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Chronic heart failure (CHF) is a global health problem affecting millions of people. Autonomic dysfunction and disordered
breathing patterns are commonly observed in patients with CHF, and both are strongly related to poor prognosis and highmortality
risk. Tonic activation of carotid body (CB) chemoreceptors contributes to sympathoexcitation and disordered breathing patterns
in experimental models of CHF. Recent studies show that ablation of the CB chemoreceptors improves autonomic function and
breathing control in CHF and improves survival. These exciting findings indicate that alterations in CB function are critical to the
progression of CHF.Therefore, better understanding of the physiology of the CB chemoreflex in CHF could lead to improvements
in current treatments and clinical management of patients with CHF characterized by high chemosensitivity. Accordingly, themain
focus of this brief review is to summarize current knowledge of CB chemoreflex function in different experimental models of CHF
and to comment on their potential translation to treatment of human CHF.

1. Introduction

Chronic heart failure (CHF) is a disease condition character-
ized by highmortality, frequent hospitalizations, poor quality
of life, multiple comorbidities, and complex therapeuticman-
agement [1]. Accordingly, CHF is considered a major public
health problem throughout the world [2]. In addition, it has
been estimated that approximately 20% of the worldwide
population will suffer a certain degree of cardiac failure at
some point in their lifetime [3].

CHF is characterized by a progressive decrease in cardiac
function, which severely impacts blood and oxygen supply
to several organs [4–6]. Two pathophysiological hallmarks
of CHF are the presence of autonomic imbalance and
disordered breathing patterns, both of which are strongly
related to the progression of the disease [7–10]. In addition,

a heightened carotid body (CB) chemoreflex drive has been
shown to play a pivotal role in the development of cardiores-
piratory disorders in CHF [11, 12].

Remarkably, it has been shown that CHF patients with
an enhanced CB chemoreflex sensitivity have significantly
higher mortality rates compared to patients with normal
CB chemoreflex sensitivity [12]. In experimental CHF, Del
Rio et al. (2013) [13] has shown that elimination of the
CB chemoreflex markedly attenuated deterioration of car-
diac function and improved survival. Together, these results
strongly support a crucial role of the CB chemoreflex in the
progression of CHF.The physiological mechanisms related to
heightened CB chemoreflex drive in CHF and its deleterious
effects are not completely known. Therefore, understanding
the contribution of the CB chemoreflex in the pathophys-
iology of CHF is important to improve current treatments
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Table 1: Incidence of autonomic imbalance, breathing disorders and carotid body chemoreflex potentiation in experimental CHF.

Autonomic imbalance Breathing disorders Altered CB chemoreflex References
MI-CHF ∙ ∙ ∙ [13]
RP-CHF ∙ ∙ ∙ [35]
AB-CHF ∙ — — [39]
G-CHF ∙ ∙ ∙ [41]
ACS-CHF ∙ — — [44]
∙: described in the literature; —: not described in the literature. MI-CHF: myocardial infarct chronic heart failure; RP-CHF: rapid pacing chronic heart failure;
AB-CHF: aortic banding chronic heart failure; G-CHF: genetic chronic heart failure; ACS-CHF: aortocaval shunt chronic heart failure.

and clinical management of CHF patients and to further
develop new therapeutic strategies intended to normalize
CB chemoreflex function in CHF. Accordingly, the main
focus of this review is to summarize current knowledge of
CB chemoreflex function in several CHF models and com-
ment on the potential translational significance to human
CHF.

2. Carotid Body Chemoreflex and
Heart Failure

TheCB are the main arterial chemoreceptors involved in car-
diovascular and ventilatory adjustments following changes
in blood levels of O

2

, CO
2

, pH, and blood flow [14–17].
The CB is organized in clusters of chemoreceptor cells
(type I) in charge of sensing bloodstream stimuli, which
are surrounded by sustentacular glial cells (type II). The
current model of CB chemotransduction theorizes that a
chemoreceptor stimulus elicits depolarization of the glomus
cells which in turn triggers an increase in [Ca2+]i and the
release of several neurotransmitters which act on sensory
nerve endings projecting centrally from the petrosal ganglion
[18]. Chemosensory nerve fibers from the CB project to the
nucleus tractus solitarius (NTS), which integrates the CB
afferent input [19–21]. Central CB chemoreflex integration
takes place in the NTS which in turn sends projections to
the respiratory neuronal network and key autonomic nuclei
in the brainstem, such as the rostral ventrolateral medulla
(RVLM) [22]. In experimental CHF, CB chemoreceptors
become tonically active resulting in hyper-activation of
RVLM presympathetic neurons and subsequent increases in
sympathetic outflow [9, 23].

