the genome-wide siRNA screen, we performed secondary siRNA screens 

utilizing the MMLV-Gfp reporter and an independent MMLV-mCherry reporter. We 

observed strong correlation between the two reporters (Figure 1D). To minimize possible 

non-specific effects from the pooled siRNA, we designed two pairs of short hairpin RNAs 

(shRNAs) for 31 candidate genes and three non-candidate genes. shRNA validation was 

performed in F9 cells, followed by FACS analysis of Gfp expression. shRNA knockdown 

efficiencies were confirmed by qPCR (Figure S1H) and western blot analysis for selected 

genes (Figure S1I). Notably, we observed robust Gfp reactivation for the majority of top hits 

(Figure 1E). From the results of secondary siRNA and shRNA screens, we focused on the 

top 303 hits that were highly corroborative with the primary screen and are considered high 

confidence candidates.

Network Analysis of the Candidates Reveals Multiple Interacting Pathways Involved in 
Proviral Silencing

We performed Gene Ontology (GO), KEGG, and Interpro analysis (Huang et al., 2009) on 

the top 303 hits and elucidated 148 statistically enriched biological processes and pathways, 

including chromatin modification and organization, protein sumoylation and 

phosphorylation, regulation of transcription, DNA replication, DNA repair, and methylation 

(Figure S2A; Table S2). Protein-protein interaction analysis of the high confidence hits 

demonstrates tight and dense interaction between the candidate proteins (Figure 2A). In 

addition, cellular component analysis revealed that the candidates were widely distributed in 

different sub-cellular fractions (Figures 2A and S2B). These suggest that proviral silencing 

is controlled by multilayered machineries involving components of different cellular 

pathways and with varied cellular localization.

Candidate Genes Are Potent Repressors of Provirus Expression in Embryonic Stem Cells

We analyzed the expression profiles of the candidate genes in over 100 cell lines using the 

cTen database (Shoemaker et al., 2012). The majority of candidate genes are highly 

expressed in embryonic stem cell lines and are low in other tissue-specific cell lines (Figure 

S2C). The expression of selected candidates was further tested in the mouse ESC lines E14 

and D3, mouse EC lines F9 and P19, as well as in differentiated mouse embryo fibroblasts 

(MEFs). Consistent with cTen enrichment scores, qPCR analyses showed embryonal and 

stem cell-specific expression of the candidates (Figure S2D).

To further interrogate the function of our candidate hits, we performed network analysis of 

the hits based on their tiered ranking. We observed greater interactions among our top 50 

candidates, although the lower ranked hits also exhibited specific interactions indicative of 

their biological significances (Figure 2B). Among the top 20 hits are the histone chaperones 

(Chaf1a/b), sumoylation modification genes (Ube2i, Sumo2, Uba2, Sae1, and Senp6), and 

chromatin-bound factors (Eset, Atf7ip, Zfp809, Trim28). To test the functional specificity of 

these strong candidates in mESCs, we conducted siRNA and shRNA knockdowns in two 

mESC lines E14 and D3 and in two differentiated cell types, 3T3 and MEFs. The results of 

the Gfp reporter rescue assay from mESC lines corroborate well with the primary screen 

done in F9 cells (Figures 2C, 2D, and S2E). In contrast, MMLV-driven expression of Gfp or 
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mCherry was high in 3T3 and MEFs at the outset and knockdown of candidate genes did not 

result in perturbations of the reporter signal in these cell lines (Figures 2E and S2F).

To further assess the ESC specificity of our candidates, we differentiated E14 and D3 cells 

via embryoid body (EB) formation and neural differentiation (Ying et al., 2003). The 

differentiated cells lost their ESC-specific morphologies and pluripotency markers and 

expressed high levels of differentiation genes (Figures 2F and S2G). Consistent with a 

previous report, the MMLV virus remain silenced in differentiated ESCs (Niwa et al., 1983). 

None of the candidate gene knockdowns in the differentiated cells could rescue MMLV-Gfp 

reporter expression (Figures 2G and S2H), suggesting that alternative or additional silencing 

pathways are active in these cells. Relative copy number of integrated reporters in E14 and 

the differentiated cells was indistinguishable, ruling out the possibility of reduced viral 

integration in the latter (Figures S2I and S2J). In addition, knockdown of the top hits did not 

reduce provirus integration efficiency in E14 cells (Figure S2K). Of note, we observed no 

significant change in Gfp signal driven by an integrated non-LTR reporter (PiggyBac-CAG-

Gfp) upon knockdown of the top hits (Figures S2L and S2M). This strongly suggests that the 

mode of proviral regulation by the factors is transcriptional or epigenetic.

Chaf1a/b and Sumoylation Modification Complex Play Critical Roles in Regulating ERVs

To evaluate the roles of Chaf1a/b and the sumoylation factors in ERV regulation, we 

measured ERV expression by qPCR upon depletion of the candidates. Consistent with a 

previous study, Trim28 knockdown elicited reactivation of IAP elements in ESCs (Figure 

S3A) (Rowe et al., 2010). Intriguingly, we found up-regulation of class I (GLN), class II 

(MMERVK10c), and class III (MERVL) elements following depletion of the factors from 

the Caf1 complex, sumoylation complex, and Atf7ip (Figure S3A). Notably, Northern blot 

assays confirmed increased transcription of MERVL, but not of IAP and MusD elements in 

Chaf1a/b depleted E14 cells (Figure S3C). Meanwhile, knockdown of selected weaker 

candidates also showed consistent de-repression of MERVL but not of the other ERVs 

(Figure S3B).

To further delineate the regulatory roles of the candidates on ERVs, we performed genome-

wide RNA sequencing (RNA-seq) of Chaf1a/b-, Sumo2-, Sae1-, Ube2i-, Ube2-, Senp6-, 

Trim28-, Eset-, and Atf7ip-depleted cells. Transcriptomic analyses revealed significant de-

repression of several families of ERVs upon depletion of each factor (Figure 3A; Table S3). 

In contrast to their effects on global gene expression (Figure S3D), the majority of the ERV 

targets are upregulated upon shRNA knockdown (Figure 3B). Together, these suggest an 

ERV-specific repressive function of the candidates.

Next, we evaluated the ERV classes regulated by the candidates. Chaf1a/b depletion resulted 

in the de-repression of large numbers of Class III ERVs, while the sumoylation and 

canonical factors regulated more Class II ERVs (Figure 3C). Cluster analysis detected strong 

correlation of ERV regulation within the Chaf1a/b, sumoylation factors, and the chromatin 

binding factors Trim28, Atf7ip, and Eset (Figure 3D), whereas the analysis of global gene 

expression displayed a different pattern (Figure S3E).
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Remarkably, Trim28 shares significant similarity with both the Chaf1a/b and sumoylation 

factors in their ERV regulation (Figure 3D), suggesting overlapping mechanisms. ERVs 

controlled by Atf7ip overlapped extensively with the ones regulated by Trim28 or Eset 

(Figure S3F), indicating that Atf7ip may be integral to the canonical Krab-Zfp/Trim28/Eset 

machinery. Atf7ip was shown to be a co-factor of Eset that helps in facilitating the 

conversion of H3K9me2 to H3K9me3 (De Graeve et al., 2000; Wang et al., 2003). 

