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Background. Metabolism in the tumormicroenvironment can play a critical role in tumorigenesis and tumor aggression. Metabolic
couplingmay occur between tumor compartments; this phenomenon can be prognostically significant andmay be conserved across
tumor types. Monocarboxylate transporters (MCTs) play an integral role in cellular metabolism via lactate transport and have been
implicated in metabolic synergy in tumors. The transporters MCT1 and MCT4 are regulated via expression of their chaperone,
CD147. Methods. We conducted a meta-analysis of existing publications on the relationship between MCT1, MCT4, and CD147
expression and overall survival and disease-free survival in cancer, using hazard ratios derived via multivariate Cox regression
analyses. Results. Increased MCT4 expressions in the tumor microenvironment, cancer cells, or stromal cells were all associated
with decreased overall survival and decreased disease-free survival (𝑝 < 0.001 for all analyses). Increased CD147 expression in
cancer cells was associated with decreased overall survival and disease-free survival (𝑝 < 0.0001 for both analyses). Few studies
were available on MCT1 expression; MCT1 expression was not clearly associated with overall or disease-free survival. Conclusion.
MCT4 and CD147 expression correlate with worse prognosis across many cancer types. These results warrant further investigation
of these associations.

1. Background

Overview of Monocarboxylate Transporters. Monocarboxylic
acids play an important role in cellular metabolism, and
the regulation of this system has become a new target
for understanding the pathogenesis of abnormal cellular
processes such as tumorigenesis. Monocarboxylate trans-
porters (MCTs) are 12-segment transmembrane proteins that
symport protons with monocarboxylic acids through the
plasma membrane [1]. These monocarboxylic acids include

lactate and, to a lesser extent, pyruvate, ketone bodies, and
metabolites of branched-chain amino acids. MCT family
members have different characteristics regarding transport
directionality and substrate specificity.

There are at least 14 members of the MCT family; all are
encoded by the solute carrier gene series, SLC16A. Of this
family, MCTs 1–4 are the best characterized thus far, with
particular research emphasis placed on MCT1 and MCT4.
The most studied function of MCT1 is transport of lactate
into the cell, although in some physiologic conditions MCT1
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can mediate lactate efflux [2]. This transporter also has
a widespread expression throughout the body [2]. MCT2
has similar function to MCT1 but has a higher affinity
for pyruvate and has distinct expression patterns. MCT3
expression is limited to the retinal pigment epithelium where
it regulates lactate levels; its mechanism of action is not
well characterized [3]. MCT4 is highly expressed in tissues
dependent on glycolysis, and it plays an important role in
lactate efflux fromcells.MCTs 5–10 are notwell characterized,
although there is evidence of a role for MCT8 in targeting
proteins to lysosomes and thyroid hormone transport [4].
MCT1 and MCT4 typically act as lactate importers and
exporters, respectively. However, these two transporters have
similar regulatory control: CD147 is a chaperone, which is
essential for both MCT1 and MCT4 transport to the plasma
membrane [5]. MCTs are being studied as cancer therapeutic
targets since they regulate glycolytic processes via lactate
transport.

Cancer Metabolism and the Tumor Microenvironment. Can-
cer metabolism involves a complex array of intracellular
and intercellular interactions within the tumor microen-
vironment; understanding and intervening in these pro-
cesses have allowed exploration of novel anticancer ther-
apy approaches. A “seed and soil” hypothesis of tumor
growth, which states that cancer flourishes in a favorable
environment, was originally proposed by Paget [7]. Recent
investigations of the metabolic microenvironment of tumors
have brought this theory back to light. One of the best-
known differences between cancer cell metabolism and that
of healthy tissue is that tumor cells utilize glycolysis despite
oxygen being present, which is termed the “Warburg Effect”
([8]; Figure 1(c)). This metabolic adaptation is postulated
to confer a biosynthetic advantage for tumor development
and progression due to increased carbon utilization, hypoxic
adaptation, and increased rate of ATP production [9–11].This
unique glycolytic feature of tumors is the basis of fluoro-
2-deoxy-glucose positron emission tomography (FDG-PET)
imaging.This theory has been expanded by evidence that pro-
liferating cancer cells may benefit from a “Reverse Warburg
Effect” (Figure 1(b)) by inducing glycolysis in the surround-
ing tissue and deriving nutrients such as lactate from cancer-
associated fibroblasts [12–14]. In a recently proposed model,
the ReverseWarburg Effect is further dissected to include dif-
ferent populations of cancer cells: highly proliferative cancer
cells and less proliferative cancer cells [6]. This Multicom-
partment Metabolism Model (Figure 1(a)) hypothesizes that
highly proliferative cancer cells derive their lactate substrate
not only from stromal cells, but also from surrounding
nonproliferative cancer cells. Thus, the leading edge of the
tumor with highly proliferative cancer cells takes advantage
of the favorable microenvironment provided by both stroma
and less proliferative cancer cells. The highly proliferative
cancer cells are poorly differentiated and are believed to arise
from basal stem cells, representing a group of cancer stem
cells [6]. The less proliferative cancer cells have little to no
expression of Ki-67, a proliferation marker; this population
is also more differentiated and mitochondrially poor [6]. The
tumormicroenvironment is composed of proliferative cancer