Importantly, CB chemoreflex activation in CHF is associ-
ated with the severity of the disease [12]. Recent studies using
selective ablation of the CB chemoreceptors indicate that the
CB chemoreflex plays a pivotal role in the cardiorespiratory
alterations in experimental CHF [9, 24]. To date, several
experimental models of CHF have been used to characterize
the molecular and physiological pathways associated with
tonic activation of the CB chemoreflex in CHF and its
influence on disease progression.

3. Experimental Heart Failure Models

There are numerous experimental models of CHF that reca-
pitulate many of the pathophysiological abnormalities that

occur in human CHF (Table 1). While murine models are
the most widely used, rabbits, sheep, and dogs have also
been used to study CHF. In the paragraphs to follow we
review what is known about the role of CB chemoreflex
function in autonomic and respiratory alterations. Also, we
discuss the potential mechanisms related to the development
of heightened CB chemosensory function in CHF.

3.1. Myocardial Infarction Model. In the myocardial infarc-
tion-induced CHF model (MI-CHF), heart failure is gener-
ated through the surgical induction of ischemia in cardiac
tissue. Two experimental approaches have been used. The
first approach is characterized by electrocauterization of the
epicardial surface to induce small focal infarctions [25]. The
second and more frequently used experimental approach
requires ligation of the descending coronary artery [26].
It has been shown that MI-CHF rats display an increase
CB chemoreflex and CB chemoreceptor activity within 6–8
weeks of infarction [9, 27]. In addition, MI-CHF rats develop
autonomic imbalance characterized by changes in heart rate
variability, increased renal sympathetic nerve activity, and
increases in circulating norepinephrine levels (Table 2) [28–
30]. Moreover, an increased incidence of respiratory disor-
ders is also observed in MI-CHF rats (Table 3) [31]. Impor-
tantly, Del Rio et al. (2013) [13] showed for the first time that
selective bilateral CB denervation in MI-CHF rats decreased
the activity of presympathetic neurons of the RVLM, reversed
autonomic imbalance, and markedly reduced mortality risk.
Taken together, these findings indicate that CB chemoreflex
plays an important role in the pathophysiology of the MI-
CHF model.

3.2. Rapid Ventricular Pacing Model. The rapid-pacing CHF
(RP-CHF) model is characterized by a tachycardia-induced
cardiomyopathy. This CHF model produces elevated ven-
tricular filling pressures and reduced systolic and diastolic
ventricular function. Additionally, this model is associated
with intense neurohumoral activation and disordered breath-
ing patterns (Shinbane et al. 1997) [32]. Sun et al. (1999)
[23] showed that 3 weeks of rapid pacing was necessary
to induce CHF in rabbits. Li et al. (2005) [33] showed
that RP-CHF rabbits displayed enhanced CB chemoreflex
function evidenced by increases in both sympathetic nerve
activity [33] and ventilatory responses to acute hypoxic
stimulation [34]. Additionally, cardiac autonomic imbalance
was also shown in this model by means of reductions in the
total power of heart rate variability (Table 2) [35]. Recently,
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Table 2: Hemodynamic, autonomic balance, and baroreflex function in CHF models.

Hemodynamic Autonomic balance Baroreflex References
BP HR U-NE HRV Blockers Oxford BRS

MI-CHF — — ↑ ↓

Symp. ↑
Parasymp. ↓ ↓ ↓ [13, 55, 61]

RP-CHF ↓ ↑ ↑ ↓

Symp. ↑
Parasymp. ↓ — ↓ [33–35, 61, 62]

AB-CHF ↑ ↑ ↑ ND — ND — [39]
G-CHF ND — ND ↓ ND ND ND [41]
ACS-CHF ↓ — ↑ ND ND ↓ ND [39, 42]
BP: blood pressure; HR: heart rate; HRV: heart rate variability; U-NE: urinary norepinephrine; Blockers: Propranolol/Atropine test; Oxford: baroreflex test
address by phenylephrine and sodium nitroprusside i.v. infusion; BRS: spontaneous baroreflex sensitivity; ND: not described; ↑: increased; ↓: decreased; and
—: without difference compared to control healthy condition. MI-CHF: myocardial infarct chronic heart failure; RP-CHF: rapid pacing chronic heart failure;
AB-CHF: aortic banding chronic heart failure; G-CHF: genetic chronic heart failure; ACS-CHF: aortocaval shunt chronic heart failure.

Table 3: Periodic breathing, breathing irregularity, and apnea/hypopnea score in experimental CHF.