Furthermore, the ERVs regulated by Chaf1a overlaps significantly with the ones regulated 

by Chaf1b (Figures 3D, 3E and 3G), but differ significantly from those controlled by Sumo2 

(Figures 3F and 3H). One key feature of the cluster of sumoylation genes is the strong 

correlation between the factors in the specific control of their ERV targets as shown by the 

tight pairwise correlation (Figure 3E). This suggests a coordinated mechanism involving 

multiple members of the same sumoylation pathway. Interestingly, most ERVs regulated by 

Sae1 and Ube2i are part of the larger number of ERVs governed by Sumo2, suggesting a 

central role for Sumo2 in this sumoylation process (Figure 3G). It is noteworthy that many 

ERVs regulated by Sumo2 are similarly governed by Trim28 (Figures 3F and 3H).

To validate the RNA-seq data, we performed qPCR on each class of ERVs (Figure S3G). 

Consistently, RLTR6_Mm/ERV1 was specifically regulated by the sumoylation factors, 

while ET-nERV3-int/ERVK was regulated by Atf7ip, Eset, and Chaf1a, but not by the 

sumoylation factors. MT2_Mm/ERVL was sharply upregulated upon the depletion of 

Chaf1a/b, while expression was less perturbed with depletion of factors from the other two 

clusters. Finally, LTR16D was upregulated upon depletion of genes from all the clusters.

Chaf1a and Sumo2 Are Directly Recruited to ERVs

We wanted to determine whether Chaf1a and Sumo2 are enriched on genomic ERVs. First, 

we introduced 3xHA tags at the 3′end of the endogenous Chaf1a locus in F9 cells using 

CRISPR/Cas technology (Figure S4A). The Chaf1a-3xHA cell line was characterized by 

shRNA knockdown, which led to the specific reduction of Chaf1a-3xHA as measured by 

western blot and immunostaining (Figure S4B). In addition, a Zfp809-3xHA overexpression 

D3 cell line was also established and similarly characterized (Figure S4C). The reliability of 

the Sumo2 antibodies used for chromatin immunoprecipitation (ChIP) was confirmed with 

knockdown of Sumo2 followed by western blot analysis (Figure S4D). To survey the global 

binding profiles of Chaf1a, Sumo2, Trim28, and Zfp809 on genomic ERV loci, we 

performed ChIP sequencing (ChIP-seq). The quality of the ChIP DNA was determined by 

qPCR and motif analysis. Zfp809-3xHA ChIP-qPCR yielded high enrichment at proline 

PBS site (Figures S4E and S4F), and Trim28 ChIP-qPCR showed strong binding at a 

previously reported target gene Ptpn18 (Figure S4G) (Hu et al., 2009).

ChIP-seq analysis revealed that both Chaf1a and Sumo2 are recruited to loci of members of 

several classes of ERVs (Figures 4A and 4B; Table S4). We next asked if the bound ERV 

loci are enriched for any histone modifications. We compared the Chaf1a, Sumo2, Trim28, 

and Zfp809 ChIP-seq data with publicly available datasets of histone marks and Eset ChIP-

seq. Although the majority of ERVs bound by Chaf1a are enriched with H3K9me3 (Figure 

4C), the H3K9me3 is of lower intensity compared to that of Trim28, Zfp809, and Sumo2 

bound ERVs (Figure 4C). Intriguingly, considerable proportions (15%) of Chaf1a bound 
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ERVs are also enriched for the active H3K4me3 modification (Figure 4C). Furthermore, 

Chaf1a-bound ERVs exhibit higher levels of H3K4me2 and H3K9Ac (Figure S4H). This 

raises the possibility that additional accessory proteins may be required for Chaf1a to exert 

the silencing effects. Notably, Sumo2-targeted ERV loci are associated with elevated 

H3K9me3 levels and reduced levels of H3K4me3 modification. This binding pattern 

strongly resembles that of Zfp809 and Trim28 (Figure 4C). In contrast, the non-ERV loci 

bound by Chaf1a were enriched with abundant H3K4me3 marks and had no trace of 

H3K9me3 modifications. On the other hand, Sumo2/Trim28/Zfp809-bound loci exhibit 

detectable but low levels of H3K9me3 (Figure 4D). Collectively, this indicates differing 

modes of regulation by which individual factors control ERVs and non-ERV targets 

(Figures 4C, 4D, and S3C).

To determine the action of Chaf1a and Sumo2, we represented ERV loci bound by these 

factors in Venn diagrams. We found that Trim28 binds 56% of Chaf1a-bound sites, while 

57% of Chaf1a ERVs are also targets of Sumo2 (Figure 4E). Moreover, only 31% of Chaf1a 

ERV loci are enriched for Zfp809 (Figure S4I). In contrast, 77% of Trim28 targets and 73% 

of Eset-bound ERVs are accompanied by enrichment of Sumo2 (Figures 4E and S4I). When 

we extend the analysis to three factors, we observed that more than 80% of Chaf1a/Trim28 

and Chaf1a/Eset common targets have Sumo2 binding (Figure 4F). These observations 

strongly suggest a possible role of Sumo2 in Trim28/Eset ERV regulation. The co-regulation 

of Chaf1a and Sumo2 with the canonical Zfp809/Trim28/Eset machinery seems to be ERV-

specific as very little overlap was observed between the factors on non-ERV loci (Figure 

S4J). Collectively, in terms of ERV regulation, Chaf1a binding is clustered away from the 

Sumo/Zfp809/Trim28/Eset axis (Figures 4G, 4H, and S4K). This is remarkably similar to 

the pattern observed from the RNA-seq data (Figure 3D). Overall, our ChIP data provides 

the first biochemical demonstration that a histone chaperone and a sumoylation modification 

protein can exert direct regulation of genomic ERVs.

Sumo2 Orchestrates the Viral Silencing Activities of Trim28 through Its Sumoylation 
Modification

Our genome-wide siRNA screen identified Sumo2, and not Sumo1 or Sumo3, to have a 

distinct role in proviral silencing (Figures S5A–S5C). The global RNA-seq and ChIP-seq 

data further suggest that Sumo2 may repress proviruses and ERVs through modulation of 

the Trim28/Eset machinery (Figure 5A). To test this possibility, we first performed Sumo2 

ChIP-qPCR and identified its binding on the proviral LTR. Importantly, when Trim28 was 

knocked-down, the level of Sumo2 binding on both proviral elements and most of the ERVs 

tested was drastically reduced (Figures 5B and 5C). In contrast, enrichment of Sumo2 was 

not affected by Chaf1a knockdown (Figures S5D and S5E). Furthermore, the removal of 

Sumo2 abolished the binding of Trim28 at the LTR (Figure 5D).

To interrogate whether Sumo2 directly targets Trim28 for sumoylation, we studied well 

characterized 3xFlag-Sumo2 E14 cells generated using CRISPR/Cas technology (Figures 

S5F–S5I). Notably, we identified Trim28 in the pull-down of sumoylated proteins (Figure 

5E).
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Venn diagram analysis of ChIP-seq data indicates that ~90% of Sumo2/Trim28-bound ERV 

sites are marked with H3K9me3 modifications (Figure 5F). Trim28 is known to mediate the 

recruitment of Eset, which in turn deposits the repressive H3K9me3 mark at the proviral 

LTR (Matsui et al., 2010). Consistently, Sumo2 knockdown resulted in concomitant 

reduction in H3K9me3 marks and elevation of H3K4me3 modifications at the proviral 

elements and ERVs to levels that are comparable with that seen upon Trim28 knockdown 

(Figures 5G–5I).

