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In recent years, Escherichia coli has served as one of a few model bacterial species for studying cyclic di-GMP (c-di-GMP) signal-
ing. The widely used E. coli K-12 laboratory strains possess 29 genes encoding proteins with GGDEF and/or EAL domains, which
include 12 diguanylate cyclases (DGC), 13 c-di-GMP-specific phosphodiesterases (PDE), and 4 “degenerate” enzymatically inac-
tive proteins. In addition, six new GGDEF and EAL (GGDEF/EAL) domain-encoding genes, which encode two DGCs and four
PDEs, have recently been found in genomic analyses of commensal and pathogenic E. coli strains. As a group of researchers who
have been studying the molecular mechanisms and the genomic basis of c-di-GMP signaling in E. coli, we now propose a general
and systematic dgc and pde nomenclature for the enzymatically active GGDEF/EAL domain-encoding genes of this model spe-
cies. This nomenclature is intuitive and easy to memorize, and it can also be applied to additional genes and proteins that might
be discovered in various strains of E. coli in future studies.

More than 10 years ago, it was demonstrated that GGDEF
domains can produce and EAL domains can degrade the

bacterial second messenger cyclic di-GMP (c-di-GMP) (1–4).
With these assignments, it also became clear that bacterial ge-
nomes—in particular, those of gammaproteobacteria— usually
contain multiple genes encoding these diguanylate cyclases
(DGC) and c-di-GMP phosphodiesterases (PDE) (5, 6). Crystal
structures of GGDEF and EAL domains have been elucidated, and
studies of structure-function relationships have identified the key
amino acid residues required for substrate and cation binding and
catalysis (7). This also allowed identification of a subset of GGDEF
and EAL (GGDEF/EAL) domain proteins, in which these key
amino acids are not conserved, as “degenerate” and enzymatically
inactive. In a few cases, it could be demonstrated that these degen-
erate GGDEF/EAL domain proteins have alternative functions
based on direct interactions with other macromolecules (8–11). A
subset of proteins combine GGDEF and EAL domains in a single
polypeptide, where one domain is usually enzymatically active
and the other is degenerate and plays a regulatory role in these
“composite” proteins (3). Most GGDEF/EAL domain proteins
also contain N-terminal sensory input domains that control their
output activities, and a majority are localized or anchored in the
cytoplasmic membrane via their membrane-intrinsic or periplas-
mic sensory domains (12).

In studies of the molecular principles and physiological func-
tions of c-di-GMP signaling, Escherichia coli has served as one of a
few model species (13, 14). The commonly used E. coli K-12 lab-
oratory strain has a total of 29 proteins with GGDEF and/or EAL
domains, including 12 and 10 proteins featuring the GGDEF and
EAL domains alone, respectively, and 7 composite proteins carry-
ing both domains. Based on direct measurements of purified pro-
teins and/or the presence of key conserved amino acids and their
elimination by point mutations, DGC and PDE activities can be
assigned to 12 and 13 proteins, respectively, whereas 4 of the 29
proteins can be classified as degenerate GGDEF/EAL proteins

(Table 1). Genes involved in c-di-GMP signaling have also been
studied in pathogenic E. coli, i.e., in uropathogenic E. coli (UPEC)
(42), and two additional genes encoding PDEs have been detected
in an enterohemorrhagic E. coli (EHEC) strain (38) and a menin-
gitis-associated E. coli strain (39). Together with a recent analysis
of genome sequences of 61 E. coli strains (29), which included
commensal as well as pathogenic strains of the major pathotypes
and phylogroups, a total of two additional GGDEF domain pro-
teins and four more EAL domain proteins have been identified
that are not found in E. coli K-12. On the basis of the presence of
the key residues involved in enzymatic activities, these proteins
should be active DGCs and PDEs (see an accompanying paper
[29] in this issue).