Periodic
breathing

Breathing
irregularities

Apnea/hypopnea
index References

MI-CHF ND ↑ ↑ [26]
RP-CHF ↑ ↑ ↑ [35]
AB-CHF ND ND ND
G-CHF ND ↑ ↑ [41]
ACS-CHF ND ND ND
ND: not described; ↑: increased; ↓: decreased; and —: without difference compared to control healthy condition. MI-CHF: myocardial infarct chronic heart
failure; RP-CHF: rapid pacing chronic heart failure; AB-CHF: aortic banding chronic heart failure; G-CHF: genetic chronic heart failure; ACS-CHF: aortocaval
shunt chronic heart failure.

Marcus et al. (2014) [24] provided compelling evidence that
the CB chemoreceptors play a pivotal role in the progression
of RP-CHF. In this model, CB denervation performed after
the development of CHF significantly reduced renal sympa-
thetic nerve activity and incidence of disordered breathing
patterns, restored cardiac autonomic balance, and reduced
exaggerated respiratory-sympathetic coupling (Table 3) [10,
24].

3.3. Ascending Aortic Constriction Model. Banding of the
ascending aorta is an experimental technique to produce
a pressure-overload form of CHF (AB-CHF). This surgical
approach requires reducing aortic diameter by tying a suture
around the ascending aorta [36]. Banded animals develop
hypertension and left ventricular hypertrophy.After 18weeks,
the banded animals have clear signs of CHF [37]. The
CB chemoreflex has not been studied in AB-CHF animals;
however it has been shown that hypoxic stimulation induced
an increase in the left ventricular end diastolic pressure [38].
This result suggests that CB activation may play a role in
the regulation of cardiac function in AB-CHF. In addition,
results showing that AB-CHF rats displayed an increased
renal sympathetic nerve activity in response to hypercapnic
stimulation suggest a plausible contribution of central and/or
CB chemoreflex pathways in the regulation of sympathetic
outflow [39]. Further studies are needed to determine if the
CB chemoreflex pathway plays any role in the progression of
AB-CHF.

3.4. Dilated Cardiomyopathy Genetic Model. Genetic models
of CHF are less common; however one genetic CHF model
(G-CHF) expresses a dominant-negative form of the basic
leucine zipper CREB transcription factor CREBA133 (Ser-
Ala133) [40]. Mutant mice showed clear signs of CHF with
the presence of cardiac hypertrophy and neurohumoral
activation. Importantly, G-CHF mice showed an increased
CB chemoreceptor activity and chemoreflex response to
hypoxia [41]. Additionally, breathing regularity wasmarkedly
impaired compared to the ventilatory rhythm observed in
normal mice (Table 3). Also, G-CHF mice displayed ventric-
ular arrhythmias that were normalized by denervation of the
CB chemoreceptors [41].This result strongly suggests that the
CB chemoreflex contributes to the development of cardiac
arrhythmias.

3.5. Aorto-Caval Shunt Model. Volume overload is com-
monly used to induce CHF with preserved ejection fraction
[42]. The most used animal model is the aorto-caval shunt
CHF model (ACS-CHF). Here an arteriovenous shunt is
surgically created between the inferior vena cava and the
abdominal aorta to induce a significant cardiac volume
overload [43]. This experimental approach leads to diastolic
CHF and is characterized by neurohumoral activation and
sympathetic hyperactivity (Table 2) [44]. The contribution of
the CB chemoreflex in the development of cardiorespiratory
impairment in ACS-CHF has not previously been studied.
Kristen et al. (2002) [39] showed that hypercapnic stimulation
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triggered a modest sympathetic response in rats with ACS-
CHF.This result suggests that central and/or CB chemorecep-
tors may regulate autonomic balance in ACS-CHF. To date,
breathing instability has not been evaluated in this model
(Table 3). Future studies should focus on the understanding
of the contribution of the CB and central chemoreceptors in
the progression of autonomic imbalance in ACS-CHF.

4. Mechanisms of Altered Carotid Body
Function in CHF

While the mechanisms underpinning CB potentiation in
CHF are not fully understood it has been widely accepted
that angiotensin peptides and oxidative stress both play a
major role in the enhanced CB chemoreflex drive observed
in CHF (for review see [45–48]). Circulating angiotensin II
(AngII) levels are significantly higher during the progression
of CHF. In addition, the presence of a local angiotensin
production system in the CB has been described [47] and
could contribute as well. In support of this notion, AngII
levels are higher in the CBs from CHF rabbits compared to
controls [33]. It has been proposed that AngII could alter
CB function in CHF by altering redox balance, as increased
circulating or local AngII could increase production of
superoxide (O