cells, nonproliferative cancer cells, adjacent epithelial cells,
stromal cells, immune cells, and surrounding matrix. Tumor
cell engraftment requires that cancer cells metabolically
reprogram their microenvironment to form a suitable “nest”
for tumor cell growth. This reprogramming can be explained
by hydrogen peroxide secretion and HIF𝛼 and NF𝜅B sig-
naling from cancer cells which induces aerobic glycolysis in
surrounding tissue [12, 15]. The surrounding fibroblasts and
cancer cells then are able to supply metabolic catabolites of
glycolysis such as lactate and pyruvate.This “lactate shuttle” is
an efficient transfer of high-energy nutrients from fibroblasts
and nonproliferative cancer cells to proliferative cancer cells
[6, 16, 17]. A metabolic symbiosis occurs, where fibroblasts
upregulate MCT4 for lactate and ketone body export [16–
18], and proliferative cancer cells import thesemetabolic fuels
via MCT1 [16]. This type of metabolic symbiosis has been
described in many different epithelial cancer types [6, 15, 19–
21] and creates an environment favorable to growth, survival,
and metastatic spread [13, 14]. One model proposes multiple
compartments with a proliferative cancer cell population
which expresses MCT1 at the tumor front with a deeper
population of MCT4+ cancer cells and MCT4+ cancer-
associated fibroblasts, which serve as the driving force for
cancer cells to proliferate via a lactate shuttle (Figure 1, [6]).

Monocarboxylate Transporter Expression and Cancer Progno-
sis. We hypothesize that altered metabolism induces tumor
progression by a similar mechanism in many cancer types
that involves MCT1, MCT4, and CD147 expression. Tumoral
and peritumoral expression of these three functional proteins
correlate with poor prognosis in various cancers. To date,
there have been no analyses correlating overall survival or
disease-free survival with expression of these markers across
cancer types. Though each cancer is unique, it is important
to determine general oncologic principles that can be used
for expansion of therapeutic trials. There are CD147 and
MCT inhibitors in clinical trials in specific cancer patient
populations [22, 23]. By understanding common features
among different cancer types, these potential therapies can
be applied more broadly.

2. Materials and Methods

A PubMed search for the keywords (“MCT1” OR “MCT4”
OR “monocarboxylate transporters” OR “CD147” OR
“EMMPRIN” OR “Basigin”) AND (“survival” OR “prog-
nosis”) was performed. Clinical investigations into the
prognostic value of MCT1, MCT4, and CD147 were selected
as entries for the present study. Studies included in Forest
Plot analyses were limited to those in which multivariate
analysis Cox regression hazard ratio data on overall survival
or disease-free survival was available. Forest Plots were
constructed using RevMan 5.3 software (The Cochrane
Collaboration). Forest Plot specifications were generic
inverse variance for data type, fixed effect for analysis
method, and hazard ratio for effect measure.

When SEM was not provided directly by the studies,
they were calculated from the 95% confidence intervals by
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Figure 1:Multicompartmentmetabolismmodel in cancer.Modified
with permission from Curry et al. [6].

the formula SEM = (ln(Upper CI limit) − ln(Lower CI
limit))/3.92 [24].

3. Results

3.1. Increased MCT4 Expression Is Associated with Decreased
Overall Survival. MCT4 expression anywhere in the tumor
microenvironment was associated with decreased overall
survival (OS, Figure 2(a)). The 12 included studies showed
that elevatedMCT4 expressionwas associatedwith decreased
OS by a factor of 1.82 (𝑝 < 0.00001, Figure 1(a)). This
analysis included studies that reported either cancer cell or
stromal cell MCT4 expression. Cancer types represented are
pancreas (cancer and stroma) [25], breast (cancer x2) [26],
phyllodes (stroma) [27], oral squamous cell carcinoma (oral
SCC, cancer) [28], hepatocellular carcinoma (HCC, cancer
x2, stroma) [29–31], gastric (stroma x2) [19, 20, 32], and
colorectal carcinoma (CRC, cancer) [33].