Being aware that a systematic nomenclature of the many E. coli
genes encoding DGCs and PDEs might eventually be useful, most
researchers have refrained from renaming single genes and pro-
teins involved in c-di-GMP signaling in E. coli and have used the
preliminary y designations instead, even though these were diffi-
cult to memorize and certainly not popular in oral scientific pre-
sentations. However, on the basis of the finding that the DGC
YdeH is regulated by zinc, it was recently renamed “DgcZ” (23).
Also, the newly identified genes encoding DGCs and PDEs in non-
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K-12 E. coli strains had to be given names, and it seemed obvious
to use a dgc and pde nomenclature (29).

Therefore, as a group of researchers who in recent years have
worked on the molecular mechanisms and/or the genomic basis of
c-di-GMP signaling in E. coli, we now propose a general and sys-
tematic dgc and pde nomenclature for the enzymatically active
GGDEF/EAL domain-encoding genes of E. coli (Table 1). By using
these self-explanatory designations, we also reflect a trend for sim-

ilar (though not yet systematically used) names for GGDEF/EAL
domain proteins in some other species, including Caulobacter,
Pseudomonas, Listeria, and Bdellovibrio spp. We are fully aware
that nomenclature is a convention and sometimes has to include
oversimplifications (for instance, for proteins with multiple func-
tions), but its main function is to allow researchers to remember
things and communicate more easily. In detail, the proposed no-
menclature is based on the following considerations.

TABLE 1 Novel designations for GGDEF/EAL domain-encoding genes of E. coli

Gene name b no.
UniProt
entry

New
gene
name

Other
gene
named Domain architecturea Comment and/or reference(s)e

Genes encoding diguanylate cyclases
(intact GGDEF domains)

yaiC b0385 P0AAP1 dgcC adrA* MASE2b-GGDEF 12, 15–17
ycdT b1025 P75908 dgcT MASE4b-GGDEF (18)
ydaM b1341 P77302 dgcM PAS-PAS-GGDEF 19–21
yddV b1490 P0AA89 dgcO dosC Globin sensor GGDEF 22
ydeH b1535 P31129 dgcZ CZB-GGDEF 23
yeaJ b1786 P76237 dgcJ GAPES1c-GGDEF 21
yeaP b1794 P76245 dgcP GAF-GGDEF
yedQ b1956 P76330 dgcQ CHASE7c-xCache-GGDEF 21, 24, 25
yegE b2067 P38097 dgcE MASE1b-PAS-PAS-PAS-GGDEF-xEAL 12, 21, 26
yfiN b2604 P46139 dgcN tpbB* CHASE8c-HAMP-GGDEF 26–28
yliF b0834 P75801 dgcI GAPES2c-GGDEF
yneF b1522 P76147 dgcF xMASE1-GGDEF Promoter and first 4 TM segments

deleted in E. coli K-12 (18)
EC55989_0813 B7LBD9 dgcX MASE4b-GGDEF Extra DGC in EAEC (18)
EcSMS35_1716 B1LFF9 dgcY MASE5b-GGDEF Extra DGC in E. coli SMS35 and

NMEC 07:K1 strain CE10 (29)

Genes encoding c-di-GMP
phosphodiesterases (intact
EAL domains)

rtn b2176 P76446 pdeN CSSc-EAL
yahA b0315 P21514 pdeL LuxR-EAL 30, 31
ycgG b1168 P75995 pdeG CSSc-EAL
yciR b1285 P77334 pdeR gmr PAS-GGDEF-EAL 19, 20
yddU b1489 P76129 pdeO dosP PAS-PAS-xGAF-xGGDEF-EAL 22, 30, 32, 33
yfeA b2395 P23842 pdeA MASE1b-xGGDEF-EAL
yfgF b2503 P77172 pdeF MASE1b-xGGDEF-EAL 34, 35
yhjH b3525 P37646 pdeH EAL 21, 26, 36
yhjK b3529 P37649 pdeK hmsP* GAPES3c-HAMP-xGGDEF-EAL
yjcC b4061 P32701 pdeC CSSc-EAL
ylaB b0457 P77473 pdeB CSSc-EAL
yliE b0833 P75800 pdeI CHASE9c-xCache-HAMP-xGGDEF-EAL
yoaD b1815 P76261 pdeD adrB CSSc-EAL 37
Z1528 Q8XAQ9 pdeT vmpA CSSc-EAL Extra PDE in EHEC O157:H7