2

∙−) radical via activation of the AT1R [33].
Indeed, it has been shown that AT1R blockers effectively
reduced CB afferent activity in CHF [33]. The mechanisms
that subsided the effects of AngII on CB function have
been related to NADPH oxidase-dependent O

2

∙− produc-
tion since application of phenylarsine oxide (an NADPH
oxidase inhibitor) significantly reduced CB chemosensory
afferent activity [49]. Furthermore, themolecularmechanism
that relates AngII with changes in CB chemoreceptor cell
excitability has also been described [50]. In CHF, increases
in AngII-dependent oxidative stress inhibit voltage gated K+
channels and depolarize CB glomus cells [50]. In addition
to increases in prooxidant factors, during CHF the CBs
also undergo a marked reduction in the expression of
antioxidant enzymes. Indeed, CuZn- andMn-SOD enzymes,
two important cellular scavenger of O

2

∙− [51], have been
shown to be downregulated in the CB from CHF rabbits
[52]. Accordingly, in vivo CB transfection with CuZn- and
Mn-SOD transgenes restores normal CB chemoreceptor cells
excitability by normalizing resting membrane potential to
values comparable to the ones obtained in control CBs [53].
Taken together, these findings show that AngII and oxidative
stress contribute to altered CB function in CHF.

In addition to AngII, endothelin 1 (ET-1), another potent
vasoactive peptide, has been shown to be constitutively
expressed within the CB tissue along with its type A (ET-AR)
and B (ET-AR) receptor [54–56]. Furthermore, ET-1 medi-
ated signaling through the ET-AR has been shown to enhance
the CB afferent activity [54]. Moreover, in intermittent
hypoxia mimicking obstructive sleep apnea (OSA) model,
ET-1 and ET-AR have been shown to mediate CB chemosen-
sory potentiation [54, 55]. Interestingly, OSA and CHF are
both characterized by the presence of an enhanced CB affer-
ent activity and autonomic imbalance [27, 57]. Despite this
evidence, the contribution of ET-1 and endothelin receptors

in CHF has not been studied. However, ET-1 levels have
been found to be increased in the plasma of CHF patients
[58]. Therefore, it is plausible that increased ET-1 levels in
experimental CHF could also play a role in enhancing CB
chemosensory afferent activity. Further studies are needed to
uncover the role of ET-1 on CB chemosensory function in
CHF.

Recently, a CB type II cell-dependent modulation of
glomus cell function has also been described [59, 60]. This
novel mechanism seems to be related to the activation of
the type II cell and the further paracrine secretion of the
putative neurotransmitter ATP to the vicinity of glomus cells
and sensory nerve endings [60]. Interestingly, type II cells as
well as glomus cells display AT1R expression [59]. Then, it is
plausible that local and/or systemic increases in AngII levels
during the progression of CHF could activate type II cells
causing ATP release and chemosensory excitation. Future
studies should focus on the role of CB type II cells in the
augmented CB chemosensory afferent activity during CHF.

5. Conclusions and Perspective

CHF is characterized by sympathetic hyperactivity indepen-
dent of the etiology of the cardiac failure. In addition, it has
been shown that a significant proportion of CHF patients
displays elevated CB chemoreflex drive [12]. Several CHF
experimentalmodels also display heightenedCB chemoreflex
drive, and this is positively correlated with the severity of
the disease. Recent exciting studies indicate that ablation
of the CB chemoreceptors not only improves autonomic
function and reduces disordered breathing patterns in exper-
imental CHF but also improves survival. More importantly,
Niewiński et al. (2013) [53] has recently shown the relevance
of the CBs in human CHF. In a pilot study with one CHF
patient (NYHA class II) they show that CB denervation is
an effective therapeutic strategy to reduce the progression of
the disease. Two and six months after CB denervation the
patient showed clear signs of an improvement in autonomic
control (total heart rate variability and baroreflex gain),
sleep breathing disorders (apnea/hypopnea score), exercise
tolerance, and an important improvement in his quality
of life [51]. Together, preclinical and clinical studies unveil
the relevance of the CB chemoreflex in the progression of
systolic CHF. These findings raise the question of whether
the CB chemoreflex should be tested in all forms of CHF
(i.e., systolic versus diastolic). Unfortunately, CB chemoreflex
function has not been investigated in experimental models
of diastolic CHF. Taking into account the impressive results
of previous studies showing the benefits of CB denervation
in experimental and human systolic CHF, future studies
addressing the role of the CB in the progression of autonomic
imbalance and disordered breathing patterns in nonsystolic
CHF are important for the development of future strategies
intended to improve quality of life and survival in these
patient populations.
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