High MCT4 expression specifically in cancer cells was
associated with decreased OS (Figure 2(b)). The 7 included

studies showed that elevated MCT4 expression was associ-
ated with decreased OS by a factor of 1.98 (𝑝 < 0.00001,
Figure 2(b)). Cancer types included were pancreas [25],
breast [26], oral SCC [28], HCC [29–31], and CRC [33].There
were 11 studies that did not have multivariate analysis data
available [19, 20, 29, 30, 34–43]. Of these, 6 had statistically
significant univariate analysis of elevated cancer cell MCT4
correlating with decreased OS ([29, 30, 34–36, 42, 43], see
Supplementary Table 1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2015/242437). The other
studies failed to show a significant association between
elevated MCT4 and decreased OS [19, 20, 38–41].

Elevated MCT4 expression specifically by tumor-
associated stroma was also associated with decreased OS
(Figure 2(c)). The 5 included studies showed that elevated
MCT4 expression was associated with decreased OS by
a factor of 1.67 (𝑝 < 0.00001, Figure 2(c)). Cancer types
represented are pancreas [25], phyllodes [27], gastric
[19, 20, 32], and HCC [31]. There were 2 studies without
multivariate analysis: one which showed no association
between MCT4 expression and OS in non-small-cell lung
cancer [42] and one that showed that stromal MCT4
expression correlated with decreased OS in triple-negative
breast cancer under univariate analysis (𝑝 < 0.0001, [41];
Supplementary Table 1).

3.2. Increased MCT4 Expression Is Associated with Decreased
Disease-Free Survival. MCT4 expression in the tumor
microenvironment was associated with decreased disease-
free survival (DFS, Figure 3(a)). The 11 studies included
showed that elevated MCT4 expression was associated
with decreased disease-free survival by a factor of 1.75
(𝑝 < 0.00001, Figure 3(a)). This analysis included studies
that reported either cancer cell or stromal cell MCT4
expression. Cancer types represented are breast (cancer)
[26], phyllodes (stroma) [27], oral SCC (cancer) [28], HCC
(cancer) [29–31], gastric (cancer and stroma) [19, 20, 32],
head and neck squamous cell carcinoma (HNSCC, cancer)
[6], bladder (cancer) [44], and lacrimal gland adenoid cystic
carcinoma (lacrimal gland ACC, cancer) [36].

Elevated MCT4 expression specifically by cancer cells
was associated with decreased DFS (Figure 3(b)). The 8
included studies showed that elevated MCT4 expression was
associated with decreased DFS by a factor of 1.68 (𝑝 <
0.00001, Figure 3(b)). Cancer types represented were breast
[26], oral SCC [28], HCC [29–31], bladder [44], lacrimal
gland ACC [36], and HNSCC [6]. There were 12 studies
that did not have multivariate analysis data available ([19,
20, 29, 30, 34–43]; Supplementary Table 2). Of these, 6 had
statistically significant univariate analysis of elevated tumoral
MCT4 correlatingwith decreasedDFS in renal cell carcinoma
[34], soft tissue sarcoma [35], hepatocellular carcinoma [29,
30], Lacrimal gland adenoid cystic carcinoma [36], non-
small-cell lung cancer [42], and glioblastoma multiforme
[43]. The other studies did not show an association between
elevated MCT4 and decreased DFS [19, 20, 37–41].

Elevated MCT4 expression in tumor-associated stroma
was also associated with decreased DFS (Figure 3(c)). The 3
studies included showed that elevated MCT4 expression was
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Figure 2: Elevated MCT4 expression is associated with decreased overall survival. (a) Elevated MCT4 expression in the tumor
microenvironment is associatedwith decreasedOS. (b) ElevatedMCT4 expression in cancer cells is associatedwith decreasedOS. (c) Elevated
MCT4 expression in stromal cells is associated with decreased OS. SCC: squamous cell carcinoma.

associatedwith decreasedDFS by a factor of 2.35 (𝑝 = 0.0004,
Figure 3(c)). Cancer types represented were phyllodes [27]
and gastric [19, 20, 32]. There were 2 studies without mul-
tivariate analysis available, one which showed that stromal
MCT4 expression was significantly correlated with decreased
DFS under univariate analysis in triple-negative breast cancer
[41] and onewhich showed no such association in non-small-
cell breast cancer ([42]; Supplementary Table 2).

3.3. Increased CD147 Expression in Cancer Cells Is Associated
with Decreased Overall Survival. Elevated CD147 expres-
sion in cancer cells was associated with decreased OS
(Figure 4(a)). The 25 included studies showed that elevated
CD147 expression was associated with decreased OS by a
factor of 2.16 (𝑝 < 0.00001, Figure 4(a)) [29, 30, 45–69]. This
analysis included studies that reported only cancer cell CD147
expression. No studies had multivariate analysis of stromal
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Figure 3: Elevated MCT4 expression is associated with decreased disease-free survival. (a) Elevated MCT4 expression in the tumor
microenvironment is associated with decreased DFS. (b) Elevated MCT4 expression in cancer cells is associated with decreased DFS.
(c) Elevated MCT4 expression in stromal cells is associated with decreased DFS. HNSCC: head and neck squamous cell carcinoma; CA:
carcinoma; and SCC: squamous cell carcinoma.