Chaf1a Has Differential Regulatory Roles on Class I, II, and III ERVs

Venn diagram analysis on ERVs bound by Chaf1a, Trim28, and those associated with the 

H3K9me3 modification revealed that about 64% of ERVs co-bound by Chaf1a and Trim28 

are enriched with H3K9me3 (Figure 6A). In comparison, only 23% of Chaf1a/Trim28 

bound non-ERV loci are marked with H3K9me3 (Figure S6A). This concurs with the notion 

that Chaf1a and Trim28 exert ERV-specific repressive functions. In particular, there are 

significant numbers of ERVs co-bound by Chaf1a and Trim28, or exclusively bound by 

Chaf1a that are not marked with H3K9me3, suggesting that Chaf1a may adopt alternative 

repressive mechanisms on these ERVs. To this end, we classified the ERVs into four 

categories, namely, those bound by Chaf1a+Trim28+H3K9me3, Chaf1a+Trim28, Chaf1a 

only, and Trim28 only (Table S5). Interestingly, the Chaf1a only category has the highest 

percentage of class III ERVs (Figure 6B), while the Chaf1a+Trim28+H3K9me3 category 

primarily belong to class I and class II ERVs (Figure 6B). Consequentially, the dot plots 

(Figures 6C and S6B) correlating ERV upregulation and the enrichment of histone marks 

further highlighted the low levels of H3K9me3 on Chaf1a-regulated class III ERVs.

Specific class III ERVs are highly expressed in early embryonic development and 

downregulated at the morula and blastula stages. Histone demethylase Kdm1a (Macfarlan et 

al., 2012) and H3K9 dimethyl transferase G9a are the key epigenetic regulators of these 

ERVs (Leung et al., 2011; Maksakova et al., 2013). It was found that Kdm1a and histone 

deacetylase Hdac1/2 cooperatively contribute to transcriptional silencing (Shi et al., 2004). 

Hdacs have been shown to repress MERVL in concert with Kdm1a in pluripotent stem cells 

(Macfarlan et al., 2011; Reichmann et al., 2012). Interestingly, Kdm1a is one of the 

candidate hits in our siRNA screen (Table S1). To further dissect the mode of ERV 

regulation within each of the four categories, we integrated our Chaf1a and Trim28 ChIP-

seq data with datasets for epigenetic factors, such as Kdm1a and Hdac1/2. Surprisingly, the 

ERVs from the Chaf1a only category display the highest enrichment of Kdm1a and Hdac1/2 

in comparison to the other categories (Figures 6D and 6E). In contrast, the ERVs bound by 

Chaf1a+Trim28+H3K9me3 exhibit low levels of Kdm1a and Hdac1/2 binding (Figures 6D–

6F and S6D). Consistently, the Chaf1a only category is characterized by significantly higher 

levels of H3K4me2, H3K9Ac, and H3K27Ac marks, which are the substrates of Kdm1a and 

Hdacs, respectively (Figures 6D and S6C). We further performed ERV expression analysis 

using a published mESC Kdm1a knockdown RNA-seq dataset (Agarwal et al., 2015). 

Kdm1a knockdown resulted in mostly class I and III ERV upregulation, in a manner similar 

to Chaf1a knockdown (Figure S6E). In terms of ERVs regulated, Kdm1a/Chaf1a 

knockdown has 80% more overlap than Kdm1a/Trim28 knockdown (Figures S6F and S6G). 
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Overall, our data indicates that Chaf1a regulates class I, II, and III ERVs through vastly 

different mechanisms, which may depend on the co-regulators.

Chaf1a Represses Proviruses through Epigenetic Co-factors

Chaf1a is the core component of the chromatin assembling factor complex (Caf1) that also 

includes Rbbp4. Interestingly, only Chaf1a/b exhibited a proviral silencing function, while 

the knockdown of Rbbp4 had no effect (Figures S7A and S7B). Moreover, our siRNA 

screen did not uncover other histone chaperones necessary for retroviral silencing, further 

highlighting the specificity of Chaf1a/b in this process (Figure S7B). To further delineate the 

function of Chaf1a, we performed a pull-down of Flag-tagged Chaf1a followed by stable 

isotope labeling using amino acids (SILAC)-based quantitative mass spectrometry (MS) 

analysis (Figure 7A). The complete list of Chaf1a-interacting proteins includes several 

known and unknown factors (Figure 7A; Table S6). Chaf1a has previously been shown to 

interact with chromatin modifying factors (Quivy et al., 2004; Sarraf and Stancheva, 2004). 

Indeed, we identified several epigenetic modifiers that appeared in both the Chaf1a MS and 

genome-wide siRNA screen list, such as Kdm1a, Smarcc1, and Eset. Using co-

immunoprecipitation (coIP), we confirmed the interaction of Chaf1a with histone 

methyltransferase Eset, histone de-methylase Kdm1a, deacetylase Hdac2, and histone 

chaperones Chaf1b (Figures 7B–7D, S7C, and S7D).

To investigate the direct effects of Chaf1a at provirus loci, we used the Chaf1a-3xHA 

CRISPR F9 cell line for ChIP-qPCR analysis. We observed direct localization of Chaf1a to 

the proviral LTR elements (Figure 7E), which was further confirmed by Chaf1a-V5 ChIP 

(Figure S7E). To address the relationship between Chaf1a and Trim28, we performed ChIP 

on Trim28 upon Chaf1a knockdown. The binding of Trim28 was significantly abolished by 

the knockdown of Trim28 itself, whereas Chaf1a-knockdown elicited no effect (Figure S7F). 

This suggests that Trim28 recruitment to the provirus is independent of Chaf1a. Moreover, 

we did not detect any change in Chaf1a enrichment upon Sumo2 depletion (Figure S7G).

To understand the mechanisms by which Chaf1a silences the newly introduced proviruses, 

we performed ChIP on the Chaf1a interacting histone modifiers Kdm1a and Hdac2. To our 

surprise, both Kdm1a and Hdac2 were enriched at the proviral LTR (Figures 7F and 7G). In 

addition, consistent with the siRNA screen, shRNA knockdown of Kdm1a was able to 

rescue the expression of MMLV-Gfp reporter (Figure S7H). Treatment of E14 cells using 

the Hdac inhibitor TSA also relieved silencing of the MMLV-Gfp reporter (Figure S7I). 

Next, we tested the dynamic changes of the histone marks on the provirus LTR and ERVs 

upon the depletion of Chaf1a. The enrichment of H3K9me3 on provirus LTR was slightly 

reduced (Figure 7H), while the active H3K4me3 and total H3Ac marks were significantly 

increased (Figures 7I, 7J, and S7J–S7L). Together, our data shows that the repressive 

function of Chaf1a on proviruses is reinforced by the presence of its interacting partners, 

Kdm1a, Hdac2, and Eset.