(18, 38)
EcE24377A_E0053 A7ZH68 pdeW EAL Extra PDE in ETEC E24377A (29)
ECP_2965 Q707K1 pdeX EAL Extra PDE in UPEC 536 (29)
UTI89_C1116 Q1RDG4 pdeY sfaY EAL Extra PDE in several ExPEC

strains (29, 39)

Genes encoding proteins with
degenerate GGDEF and EAL
domains

ycgF b1163 P75990 bluF BLUF-xEAL 9, 40
yeaI b1785 P76236 cdgI MASE4b-xGGDEF
ydiV b1707 P76204 rflP xEAL Regulator of FlhDC proteolysis

(10, 11)
yhdA b3252 P13518 csrD GAPES4c-xGGDEF-xEAL 8, 41

a The domain names indicate the following Pfam entries: BLUF, PF04940; Cache, PF02743; CHASE7, PF17151; CHASE8, PF17152; CHASE9, PF17153; CSS, PF12792; CZB,
PF13682; EAL, PF00563; GAF, PF01590 or PF13492; GAPES1, PF17155; GAPES2, PF17156; GAPES3, PF17154; GAPES4, PF17157; GGDEF, PF00990; globin sensor, PF11563;
HAMP, PF00672; LuxR, PF00196; MASE1, PF05231; MASE2, PF05230; MASE4, PF17158; MASE5, PF17178; PAS, PF08448 or PF13426. An “x” in front of a domain name indicates
an enzymatically inactive or highly divergent domain. The Pfam entries for new sensor domains are to appear in the 29th release of the Pfam database (48).
b An integral membrane domain.
c Predicted periplasmic domain.
d Asterisks indicate designations used for homologous genes in other genera or species as follows: adrA, Salmonella (occasionally, adrA has also been used for E. coli); tpbB,
Pseudomonas aeruginosa; hmsP, Yersinia.
e ETEC, enterotoxigenic E. coli; ExPEC, extraintestinal pathogenic E. coli; NMEC, neonatal meningitis E. coli; EAEC, enteraggregative E. coli; TM, transmembrane.
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• Following the principle that genes should be named accord-
ing to the molecular function of the gene product and not
according to a mutant phenotype that may be due to a very
indirect connection and may represent a functional side ef-
fect, “dgc” and “pde” designations are based either on exper-
imentally determined DGC and PDE activities or on the
presence of the conserved key amino acids required for
these enzymatic functions. These conserved amino acids in-
clude the (G/A/S)G(D/E)EF motif in DGCs (43, 44) and the
presence of the catalytic glutamyl residue and the main
amino acids involved in c-di-GMP and cation binding in
PDEs (45–47). The latter criterion reflects pragmatic rea-
sons of feasibility—while isolated and usually soluble EAL
domains alone often show PDE activity in vitro, isolated
GGDEF domains are usually inactive, which makes measur-
ing DGC activity of membrane-associated DGCs rather
challenging. Not only should sensory input domains be in-
tegrated into an appropriately reconstituted lipid environ-
ment to allow dimerization of the GGDEF domains as a
prerequisite for enzymatic activity, but these sensory do-
mains might also need to bind as-yet-unknown ligands in
order to promote enzymatic activity.