CD147 expression. Of note, only 2 studies showed an increase
in OS with elevated CD147 expression [57, 68].

There were 30 studies that did not have adequate mul-
tivariate analysis data available ([26, 35, 38, 44, 55–57, 66,
70–93]; Supplementary Table 3). Three of these studies had
multivariate 𝑝 values reported without the necessary hazard
ratios necessary for meta-analysis [77, 78, 80]. Of these
studies, 17 have statistically significant univariate analysis of
elevated CD147 in cancer cells correlating with decreased OS
([44, 55–57, 66, 70–82]; Supplementary Table 3). The other
studies did not show an association between elevated CD147
and OS ([26, 35, 38, 83–93]; Supplementary Table 3).

3.4. Elevated CD147 Expression in Cancer Cells Is Associ-
ated with Decreased Disease-Free Survival. Elevated CD147
expression in cancer cells was associated with decreased DFS
(Figure 4(b)). The 11 included studies showed that elevated
CD147 expression was associated with decreased DFS by
a factor of 3.14 (𝑝 < 0.00001, Figure 4(b)). This analysis
included studies that reported only cancer cell CD147 expres-
sion. No studies reported hadmultivariate analysis of stromal
CD147 expression and survival. Cancer types represented
include esophageal SCC [94], salivary gland cancer [67],
breast cancer [48], triple-negative breast cancer [51, 63, 64],
osteosarcoma [61], colorectal cancer [95], ovarian epithelial
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Hepatocellular (Zhu et al., 2015) 50 −0.69315 0.332 3.0% 0.50 [0.26, 0.96]
Laryngeal (Gou et al., 2014) 92 0.181488 0.371 2.4% 1.20 [0.58, 2.48]
Lung—NSCLC (Xu et al., 2013) 136 1.891906 0.506654 1.3% 6.63 [2.46, 17.90]
Oral SCC (Monteiro et al., 2014) 74 0.359437 0.642169 0.8% 1.43 [0.41, 5.04]
Osteosarcoma (Futamura et al., 2014) 166 2.24071 1.080064 0.3% 9.40 [1.13, 78.07]
Osteosarcoma (Lu et al., 2013) 55 1.588209 0.507593 1.3% 4.89 [1.81, 13.24]
Ovarian (Gao et al., 2014) 92 0.433729 0.176005 10.6% 1.54 [1.09, 2.18]
Ovarian epithelial CA (Zhao et al., 2013b) 242 0.43308 0.368265 2.4% 1.54 [0.75, 3.17]
Ovarian epithelial CA (Zhao et al., 2013c) 146 0.564177 0.203604 7.9% 1.76 [1.18, 2.62]
Pediatric medulloblastoma (Chu et al., 2011) 56 1.252763 0.295724 3.8% 3.50 [1.96, 6.25]
Penile (Han et al., 2010) 17 6.041121 1.07556 0.3% 420.36 [51.06, 3460.54]
Prostate (Han et al., 2010) 101 3.991536 0.373324 2.4% 54.14 [26.05, 112.53]
Renal cell (Han et al., 2010) 52 4.703612 0.46709 1.5% 110.35 [44.17, 275.64]
Salivary gland (Piao et al., 2012) 35 1.082483 0.437285 1.7% 2.95 [1.25, 6.96]
Seminoma (Bi et al., 2012) 65 −0.17913 0.303428 3.6% 0.84 [0.46, 1.52]
Testicular (Han et al., 2010) 17 5.681308 1.11275 0.3% 293.33 [33.13, 2597.38]
Thyroid (Tan et al., 2008) 156 1.629241 0.355098 2.6% 5.10 [2.54, 10.23]

(a) CD147 expression and overall survival

IV, fixed, 95% CIIV, fixed, 95% CI
Hazard ratio

Study or subgroup SEn Weight Hazard ratiolog
[Hazard ratio]

Increased survival Decreased survival

0.1 1 10 1000.01
Test for overall effect: Z = 10.46 (p < 0.00001)

Heterogeneity: 𝜒2 = 57.66, df = 10 (p < 0.00001); I2 = 83%

Total (95% CI) 1636 100.0% 3.14 [2.54, 3.90] 