To test whether Chaf1a can directly bind the viral DNA, we performed electrophoretic 

mobility shift assays (EMSA). We did not observe a specific EMSA band for the Chaf1a 

protein, indicating that Chaf1a does not bind directly to the viral DNA (Figures S7M–S7O). 

The Caf1 complex is thought to assemble histones H3/H4 during DNA replication and repair 

Yang et al. Page 10

Cell. Author manuscript; available in PMC 2015 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Gaillard et al., 1996; Kaufman et al., 1995). Other studies have indicated that histone 

chaperones Asf1a/b work synergistically with Caf1 (Tyler et al., 1999). Our proteomics data 

also identified Asf1a/b as components of the Chaf1a interactome (Figure 7A), and the 

interaction between Chaf1a and Asf1a/b was confirmed by coIP (Figure S7P). To further 

test the function of histone assembly on proviral silencing, we performed single and 

combinatorial shRNA knockdown of Asf1a/b. Surprisingly, combinatorial depletion of 

Asf1a/b induced strong Gfp reactivation to a level comparable to that observed following 

Chaf1a depletion (Figure S7Q), indicating functional redundancy between Asf1a and Asf1b. 

This data substantiates a possible role of histone assembly in the silencing of proviral 

elements and ERVs.

DISCUSSION

Mammalian genomes are cluttered with endogenous viral elements, vestiges of the long 

history of coevolution with retrotransposons that have shaped the genome. Complex 

mechanisms have evolved to manage these elements, restricting their expression and 

reactivation. Silencing of retroviruses also played a fortuitous role in the development of 

somatic cell reprogramming by transcription factors, as extinction of the reprogramming 

transgenes that occurs when fibroblasts revert to a pluripotent state is essential for the 

induced pluripotent stem cells to avoid oncogenic transformation and manifest their multi-

lineage differentiation potential (Takahashi and Yamanaka, 2006). Our work provides 

insights into the role of the histone chaperone Chaf1a and sumoylation factor Sumo2 in the 

silencing of exogenous proviruses and ERVs. It supports a model where Chaf1a promote the 

deposition of histone H3/H4, thus marking the integrated proviral DNA for silencing, 

helping to localize the Chaf1a protein to the viral LTR region (Figure 7K). The binding and 

transcriptional repression of the proviral chromatin by Chaf1a is further reinforced via the 

enzymatic activities of Chaf1a-interacting proteins Eset, Kdm1a, and Hdac1/2, which 

modify proviral chromatin with the repressive histone mark H3K9me3 and reduce the 

acquisition of activating H3K4me3 and H3Ac marks (Figure 7K). In parallel, Sumo2 is 

required to play critical roles in the canonical Zfp809/Trim28/Eset complex via post-

translational sumoylation of Trim28. Sumoylation enhances the recruitment of Trim28 to the 

proviral DNA, which in turn results in the modification of proviral chromatin with 

repressive histone H3K9me3 marks (Figure 7K). Our unbiased screen for factors involved in 

proviral silencing has thus revealed a complex set of genetic and epigenetic mechanisms by 

which exogenous proviruses and ERVs are transcriptionally silenced in pluripotent stem 

cells.

Cross-Talk between the Sumoylation Pathway and the Canonical Complex

Among the Sumo2-related candidates, Senp6 deconjugates Sumo2 from targeted proteins 

(Mukhopadhyay and Dasso, 2007), while the other factors are involved in covalent 

attachment of Sumo2 to the targeted proteins (Desterro et al., 1999; Geiss-Friedlander and 

Melchior, 2007; Gong et al., 1999; Hay, 2005; Johnson, 2004; Zhao, 2007). As such, it is 

tempting to speculate that the modification of key determinants by sumoylation or de-

sumoylation may affect their capacity to silent the proviruses and ERVs. The cross-talk 

between chromatin modifying complex subunits (such as Trim28, Atf7ip, and Eset) and 
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sumoylation factors can be inferred from the overlap of target ERVs observed, as well as 

their close protein-protein interactions. Importantly, our study clarifies the mechanism by 

which Sumo2 targets the proviral elements and ERVs—through the sumoylation of Trim28. 

Furthermore, Sumo modification on other epigenetic factors may potentially help mediate 

heterochromatin formation. It will be of great interest to determine the proteome-wide set of 

sumoylated proteins in ESCs.

Regulation of Different Classes of ERVs

Our RNA-seq analysis indicates that Chaf1a/b and sumoylation factors regulate different 

families of ERVs. Localization of Chaf1a and Sumo2 at ERV loci was confirmed by ChIP-

seq analysis. It is noteworthy that the pattern of the ERVs regulated by Chaf1a is distinct 

from that of the sumoylation machinery or chromatin-modifying factors (Trim28, Eset, and 

Zfp809). Interestingly, Chaf1a regulates a significant number of ERVs from class III that are 

not marked with H3K9me3, but instead are enriched for H3K4me2 and H3K27Ac. 

Moreover, Chaf1a works with the enzymatic epigenetic modifiers, including Kdm1a and 

Hdac2 at these class III ERVs. In addition, Chaf1a also cooperates with Trim28 to repress 

the ERVs by reinforcing high levels of the H3K9me3 on class I and II ERVs. Thus, our 

study highlights how a chaperone like Chaf1a regulates different classes of ERVs through 

distinct interacting co-factors.

Suppressive Function of Histone Chaperone Chaf1a/b on Newly Integrated Proviruses

Caf1 has been reported to have diverse functions, including epigenetic regulation, DNA 

damage repair, and DNA replication (Green and Almouzni, 2003; Kaufman et al., 1995; 

Poleshko et al., 2010; Shibahara and Stillman, 1999). More recently, Chaf1a was shown to 

be critical for maintaining the heterochromatin state through its interaction with HP1, 

MBD1, and Eset (Murzina et al., 1999; Reese et al., 2003; Sarraf and Stancheva, 2004). In 

fact, protein structure analysis of Chaf1a indicates a PXVXL pentapeptide motif at the N 

terminus, which allows Chaf1a to specifically interact with the HP1 chromo shadow domain 

(Thiru et al., 2004). Stable association of Chaf1a with HP1 proteins may lead to its retention 

in heterochromatin (Murzina et al., 1999). HP1 proteins are “readers” of repressive 

H3K9me3 marks and interact extensively with Eset. Intriguingly, our proteomics identified 

Eset, HP1α, HP1β, and HP1γ among the Chaf1a interactome. Remarkably, only the 

knockdown of Chaf1a/b was capable of rescuing the viral reporter, but not the knockdown 

of Rbbp4 (Figures S7A and S7B). Previous studies suggest that Rbbp4 complexes with 

Chaf1a/b in G1 phase. Notably, the epigenetic modification brought about by Chaf1a 

through HP1 or Caf1/Mbd1/Eset is S-phase-specific (Quivy et al., 2004; Sarraf and 

Stancheva, 2004).

How does a histone chaperone like Chaf1a localize to the proviral LTR and ERVs? Previous 

work has localized histone chaperones such as Hira and Daxx to the genomic sites where 

histones are deposited (Banaszynski et al., 2013; Elsässer et al., 2012). A recent publication 

also described the role of histone variants H3.3 in regulating ERVs (Elsässer et al., 2015). 