• The seven composite proteins with both GGDEF and EAL
domains can be unequivocally assigned DGC or PDE func-
tions and therefore the corresponding gene designations. In
six of the seven cases, one of the two domains is clearly
degenerate (Table 1). Only YciR features intact GGDEF and
EAL domains, but it has been demonstrated that, in this
case, the purified protein shows strong PDE activity in vitro
(19, 20), whereas its GGDEF domain binds GTP but has
only very minor and, in fact, cryptic DGC activity (20). We
therefore propose pdeR as a new gene designation for yciR,
with the “R” also seeming appropriate because PdeR is the
core component of a regulatory switch that controls the
expression of the CsgD major biofilm regulator in E. coli.
Thus, PdeR is a multifunctional “trigger protein,” whose
ability to bind and degrade c-di-GMP plays a regulatory role
as it modulates the direct inhibitory interactions of PdeR
with the transcription factor complex that controls csgD ex-
pression (20).

• In order to make the transition to the systematic nomencla-
ture easier for people who have been working with these
genes and proteins of E. coli, we propose to retain the capital
letter currently found in the y designations (e.g., ydaM be-
coming dgcM, etc.) in as many cases as possible. There is
only a single case of overlap—we suggest that yfeA should be
renamed pdeA but that yahA should be renamed pdeL (re-
ferring to its N-terminal LuxR domain). In the case of ydeH,
dgcZ, which alludes to the zinc binding of the sensory do-
main of the gene product, has already been introduced (23).

• In the few cases where genes are in operons, we propose to
use the same capital letter; i.e., we propose that yliF and yliE
should become dgcI and pdeI and that ycdT and a pde gene
that follows ycdT in certain EHEC strains should become
dgcT and pdeT.

• For a few already renamed genes (e.g., genes dosC and dosP
and genes vmpA and sfaY), we suggest retaining these names
as alternative designations but also reserving systematic

names (e.g., genes dgcO and pdeO and genes pdeT and pdeY,
respectively) and leaving it to the researchers working with
these genes to determine which designation they want to use
(for clarity, we suggest also mentioning the other designa-
tions in future publications). In addition, Table 1 also in-
cludes a few established designations for corresponding ho-
mologs in other bacterial species.

• Among the four genes encoding proteins with degenerate
GGDEF/EAL domains only, yeaI is the only one that en-
codes a protein that binds c-di-GMP (F. Skopp and R.
Hengge, unpublished data), indicating that this protein
serves as a c-di-GMP-binding effector. We therefore pro-
pose cdgI as a new designation. For the other three genes,
which encode proteins that do not bind c-di-GMP, we sug-
gest that the previously assigned designations that reflect the
functions of the encoded proteins should be retained. Thus,
ycgF was already renamed bluF (alluding to its blue-light
sensing BLUF domain) (9, 40) and yhdA was renamed csrD
(as it controls the CsrA/CsrB/CsrC system) (8). Degenerate
EAL-only protein YdiV was shown to directly inhibit and
promote proteolysis of the flagellar master regulator FlhDC
(10, 11), and we therefore propose rflP (regulator of FlhDC
proteolysis) as a new gene name.

Besides assigning new systematic names to the genes and pro-
teins involved in c-di-GMP signaling in E. coli, we also use this
opportunity to introduce systematic designations for several N-
terminal sensory input domains present in some of these proteins
that have not been described before (Table 1). In particular, these
are (i) two novel MASE (membrane-associated sensor) domains,
i.e., MASE4, an eight-transmembrane helix domain found in
DgcX and DgcT (YcdT) and the degenerate c-di-GMP-binding
protein CdgI (YeaI) (18, 29), and MASE5, a six-transmembrane
helix domain present in DgcY (29); (ii) four distinct “GAPES”
domains (referring to gammaproteobacterial periplasmic sensory
domains), which occur in DgcJ (YeaJ), DgcI (YliF), PdeK (YhjK),
and CsrD; and (iii) three novel CHASE (cyclases/histidine kinase-
associated sensory) domains present in DgcQ (YedQ), DgcN
(YfiN), and PdeI (YliE). In contrast to CHASE domains, GAPES
domains seem to be restricted to GGDEF/EAL domain proteins.
The molecular functions in c-di-GMP signaling of all of these
sensory input domains have yet to be elucidated.
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