Breast (Liu et al., 2010) 186 0.696641 0.429533 6.5% 2.01 [0.86, 4.66]
Breast—TNBC (Zhao et al., 2013a) 127 1.053266 0.46213 5.6% 2.87 [1.16, 7.09]
Colorectal (Zhu et al., 2013) 328 2.183802 0.261353 17.6% 8.88 [5.32, 14.82]
Endometrial (Ueda et al., 2007) 112 −0.63488 1.09855 1.0% 0.53 [0.06, 4.56]
Esophageal SCC (Ishibashi et al., 2004) 101 0.788457 0.425536 6.6% 2.20 [0.96, 5.07]
Hepatocellular (Zhang et al., 2006) 82 2.081938 0.534634 4.2% 8.02 [2.81, 22.87]
Hepatocellular (Zhang et al., 2007) 111 3.505257 0.510537 4.6% 33.29 [12.24, 90.55]
Osteosarcoma (Futamura et al., 2014) 166 1.258461 0.557618 3.9% 3.52 [1.18, 10.50]
Ovarian epithelial CA (Zhao et al., 2013b) 242 0.485508 0.311694 12.3% 1.63 [0.88, 2.99]
Ovarian epithelial CA (Zhao et al., 2013c) 146 0.564177 0.2 30.0% 1.76 [1.19, 2.60]
Salivary gland (Piao et al., 2012) 35 1.1036 0.39506 7.7% 3.02 [1.39, 6.54]

(b) CD147 expression and disease-free survival

Figure 4: Elevated CD147 expression is associated with decreased survival. (a) Elevated CD147 expression in cancer cells is associated with
decreased overall survival. (b) Elevated CD147 expression in cancer cells is associated with decreased disease-free survival. CA: carcinoma;
TNBC: triple-negative breast cancer; SCC: squamous cell carcinoma; and NSCLC: non-small-cell lung cancer.

cancer [63, 64], endometrial cancer [96], and hepatocellular
carcinoma [97, 98]. Of note, only one study showed an
increase in DFS with elevated CD147 expression [96]. There
were 13 studies that did not have multivariate analysis data
available ([26, 57, 60, 62, 71, 72, 77, 82, 84, 91, 92, 99,
100]; Supplementary Table 4). Of these, 8 had statistically
significant univariate analysis revealing that elevated CD147

correlates with decreased DFS ([26, 57, 62, 71, 72, 82, 99,
100]; Supplementary Table 4). The other studies showed no
association between elevated MCT4 and DFS ([60, 77, 84, 91,
92]; Supplementary Table 4).

3.5.MCT1 Expression and Prognosis. There is currently insuf-
ficient high-quality data available to conduct a meta-analysis
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Increased survival Decreased survival
0.2 0.5 1 2 50.1

IV, fixed, 95% CIIV, fixed, 95% CI
Hazard ratio

Study or subgroup SEn Weight Hazard ratiolog
[Hazard ratio]

Bladder (Choi et al., 2014) 360 0.81093 0.37915 16.1% 2.25 [1.07, 4.73]
Lung—NSCLC (Eilertsen et al., 2014) 335 −0.64245 0.195754 60.3% 0.53 [0.36, 0.77]
Lung—SCLC (Polanski et al., 2014) 47 −0.43696 0.449084 11.5% 0.65 [0.27, 1.56]
Renal cell (Kim et al., 2014) 180 1.453953 0.436662 12.1% 4.28 [1.82, 10.07]

Test for overall effect: Z = 0.86 (p = 0.39)

Heterogeneity: 𝜒2 = 26.64, df = 3 (p < 0.00001); I2 = 89%

Total (95% CI) 922 100.0% 0.88 [0.65, 1.18]

Figure 5: MCT1 expression in the tumor microenvironment is not associated with overall survival. NSCLC: non-small-cell lung cancer;
SCLC: small-cell lung cancer.

of studies examining the correlation ofOS orDFSwith cancer
cell expression of MCT1. However, a review of the literature
on MCT1’s impact on cancer prognosis is provided here.

Multivariate analysis on MCT1 expression and OS was
only available in 4 studies (Figure 5). IncreasedMCT1 expres-
sion in cancer cells was associated with decreased OS in
bladder cancer and renal cell carcinoma [34, 44]. Increased
MCT1 expression was shown to either increase or have no
effect on OS in NSCLC and SCLC [39, 42].

An additional five studies that analyzedMCT1 expression
and OS did not have multivariate analysis data available
([19, 20, 25, 38, 71, 101]; Supplementary Table 5). Of these,
only 2 studies showed a significant decrease in OS associated
with elevated MCT1 expression (𝑝 = 0.021, [35]; 𝑝 =
0.014, [19, 20]). The remainder of the studies failed to show
a statistically significant change in survival associated with
MCT1 expression ([25, 38, 71]; Supplementary Table 5). A
single study evaluated elevated MCT1 expression and DFS in
bladder cancer, but this univariate analysis failed to show a
significant association (𝑝 = 0.065, [71]).