Indeed, our Chaf1a ChIP-seq shows the enrichment of Chaf1a at the genomic sites of 

downstream ERV targets. When we knockdown the upstream histone chaperones of Chaf1a 

(Asf1a/b), we observed the abolishment of the viral silencing effect of Chaf1a. Thus, we 
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speculate that its nucleosome assembly function may play a role in localizing Chaf1a to the 

integrated proviruses.

In conclusion, our work reveals the genome-wide compendium of players that mediate 

proviral silencing in mouse ESCs. Multiple pathways and multi-layered machineries are 

employed by pluripotent embryonic stem cells to maintain the silencing of proviruses and 

ERVs. Further studies aimed at dissecting the intricate mechanisms by which the various 

factors act will help fill the remaining gap in our understanding of proviral repression.

EXPERIMENTAL PROCEDURES

Genome-wide siRNA Screen

F9 cells were seeded at 6 × 105/well in 6-well tissue culture plates. Twelve hours later, 

MMLV virus was added into the wells with 8 mg/ml polybrene (107689, Sigma). Eight 

hours later, F9 cells were trypsinized into single cells and seeded onto individual well of 

384-well plates (REF 781091, Greiner) that were pre-printed with Mouse siGENOME 

SMARTpool library (G-015000, Thermo Scientific Dharmacon) and contain DharmaFECT 

1 (Thermo Scientific). Four days later, cells were fixed with 4% paraformaldehyde and cell 

nuclei were stained with Hoechst 33342 (Invitrogen). Images were acquired using the 

ImageXpress Ultra Confocal High Content Screening System (Molecular Devices). Gfp 

signal was quantified by the MetaXpress software (Molecular Devices). Both the siRNA 

screens were carried out in duplicates. The average of the duplicate Gfp signal was 

calculated by normalizing to both positive and negative controls using ScreenSifter software 

(Kumar et al., 2013). A cut-off threshold was set at value >2 SD from mean of negative 

controls, above which siRNA of 650 candidate genes significantly increase Gfp expression 

level. Based on the secondary screening, 303 high-confidence hits with Gfp signal 

(CtrlNorm value = (X − Avg(xcn))/(Avg(xcp) − Avg(xcn)) cut off above 0.45 were selected.

RNA-Sequencing

Total RNA was extracted as described in the Supplemental Experimental Procedures. DNA 

contamination was removed using a QIAGEN RNeasy Kit. The RNA samples were subject 

to mRNA selection, fragmentation, cDNA synthesis, and library preparation using a TruSeq 

RNA Sample Prep Kit (RS-122-2001, Illumina). Library quality was analyzed on a 

Bioanalyzer. High-throughput sequencing was performed on the Genome Analyzer IIx 

(Illumina).

ChIP and ChIP-Seq Assay

Chromatin was prepared according to the methods provided in the Supplemental 

Experimental Procedures. Chromatin extracts were immunoprecipitated using H3K4me3 

(Abcam), H3Ac (Abcam), H3K9me3 (Abcam), Eset (Abcam), Trim28 (Bethyl), Sumo2 

(Abcam), and HA (Santa Cruz) antibodies. Input and immunoprecipitation samples were 

analyzed by qPCR. All primers used are listed in Table S7. ChIP-seq libraries were prepared 

according to manufacturer’s instructions (Illumina). High-throughput sequencing was 

performed on a Genome Analyzer IIx (Illumina).
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Bioinformatics Analysis

See detailed information in the Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are grateful to Yang Lin for helpful discussion. We thank Wong Chee Wai for technical assistance. H.L. is 
supported by Mayo Clinic Center for Individualized Medicine. S.P.G. is supported by NIH grant R01 CA30488. Y.-
H.L. is supported by the A*Star Investigatorship research award. We are grateful to the Biomedical Research 
Council, Agency for Science, Technology and Research, Singapore for research funding.

References

Agarwal S, Macfarlan TS, Sartor MA, Iwase S. Sequencing of first-strand cDNA library reveals full-
length transcriptomes. Nat Commun. 2015; 6:6002. [PubMed: 25607527] 

Banaszynski LA, Wen D, Dewell S, Whitcomb SJ, Lin M, Diaz N, Elsässer SJ, Chapgier A, Goldberg 
AD, Canaani E, et al. Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at 
developmental loci in ES cells. Cell. 2013; 155:107–120. [PubMed: 24074864] 

De Graeve F, Bahr A, Chatton B, Kedinger C. A murine ATFa-associated factor with transcriptional 
repressing activity. Oncogene. 2000; 19:1807–1819. [PubMed: 10777215] 

Desterro JM, Rodriguez MS, Kemp GD, Hay RT. Identification of the enzyme required for activation 
of the small ubiquitin-like protein SUMO-1. J Biol Chem. 1999; 274:10618–10624. [PubMed: 
10187858] 

Elsässer SJ, Huang H, Lewis PW, Chin JW, Allis CD, Patel DJ. DAXX envelops a histone H3.3-H4 
dimer for H3.3-specific recognition. Nature. 2012; 491:560–565. [PubMed: 23075851] 

Elsässer SJ, Noh KM, Diaz N, Allis CD, Banaszynski LA. Histone H3.3 is required for endogenous 
retroviral element silencing in embryonic stem cells. Nature. 2015; 522:240–244. [PubMed: 
25938714] 

Feuer G, Taketo M, Hanecak RC, Fan H. Two blocks in Moloney murine leukemia virus expression in 
undifferentiated F9 embryonal carcinoma cells as determined by transient expression assays. J 
Virol. 1989; 63:2317–2324. [PubMed: 2704078] 

Friedli M, Turelli P, Kapopoulou A, Rauwel B, Castro-Díaz N, Rowe HM, Ecco G, Unzu C, Planet E, 
Lombardo A, et al. Loss of transcriptional control over endogenous retroelements during 
reprogramming to pluripotency. Genome Res. 2014; 24:1251–1259. [PubMed: 24879558] 

Gaillard PH, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G. Chromatin assembly 
coupled to DNA repair: a new role for chromatin assembly factor I. Cell. 1996; 86:887–896. 
[PubMed: 8808624] 

Gaudet F, Rideout WM 3rd, Meissner A, Dausman J, Leonhardt H, Jaenisch R. Dnmt1 expression in 
pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol Cell Biol. 
2004; 24:1640–1648. [PubMed: 14749379] 

Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007; 
8:947–956. [PubMed: 18000527] 

Gong L, Li B, Millas S, Yeh ET. Molecular cloning and characterization of human AOS1 and UBA2, 
components of the sentrin-activating enzyme complex. FEBS Lett. 1999; 448:185–189. [PubMed: 
10217437] 

Green CM, Almouzni G. Local action of the chromatin assembly factor CAF-1 at sites of nucleotide 
excision repair in vivo. EMBO J. 2003; 22:5163–5174. [PubMed: 14517254] 

Hay RT. SUMO: a history of modification. Mol Cell. 2005; 18:1–12. [PubMed: 15808504] 

Yang et al. Page 14

Cell. Author manuscript; available in PMC 2015 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ. A genome-wide RNAi screen identifies a new 
transcriptional module required for self-renewal. Genes Dev. 2009; 23:837–848. [PubMed: 
19339689] 