Interestingly, only one study examined cancer and stro-
mal cell expression of MCT1 individually. In a study of 335
cases of NSCLC, univariate analysis revealed that increased
MCT1 expression in stromal cells corresponded significantly
with poor disease-specific survival (𝑝 = 0.003), but increased
MCT1 expression in cancer cells corresponded with a favor-
able DFS (𝑝 = 0.020). Both these associations held in
multivariate analysis (𝑝 = 0.001, 0.016, resp., [42]).

4. Discussion

The “Reverse Warburg” model of tumor metabolism hypoth-
esizes a compartmentalized metabolic tumor microenvi-
ronment. The transfer of molecules between compartments
allows for highly proliferative cancer cells to maintain oxida-
tive phosphorylationwhile CAFs and less proliferative cancer
cells provide metabolic fuels generated by glycolysis. The
monocarboxylate transporter system allows the intercellular
exchange of metabolites that fuel different tumoral compart-
ments. In particular, MCT1 and MCT4 play crucial roles in
the influx and efflux, respectively, of lactate, pyruvate, and
other metabolites. CD147 serves as a chaperone for MCT1
and MCT4 and is essential in their expression [5]. MCT1,
MCT4, and CD147 are functional biomarkers for metabolic

compartmentalization in cancer, and their presence has
implications for tumor aggressiveness and prognosis.

The monocarboxylate transporter system has been stud-
ied in various cancer types, and here we show that the
association between MCT1, MCT4, and CD147 is similar
across many types of cancer. This is the first study to inves-
tigate the significance of these biomarkers across such varied
types of cancer, and, although each cancer is biologically
unique, the data presented here suggests that tight metabolic
coupling with catabolite transfer between different tumor
cells is associated with outcomes. Cancer cells often exploit
previously existing cellular functions in order to fuel their
own growth; a system of energy transfer may play a role in
promoting tumorigenesis in many types of cancer, just as
TP53 mutations have been shown to promote growth and
suppress apoptosis inmany cancers.Weprovide evidence that
expression of MCT4 and CD147 predicts clinical behavior in
many different cancers, even if their particular role in each
type of cancer is not yet well described. To date, there have
been few studies examining the MCT system across cancer
types, and none which examine the breadth of cancer types
were analyzed in this study.The reviews that cover this subject
have been limited to the molecular mechanisms of lactate
transporters in tumor metabolism [102, 103]. The current
study bolsters the external validity of studies on expression
of MCT4 and CD147 and prognosis.

In determining the impact of MCT1, MCT4, and CD147
expression on outcomes, attentionmust be paid to expression
levels as well as expression patterns. In the Multicompart-
ment Metabolism Model, a highly proliferative population
of cancer cells express MCT1 strongly, and, in fact, much
stronger than the less proliferative cancer cells and stromal
cells around them. In contrast, these less proliferative cancer
cells express MCT4 strongly, while MCT4 expression in
highly proliferative cancer cells is low. Thus, the reported
location of MCT4 staining is important when considering its
effect on tumor biology and prognosis. There are differences
in transporter expression in cancer cells in the tumor leading
edge versus other cancer cells and stromal cells. The specific
combined expression pattern of MCT1 in cancer cells and
MCT4 in stromal cells was associated with decreased DFS in
prostate cancer [104, 105]. Expression patterns and colocaliza-
tion of MCT1, MCT4, and CD147 are also discussed in breast
cancer, ovarian cancer, colorectal cancer, and lung cancer
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[106]. Understanding the similarities and differences of these
patterns across cancer types indicates their significance for
prognosis.

This meta-analysis highlights the association between
stromal cells and aggressive cancer. Tumor stroma is com-
posed of cancer-associated fibroblasts (CAFs), infiltrating
immune cells, and angiogenic vascular cells. The studies
in this analysis use various definitions of stromal cells and
include stroma between cancer cells and stroma surrounding
foci of cancer cells. These studies typically do not differ-
entiate between CAFs and other stromal components, but,
in general, define cancer associated stroma as noncancerous
cells in proximity to cancer cells. Our results corroborate
the recent literature asserting the importance of stromal cells
in carcinogenesis, specifically by altering cellular energet-
ics. CAFs have been implicated in carcinogenesis by sus-
taining proliferative signaling, evading growth suppression,
avoiding immune destruction, activating invasion, inducing
angiogenesis, resisting cell death, and deregulating cellular
energetics [107]. CAFs are also thought to detoxify the
tumor microenvironment and provide nutrients to cancer
cells [108]. Some researchers have also found that cancer
cells produce reactive oxygen species, which influences CAFs
to undergo mitophagy and switch to glycolytic metabolism
[109]. The role of CAFs in cancer progression and as a
therapeutic target is being studied extensively.

Current models of cancer metabolism attempt to encom-
pass not only cancer cells but also the local environment,
including the surrounding stromal cells and extracellular
matrix.There are awide array ofmetabolic changes that occur
during carcinogenesis involving a complex coordination
between intracellular and intercellular pathways [110], with
mitochondrial metabolism changes at the hub of many of
these alterations [111]. The interactions between these com-
partments are fundamental in understanding carcinogenesis
and cancer progression. The Warburg Effect (Figure 1(a))
posits that cancer cells utilize glycolysis despite the presence
of oxygen and export the lactate produced into the surround-
ing environment. The Reverse Warburg Effect (Figure 1(b))
describes ametabolic interaction between cancer and stromal
cells where glycolysis performed by stromal cells produces
lactate which is then shuttled via a monocarboxylate trans-
port system to cancer cells which then have an ample fuel
supply to produce energy via oxidative phosphorylation. A
newer model, termed the Multicompartment Metabolism
Model (Figure 1(c)), is described similarly to the Reverse
Warburg Effect; however, it divides the cancer cell compart-
ment into a highly proliferative population and a relatively
less proliferative population. Stromal and cancer cells with
low proliferation rates provide nutrients for proliferative
cancer cells in the Multicompartment Metabolism Model.

The evidence in this meta-analysis supports the Mul-
ticompartment Metabolism Model as MCT4 and CD147
expression decreased survival in all scenarios, whether the
increased expression levels were found in cancer cells or
stromal cells. The decreased survival rates associated with
increased MCT4 expression in cancer cells are not fully
explained by the ReverseWarburg Effect as this model would
lead one to expect that only stromal cell MCT4 expression

could contribute to cancer progression. Some studies which
associate increased MCT4 expression in cancer cells with
decreased survival using the Warburg Effect as a model
attribute decreased survival to an acidic microenvironment
[26, 29–31, 33] provided by MCT4-mediated lactate efflux
causing matrix metalloproteinase activation [29, 30], cathep-
sin activation [29, 30], decreased natural killer cell activa-
tion [29, 30], decreased effectiveness of chemotherapy [26],
and increased integrin interactions [33]. Another proposed
mechanism which is in concert with the Warburg Effect is
the activation of AKT and MEK-ERK pathways in cancer
cells with increased MCT4 expression contributing to cancer
progression [28–30]. While microenvironment acidification
and downstream intracellular pathways may play a role in
tumor progression with cancer cell MCT4 expression, we
submit that the lactate efflux has additional effects through
providing substrates which aid proliferative cancer cell pop-
ulations. In fact, some studies on the Warburg Effect suggest
that cancer cell MCT4 expression may provide enrichment
to cancer stem cells [26, 29, 30] and Choi et al. mention that
peripheral tumor cells may import this lactate viaMCT1 [44].
These descriptions are in line with the Multicompartment
MetabolismModel in whichMCT4+ nonproliferative cancer
cells provide substrates for proliferative MCT1+ cancer cells.
There is further evidence that lactate catabolism in cancer
may involve MCT1, with lactate uptake specific to aerobic
tumor regions [112]. The studies provided are heterogeneous
in nature, and hence it is possible that multiple types of
metabolism models are found in the different cancer types
and even between different areas within a single tumor.

As more is discovered about MCT1, MCT4, and CD147
as functional biomarkers, they become attractive targets
for anticancer therapies. Many cancers become increasingly
drug-resistant as therapies are initiated and continued, and
these new therapeutic targets could prove invaluable in
improving patient outcomes [51, 63, 64]. In fact, CD147 coex-
pression with MCT1 or MCT4 is associated with increased
likelihood of multidrug resistance markers [100]. Currently,
the main targets for such pharmacologic intervention are the
family of monocarboxylate transporters and their regulatory
proteins.

A recent study by Amorim et al. addresses the effects of
lactate transport inhibition in human colorectal cancer cell
lines using the compounds 𝛼-cyano-4-hydroxycinnamate
(CHC), DIDS (a stilbene derivative), and quercetin, a
bioflavonoid, which are known to inhibit lactate transport.
They demonstrated that MCT activity inhibition inhibited
CRC cells biomass in a dose-dependent manner, increased
cell death and decreased cell proliferation, and potenti-
ated the cytotoxicity of 5-fluorouracil in CRC cells pre-
treated with the MCT inhibitors [113]. However, histori-
cally, MCT inhibitors have lacked specificity; 𝛼-cyano-4-
hydroxycinnamate (CHC), stilbene disulfonates, phloretin,
quercetin, and organomercurial reagents were often more
potent at inhibiting other cellular functions than plasma
membrane lactate transport. More recently, however, new
high-affinity MCT inhibitors have been developed and are
being investigated both in vitro and in vivo as anticancer
agents.
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Draoui et al. investigated 7-aminocarboxycoumarin
(7ACC) in xenograft models of cervical, breast, and bladder
cancers [114]. 7ACC inhibits lactate influx but not efflux
in cells expressing MCT1 and MCT4; in cancer types that
express MCT1 and MCT4, 7ACC decreased xenograft
tumor growth. In prostate cancer research, AR-C155858,
an inhibitor of MCT1 and MCT2, has been shown to result
in a significant decrease in proliferation and increased
apoptosis in murine tumor tissues with no significant
effect on benign tissue [115]. Currently, AZD3965, which
is an orally administrable second-generation MCT1/MCT2
inhibitor, is being investigated in a Phase I clinical trial for
the treatment of advanced solid tumors, particularly prostate
cancer, gastric cancer, and diffuse large B cell lymphoma
[23].