Huang, da W.; Sherman, BT.; Lempicki, RA. Bioinformatics enrichment tools: paths toward the 
comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37:1–13. 
[PubMed: 19033363] 

Johnson ES. Protein modification by SUMO. Annu Rev Biochem. 2004; 73:355–382. [PubMed: 
15189146] 

Kao SY, Calman AF, Luciw PA, Peterlin BM. Anti-termination of transcription within the long 
terminal repeat of HIV-1 by tat gene product. Nature. 1987; 330:489–493. [PubMed: 2825027] 

Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, Mager DL, Jones S, 
Hirst M, Lorincz MC. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct 
sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell. 2011; 8:676–687. 
[PubMed: 21624812] 

Kaufman PD, Kobayashi R, Kessler N, Stillman B. The p150 and p60 subunits of chromatin assembly 
factor I: a molecular link between newly synthesized histones and DNA replication. Cell. 1995; 
81:1105–1114. [PubMed: 7600578] 

Kumar P, Goh G, Wongphayak S, Moreau D, Bard F. Screen-Sifter: analysis and visualization of 
RNAi screening data. BMC Bioinformatics. 2013; 14:290. [PubMed: 24088301] 

Leung DC, Dong KB, Maksakova IA, Goyal P, Appanah R, Lee S, Tachibana M, Shinkai Y, Lehnertz 
B, Mager DL, et al. Lysine methyltransferase G9a is required for de novo DNA methylation and 
the establishment, but not the maintenance, of proviral silencing. Proc Natl Acad Sci USA. 2011; 
108:5718–5723. [PubMed: 21427230] 

Macfarlan TS, Gifford WD, Agarwal S, Driscoll S, Lettieri K, Wang J, Andrews SE, Franco L, 
Rosenfeld MG, Ren B, Pfaff SL. Endogenous retroviruses and neighboring genes are coordinately 
repressed by LSD1/KDM1A. Genes Dev. 2011; 25:594–607. [PubMed: 21357675] 

Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth A, Singer O, Trono 
D, Pfaff SL. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature. 
2012; 487:57–63. [PubMed: 22722858] 

Maksakova IA, Thompson PJ, Goyal P, Jones SJ, Singh PB, Karimi MM, Lorincz MC. Distinct roles 
of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in 
mouse ES cells. Epigenetics Chromatin. 2013; 6:15. [PubMed: 23735015] 

Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, 
Shinkai Y. Proviral silencing in embryonic stem cells requires the histone methyltransferase 
ESET. Nature. 2010; 464:927–931. [PubMed: 20164836] 

Maxwell PH, Curcio MJ. Host factors that control long terminal repeat retrotransposons in 
Saccharomyces cerevisiae: implications for regulation of mammalian retroviruses. Eukaryot Cell. 
2007; 6:1069–1080. [PubMed: 17496126] 

Mukhopadhyay D, Dasso M. Modification in reverse: the SUMO proteases. Trends Biochem Sci. 
2007; 32:286–295. [PubMed: 17499995] 

Murzina N, Verreault A, Laue E, Stillman B. Heterochromatin dynamics in mouse cells: interaction 
between chromatin assembly factor 1 and HP1 proteins. Mol Cell. 1999; 4:529–540. [PubMed: 
10549285] 

Niwa O, Yokota Y, Ishida H, Sugahara T. Independent mechanisms involved in suppression of the 
Moloney leukemia virus genome during differentiation of murine teratocarcinoma cells. Cell. 
1983; 32:1105–1113. [PubMed: 6188535] 

Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB. 
Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell. 
2004; 7:597–606. [PubMed: 15469847] 

Petersen R, Kempler G, Barklis E. A stem cell-specific silencer in the primer-binding site of a 
retrovirus. Mol Cell Biol. 1991; 11:1214–1221. [PubMed: 1996087] 

Poleshko A, Einarson MB, Shalginskikh N, Zhang R, Adams PD, Skalka AM, Katz RA. Identification 
of a functional network of human epigenetic silencing factors. J Biol Chem. 2010; 285:422–433. 
[PubMed: 19880521] 

Yang et al. Page 15

Cell. Author manuscript; available in PMC 2015 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Quivy JP, Roche D, Kirschner D, Tagami H, Nakatani Y, Almouzni G. A CAF-1 dependent pool of 
HP1 during heterochromatin duplication. EMBO J. 2004; 23:3516–3526. [PubMed: 15306854] 

Reese BE, Bachman KE, Baylin SB, Rountree MR. The methyl-CpG binding protein MBD1 interacts 
with the p150 subunit of chromatin assembly factor 1. Mol Cell Biol. 2003; 23:3226–3236. 
[PubMed: 12697822] 

Reichmann J, Crichton JH, Madej MJ, Taggart M, Gautier P, Garcia-Perez JL, Meehan RR, Adams IR. 
Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of 
retrotransposon expression in mouse embryonic stem cells. PLoS Comput Biol. 2012; 8:e1002486. 
[PubMed: 22570599] 

Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, Maillard PV, Layard-
Liesching H, Verp S, Marquis J, et al. KAP1 controls endogenous retroviruses in embryonic stem 
cells. Nature. 2010; 463:237–240. [PubMed: 20075919] 

Sarraf SA, Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 
9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell. 2004; 15:595–605. 
[PubMed: 15327775] 

Schlesinger S, Goff SP. Silencing of proviruses in embryonic cells: efficiency, stability and chromatin 
modifications. EMBO Rep. 2013; 14:73–79. [PubMed: 23154467] 

Schlesinger S, Lee AH, Wang GZ, Green L, Goff SP. Proviral silencing in embryonic cells is regulated 
by Yin Yang 1. Cell Rep. 2013; 4:50–58. [PubMed: 23810560] 

Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone 
demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004; 119:941–953. 
[PubMed: 15620353] 

Shibahara K, Stillman B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled 
inheritance of chromatin. Cell. 1999; 96:575–585. [PubMed: 10052459] 

Shoemaker JE, Lopes TJ, Ghosh S, Matsuoka Y, Kawaoka Y, Kitano H. CTen: a web-based platform 
for identifying enriched cell types from heterogeneous microarray data. BMC Genomics. 2012; 
13:460. [PubMed: 22953731] 

Stewart CL, Stuhlmann H, Jähner D, Jaenisch R. De novo methylation, expression, and infectivity of 
retroviral genomes introduced into embryonal carcinoma cells. Proc Natl Acad Sci USA. 1982; 
79:4098–4102. [PubMed: 6955793] 

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult 
fibroblast cultures by defined factors. Cell. 2006; 126:663–676. [PubMed: 16904174] 

Teich NM, Weiss RA, Martin GR, Lowy DR. Virus infection of murine teratocarcinoma stem cell 
lines. Cell. 1977; 12:973–982. [PubMed: 202395] 

Thiru A, Nietlispach D, Mott HR, Okuwaki M, Lyon D, Nielsen PR, Hirshberg M, Verreault A, 
Murzina NV, Laue ED. Structural basis of HP1/PXVXL motif peptide interactions and HP1 
localisation to heterochromatin. EMBO J. 2004; 23:489–499. [PubMed: 14765118] 

Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT. The RCAF complex 
mediates chromatin assembly during DNA replication and repair. Nature. 1999; 402:555–560. 
[PubMed: 10591219] 

Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by 
cytosine methylation. Nat Genet. 1998; 20:116–117. [PubMed: 9771701] 

Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y. 
mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause 
transcriptional repression. Mol Cell. 2003; 12:475–487. [PubMed: 14536086] 

Wang GZ, Wolf D, Goff SP. EBP1, a novel host factor involved in primer binding site-dependent 
restriction of moloney murine leukemia virus in embryonic cells. J Virol. 2014; 88:1825–1829. 
[PubMed: 24227866] 

Wissing S, Muñoz-Lopez M, Macia A, Yang Z, Montano M, Collins W, Garcia-Perez JL, Moran JV, 
Greene WC. Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. 
Hum Mol Genet. 2012; 21:208–218. [PubMed: 21989055] 

Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in 
embryonic cells. Cell. 2007; 131:46–57. [PubMed: 17923087] 

Yang et al. Page 16

Cell. Author manuscript; available in PMC 2015 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wolf D, Goff SP. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature. 2009; 
458:1201–1204. [PubMed: 19270682] 

Wolf D, Cammas F, Losson R, Goff SP. Primer binding site-dependent restriction of murine leukemia 
virus requires HP1 binding by TRIM28. J Virol. 2008a; 82:4675–4679. [PubMed: 18287239] 

Wolf D, Hug K, Goff SP. TRIM28 mediates primer binding site-targeted silencing of Lys1,2 tRNA-
utilizing retroviruses in embryonic cells. Proc Natl Acad Sci USA. 2008b; 105:12521–12526. 
[PubMed: 18713861] 

Ying QL, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into 
neuroectodermal precursors in adherent monoculture. Nat Biotechnol. 2003; 21:183–186. 
[PubMed: 12524553] 

Zhao J. Sumoylation regulates diverse biological processes. Cell Mol Life Sci. 2007; 64:3017–3033. 
[PubMed: 17763827] 

Yang et al. Page 17

Cell. Author manuscript; available in PMC 2015 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Genome-wide siRNA screen identifies key determinants for proviral silencing in 

ESCs

• Histone chaperones, sumoylation factors, and chromatin modifiers can repress 

ERVs

• Sumo2 orchestrates viral silencing through sumoylation modification of Trim28

• Chaf1a regulates provirus and ERVs via its interaction with Eset, Kdm1a, and 

Hdac1/2
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Figure 1. Genome-wide siRNA Screen for Regulators of Proviral Silencing in Mouse F9 ECs
(A) Schematic of the proviral MMLV-Gfp reporter assay. The map of the proviral reporter is 

shown (upper panel). LTR (black) indicates the long terminal repeats, while PBS (blue) 

represents the primer binding site. F9 cells were infected with the reporter virus and 

subjected to reverse transfection with the siRNA library in 384-well plates. A representative 

image for Gfp fluorescence (green) and nuclear Hoechst 33342 staining (blue) in a 384-well 

plate is shown. In each 384-well plate, non-targeting siRNA control (siNT) and positive 

control siRNA against Trim28 and Eset (siTrim28 and siEset) were added.
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(B) Dot plot for genome-wide siRNA screen. A cut-off threshold was set at 0.37 (dotted 

line). Candidate genes above the threshold showed significant Gfp reactivation.

(C) Representative images of Gfp rescue for selected hits from the genome-wide screen. Gfp 

(green) and Hoechst 33342 staining of the nucleus (blue) are shown.

(D) Secondary siRNA screen for 74 genes. Results for reactivation of proviral Gfp or 

mCherry reporters are shown as heatmaps. Intensity of green or red color represents the 

level of reactivation of Gfp and mCherry reporters respectively. See Supplemental 

Experimental Procedures for details on the gene selection criteria and experimental design.

(E) Validation of candidate genes using shRNA knockdown. Gfp signal was detected by 

FACS. The percentage of Gfp activation is shown on the y axis. Values are mean ± SEM 

from independent replicate experiments.

See also Figure S1 and Table S1.

Yang et al. Page 20

Cell. Author manuscript; available in PMC 2015 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Bioinformatics Analyses for the Genome-wide siRNA Screen and the ESC Specificity of 
the Candidate Genes
(A) Interactome analysis. Cellular localization of the hits is indicated.

(B) Interactions observed in hits of different ranking tiers. Localization of hits is indicated as 

in (A). P values and number of interactions are indicated.

(C and D) Validation of MMLV-Gfp rescue by siRNA knockdown of the top candidates in 

D3 and E14 ESCs. Non-targeting siRNA (siNT) and siRNA targeting non-hits (Dmnt1, 

Ehmt2, Senp7) were selected as controls. (C) Representative images of Gfp rescue by siRNA 
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knockdown of the indicated hits. Gfp (green) and Hoechst 33342 nucleus staining (blue) are 

shown. (D) Bar chart graphs for Gfp activation. Relative Gfp signal is shown on the y axis. 

Values are mean ± SEM from independent replicate experiments.

(E) Representative images of MMLV-mCherry and MMLV-Gfp rescue by siRNA 

knockdown of selected top hits in MEF and 3T3 cells. mCherry (red), Gfp (green) and 

Hoechst 33342 nucleus staining (blue) are shown.

(F) Representative images for Oct4 and Nestin staining on E14 cells (upper panel) and E14 

ESCs derived differentiated neural cells (lower panel).

(G) MMLV-Gfp rescue in E14-derived neural cells by siRNA knockdown of selected top 

hits. Relative Gfp signal is shown on the y axis. Values are mean ± SEM from independent 

replicate experiments.

See also Figure S2 and Table S2.
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Figure 3. Histone Modifiers and Sumoylation Factors Regulate ERVs in Mouse Embryonic Stem 
Cells
(A) Frequency histogram of gene expression from RNA-seq data after Chaf1a, Sumo2, 

Trim28, or Eset depletion in E14 cells. Log2 fold change of expression levels is shown on 

the x axis. The number of genes at a given expression level is shown on the y axis.

(B) Percentage stacked columns indicating the up or downregulation of ERVs upon the 

depletion of the indicated factors.

(C) Percentage stacked columns indicating the classes of upregulated ERVs upon the 

depletion of the indicated factors.
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(D) Clustering analysis of the indicated RNA-Seq libraries based on differential ERV 

expression. Heatmap color intensity signifies the correlation strength between 0 (red-high 

similarity) to 0.8 (yellow-high difference).

(E and F) Genome-wide de-regulation of ERVs in E14 cells after depletion of the indicated 

genes. RNA-seq data for RNAi samples and the shVector control were used to calculate the 

Log2 fold change values. Red dots indicate the elements with significantly increased 

expression.

(G and H) Venn diagrams demonstrating the number of commonly and differentially 

upregulated ERVs among the depletion of indicated factors.

See also Figure S3 and Table S3.
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Figure 4. Direct Recruitment of Chaf1a and Sumo2 to Genomic ERVs
(A) Heatmap indicating the recruitment of Sumo2, Trim28, Zfp809, and Chaf1a on the 

indicated ERVs of different classes (I–III) and Line/Sine elements (LS). ChIP-seq was 

performed for the indicated factors, Smad3 is used as a control. Red indicates binding 

whereas black indicates the absence of binding.