Metformin and other biguanides have much cross-
reactivity with the lactate transport system as oxidative
phosphorylation inhibitors. These biguanides have received
much attention in anticancer therapy recently and have been
shown to have a synergistic anticancer effect when combined
with inhibition of MCT1, MCT4, or CD147 [116–118]. There
are currently many clinical trials evaluating the effect of
metformin on cancer progression. One study is specifically
evaluating whether metformin can interrupt the metabolic
coupling between stroma and epithelial cancer cells in head
and neck squamous cell carcinoma [119].

MCT4 is a promising target for cancer pharmacotherapy,
but there is no published data on specific MCT4 inhibitors to
date.There is currently a Small Business Innovation Research
Grant awarded to Vettore LLC to develop such an inhibitor
[120]. Other agents which decrease MCT4 levels, such as
siRNA [28, 37], shRNA [43], and N-acetylcysteine [17], have
shown promise in decreasing MCT4 and are being studied as
anticancer therapies.

CD147 has been evaluated as a therapeutic target most
extensively in hepatocellular carcinoma. Metuximab, a mon-
oclonal antibody specific to CD147, has been shown to
decrease HCC recurrence after liver transplantation [121]
or radiofrequency ablation [122] and increased OS in HCC
patients when combined with chemoembolization [123, 124].
Metuximab is being currently studied in a clinical trial
to assess its efficacy in preventing HCC recurrence [22].
Anti-CD147 antibodies have also shown promise in an
ex vivo HNSCC model [125]. Other cancer types, such
as oral SCC [126], HNSCC [127], pancreatic cancer [128],
melanoma [129], and colorectal carcinoma [86, 87], have
shown to be affected by CD147 levels in vitro and in vivo;
however, these results have not resulted in clinical trials to
date.

While our data show that both increased MCT4 expres-
sion in the tumor microenvironment, stroma, or cancer
and increased CD147 expression in cancer cells are both
associated with decreasedOS andDFS, our analysis is limited
by the fact that studies that do not demonstrate statistical
significance are less likely to have published data and that
some studies are not amenable to further statistical analysis.
Indeed several papers reported associations between the
studied biomarkers and OS or DFS simply as “not signifi-
cant.”

Another limitation is the lack of uniformity in the calcu-
lation of positivity of biomarker expression. There was sig-
nificant variation in the methodology by which the included
studies designated specimens as positive for a givenmarker—
some using a binary system and others grading along a
spectrum. Additionally, characterization of the intensity and
density of immunohistochemical staining was also subject to
variability, with some studies using a computed algorithm
and others relying on the graded observations of one or
several pathologists.

An additional limitation is that weighted hazard ratios
cannot be compared due to heterogeneity of the data. For
example, we cannot assess whether MCT4 has a greater
prognostic value when high expression is found in cancer
cells versus stromal cells.

Looking to future studies, the tumor microenvironment
metabolism will be better understood as more data on
both cancer cell and stromal cell marker expression become
available. Further investigation into the interaction among
these biomarkers in the tumor microenvironment will be
necessary to better qualify them as therapeutic targets.
For example, CD147 has multiple potential mechanisms
of actions to induce cancer aggressiveness. For example,
CD147 increases angiogenesis via upregulation of VEGF
and metalloproteinases [130, 131], increased EGFR expres-
sion [127], and increased invasion and metastasis via MMP
upregulation [132]. However, multiple studies have shown
cancer-modifying behaviors of CD147 are intricately related
with expression of MCT1 and MCT4 [86, 87, 128]. Addi-
tionally, cytoplasmic versus membranous CD147 expres-
sion may complicate the prognostic effects of this protein
[85, 92].

In conclusion, this meta-analysis of published stud-
ies identifies elevated MCT4 and CD147 as poor prog-
nostic biomarkers across many cancers. The potential to
exploit these findings to develop novel, effective treat-
ments warrants more large-scale and standardized investiga-
tions.
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