(B) Heatmaps of Chaf1a enrichment at the genomic regions flanking MER67C and 

MMERVK10c-int (left panels) and Sumo2 enrichment at the genomic regions flanking 

RLTR6 and ETnERV3-int (right panels).
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(C) Heatmaps of histone modifications at the genomic regions of the ERV loci bound by 

Chaf1a, Sumo2, Trim28, and Zfp809. The heatmaps are clustered according to the 

enrichment profile of H3K4me3.

(D) Enrichment of several histone marks at the genomic regions of the non-ERV loci that 

are bound by indicated factors. The reads in the heatmaps are clustered according to the 

enrichment profile of H3K4me3.

(E and F) Venn diagrams demonstrating the number of commonly and uniquely-bound ERV 

loci among the indicated factors. Percentage values indicate uniquely bound sites.

(G) UCSC genome browser screenshots. Chaf1a, Sumo2, Trim28, and Zfp809 bind 

eTnERV3-int-ERVK, while IAP-d-int/ERVK is bound specifically by Sumo2 and Trim28. 

Both ERVs are enriched with H3K9me3.

(H) Clustering analysis of the ERVs bound by the indicated factors. The color intensity 

signifies strength of correlation. Red indicates strong correlation, whereas yellow indicates 

weak correlation.

See also Figure S4 and Table S4.
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Figure 5. Sumo2 Regulates Proviruses by Post-translational Modification of Trim28
(A) Venn diagrams demonstrating the number of common and uniquely-bound ERV loci 

among the indicated factors. Sumo2 interacts extensively with the factors from the canonical 

pathway. Percentage values indicate uniquely bound sites.

(B–D) Sumo2 functions through Trim28 in proviral silencing. Sumo2 and Trim28 ChIP 

experiments were conducted on the samples with depletion of Sumo2 or Trim28. The 

enrichment was measured by qPCR. Data is presented as mean ± SEM from independent 

replicate experiments.

(E) Trim28 is modified by Sumo2 in vivo. A 3xFlag tag was added to the 5′ end of Sumo2 

genomic region using CRISPR/Cas in E14 cells. Two homozygous lines were selected for 

the immunoprecipitation assays. NEM was added to protect the sumoylated proteins from 

desumoylation by SENPs in the cell lysates.
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(F) Venn diagrams demonstrating the number of common and uniquely-bound ERV loci 

among indicated factors. The majority of the Trim28/H3K9me3 enriched ERVs are also 

bound by Sumo2. Percentage values indicate uniquely-bound sites.

(G and H) Knockdown of Sumo2 and Trim28 significantly reduced the H3K9me3 

enrichment on proviral PBS and ERVs. H3K9me3 ChIP was performed on the samples with 

depletion of Sumo2 or Trim28. Data is presented as mean ± SEM from independent replicate 

experiments.

(I) Knockdown of Trim28 and Sumo2 increased the active H3K4me3 mark on proviral 

elements. H3K4me3 ChIP was performed on samples with depleted Sumo2 or Trim28. Data 

is presented as mean ± SEM from independent replicate experiments.

See also Figure S5.
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Figure 6. Differential Regulation of Class I, II, and III ERVs by Chaf1a
(A) Venn diagrams demonstrating the number of common and uniquely-bound ERV loci 

among Chaf1a, Trim28, and H3K9me3. Percentage values indicate uniquely-bound ERVs.

(B) Percentage stacked columns demonstrating the classes of ERVs bound by the indicated 

categories on the x axis.

(C) The correlation between the upregulation of the different classes of ERVs upon Chaf1a 

depletion and the enrichment of H3K9me3 mark. The data is plotted using shChaf1a RNA-

seq and H3K9me3 ChIP-seq. Grey, orange, and yellow dots represent ERVs with 
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significantly increased expression in class I, II, and III, respectively. Black dots indicate the 

non-regulated ERVs.

(D) Average binding profiles of the individual categories shows that ERVs belonging to the 

Chaf1a only and Chaf1a+Trim28 categories are highly enriched with Kdm1a and Hdac2 in 

comparison to the other categories.

(E) Enrichment of H3K9me3, Kdm1a, and Hdac2 in the genomic regions of the indicated 

categories. The reads in the heatmaps are clustered according to the enrichment profile of 

H3K9me3.

(F) UCSC genome browser screenshots of representative repeat elements. RMER16-int 

bound by Chaf1a and Trim28 is highly enriched with H3K9me3. In contrast, ORR1B2 is 

bound by Chaf1a, Trim28, Hdac2, and Kdm1a with very low H3K9me3 enrichment. 

Chaf1a, Hdac2, and Kdm1a bind RLTR11B with the absence of Trim28 and H3K9me3, 

while LTRIS5 is bound exclusively by Trim28.

See also Figure S6 and Table S5.
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Figure 7. Chaf1a Are Enriched at Proviruses and Regulates Their Expression through Its 
Interacting Epigenetic Co-factors
(A) SILAC mass spectrometry (MS) analysis uncovers the Chaf1a interactome network. 

Upper panel: schematic representation of the SILAC MS work-flow as described in the 

supplemental procedures. Lower panel: differential protein identification in Flag-tagged 

Chaf1a immunoprecipitation. Several epigenetic and chromatin regulators are indicated.

(B–D) Western blots confirm the interacting proteins identified by MS. Western blots 

showing co-immunoprecipitation (coIP) of Chaf1a with Eset, Kdm1a, and Hdac2.
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(E) Chaf1a is enriched at the proviral elements. Chaf1a-3xHA ChIP was carried out in F9 

Chaf1a-3xHA cell line using a HA antibody. The enrichment was analyzed by qPCR. Data 

are presented as mean ± SEM from independent replicate experiments.

(F and G) Localization of Kdm1a and Hdac2 on proviral DNA. ChIP was performed using 

antibodies against Kdm1a or Hdac2 and the enrichment was tested by qPCR.

(H–J) The perturbation of histone mark enrichment on proviral elements upon the depletion 

of Chaf1a in F9 cells. H3K9me3, H3K4me3, and H3Ac ChIP were performed on the 

samples upon depletion of Chaf1a. Data are presented as mean ± SEM from independent 

replicate experiments.

(K) Schematic model for the silencing mechanism of the proviruses in mESCs involving 

Chaf1a, Sumo2, and the canonical Zfp809/Trim28/Eset pathway. Chaf1a and its upstream 

histone chaperones Asf1a/b promote the deposition of histone H3/H4 to mark the integrated 

proviral DNA. Transcriptional repression of the proviral chromatin is reinforced by the 

enzymatic activities of Chaf1a-interacting proteins, including the members of the NuRD 

complex (Kdm1a, Hdac1/2) and Eset. This results in reduced acquisition of activating 

H3K4me3 and H3Ac marks. In parallel, Sumo2 sumoylates Trim28, which is necessary for 

recruiting Trim28 onto the proviral DNA, in turn resulting in the deposition of the repressive 

H3K9me3 mark.

See also Figure S7 and Table S6.

Yang et al. Page 32

Cell. Author manuscript; available in PMC 2015 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


