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Abstract

Purpose—Many types of cancer have an underlying spatial incidence distribution. Spatial model 

selection methods can be useful when determining the linear predictor that best describes 

incidence outcomes.

Methods—In this paper, we examine the applications and benefits of using two different types of 

spatial model selection techniques, Bayesian model selection and Bayesian model averaging, in 

relation to colon cancer incidence in the state of Georgia, USA.

Results—Both methods produce useful results that lead to the determination that median 

household income and percent African American population are important predictors of colon 

cancer incidence in the Northern counties of the state while percent persons below poverty level 

and percent African American population are important in the Southern counties.

Conclusion—Of the two presented methods, Bayesian model selection appears to provide more 

succinct results, but applying the two in combination offers even more useful information into the 

spatial preferences of the alternative linear predictors.
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Introduction

Colon cancer (ICD-9-CM code: 153), accompanied by rectum cancer (ICD-9-CM code: 

154.1), is ranked as the third most common tumor type in the United States, with colon 

cancer being the more frequent of the two. Routine screening for this cancer, particularly 

after the age of 50, is encouraged since a good prognosis typically accompanies an early 

diagnosis. Important risk factors of colon cancer include: nutritional inclinations, age, 

smoking status, inflammatory bowel diseases, previous incidence of malignant disease, and 

some genetic traits (1-3). Research examining the geography of some of these risk factors 

suggests that there may be an underlying spatial structure to the incidence of colon cancer 

(4, 5).

The data of interest in this study is the 2003 colon cancer incidence for the 159 counties in 

the state of Georgia, USA. The Area Health Resource Files (AHRF) (6) dataset provides 

ecological predictors useful for explaining the variation in this outcome. The chosen 

predictors are as follows: median household income (in thousands of dollars), percent 

persons below poverty level (PPBPL), unemployment rate of those aged 16 or greater 

(UER), and percent African American (AA) population. Other studies indicate that poverty 

and race are associated with colon cancer incidence (1, 7). Of the chosen variables, there is 

evidence to suggest that median income and PPBPL may be correlated (see section titled 

Data and Linear Predictor Alternatives). This same evidence could also be an indicator of 

the underlying spatial effect that we believe may play a role in colon cancer incidence. The 

age cut off associated with the unemployment variable may be criticized since much of the 

younger population in this age range may not hold steady jobs as they are full time students. 

In the individual level data used to create this county level variable, ‘student’ is an option as 

an employment status.

Selecting appropriate linear predictors is one of the most important aspects of data analysis, 

and this can become very challenging when spatial structures are present in the data. Many 

methods, such as variable selection, transformation selection, model selection, model 

averaging, and other model uncertainty methods, have been proposed and explored to 

achieve these goals (8-12). In this paper, we discuss the application of two types of spatial 

model selection techniques, Bayesian model selection (BMS) and Bayesian model averaging 

(BMA) (12-14), in modeling small area cancer incidence. This is achieved by assigning 

prior probability distributions to each of the possible linear predictors. For BMS, we simply 

choose the linear predictor associated with the largest posterior probability as the true 

model. This type of inference works well when a single model stands out, but if that is not 

the case, BMA is a more appropriate alternative method that can produce a model that 

blends the alternative linear predictors. In the BMA method, an average posterior mean and 

variance are calculated based on the posterior model probabilities. However, this posterior 

mean and variance can be quite difficult to interpret (15). An additional statistical issue 

involving these types of models revolves around the correlated spatial effect, and there have 

been several studies examining the issues related to this (16-18). Our models, however, do 

not involve the correlated spatial random effect in this same way. Rather than using the 

effect as add additive component in the separate linear predictors, we only use this element 
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as a structure within the model weights and probabilities produced with the model selection 

techniques.

This paper is developed as follows. First, we describe the available data and the linear 

predictors of interest. Second, we explain the BMS and BMA methods to be applied. Next, 

we display the results of employing these methods to the colon cancer data using these 

different model selection techniques. Finally, we discuss the results and draw conclusions.

Materials and Methods

Our data for this study involves measures of incidence of colon cancer for each of the 159 

counties in the state of Georgia, USA and predictors from the AHRF dataset. Since our 

outcome of interest is the incidence of colon cancer, a conditionally independent Poisson 

distribution is a reasonable model for these data. This is a commonly assumed model for 

small area counts in disease mapping (19) and is appropriate because the Poisson 

distribution is a discrete frequency distribution that provides the probability of events 

occurring in a given area.

Data and Linear Predictor Alternatives

The colon cancer data comes from the online analytical statistical information system 

(Oasis) of the Georgia Department of Public Health. For the 1332 diagnosed colon cancers 

across the state in the year 2003, there was approximately a mean incidence of 8.38 cases 

per county where the minimum county level value was 0 and the maximum value was 102. 

In these data, there are no missing values at the county level.

The geographical distributions of the chosen predictors is displayed in Figure 1 and suggests 

some spatial clustering. An additional indicator of the underlying spatial structure is made 

evident by the pattern of standardized incidence ratios (SIR) displayed in Figure 2. The SIR 

is calculated as the ratio of the observed colon cancer incidences to the expected rates for 

each of the 159 counties and can be useful as a first step in data analysis (20). Qualitatively, 

for these data, there does appear some spatial structure.

Based on the chosen predictors (median income in thousands - x1, PPBPL - x2, UER - x3, 

and percent AA population - x4), we have employed three possible linear predictors for use 

with both the BMS and BMA methods. Table 1 displays these alternative predictor options. 

The first linear predictor (Alt1) includes all of the covariates. The second (Alt2) includes 

only income and percent AA population. The third and final linear predictor (Alt3) includes 

PPBPL and percent AA population. Note that all of our possible linear predictors contain an 

uncorrelated random effect to aid in accounting for any uncontrolled for parameters or extra 

noise present in the data, and they differ by the predictors included. Additionally, for all of 

these linear predictor alternatives, the prior distributions are such that:
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where i = 1,…,159, d = 1,…, D such that D is the number of linear predictors to be selected 

between, and j = 0,…, J such that J is the number of predictors for the dth model.

We alternate income and PPBPL in the second two linear predictors because there is 

evidence to suggest that they may be correlated. This is not an uncommon assumption as, 

typically, when income is higher, poverty is lower, as shown in Table 2. This table 

illustrates, through individual Poisson model fits, that median income and PPBPL are 

collinear with respect to the incidence of colon cancer outcome because PPBPL becomes 

well estimated when median income is removed from the model. We also note some 

changes in percent AA population when PPBPL is used in place of median income. These 

individual model fits were performed using Bayesian approximation techniques by way of 

the R package INLA (21, 22).

In addition to collinearity, the changes seen in the parameter estimates could also indicate 

that some of these predictors may be more important in certain regions of the county map. 

This indication will be further explored with the application of the BMS and BMA 

techniques. The covariates were standardized prior to fitting the models.

Statistical Methods

In what follows, we describe the methodology associated with the BMS and BMA 

techniques which are implemented using the R package BRugs which calls OpenBUGS (23, 

24).

Bayesian Model Selection

To evaluate a number of alternative linear predictor models, we adopt a method which fits a 

variety of models, and the selection of weights allows each model to be evaluated for its 

appropriateness. In general, for d = 1,…., D models, the following structure applies:
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where φid is our dth model's suggested linear predictor for the ith county complimented with 

a possible uncorrelated random effect. In general, we write φid as  with 

, the vector of J possible covariates (j = 1,…,J), and ψdj an indicator for if the jth predictor 

or random effect is to be included in the linear predictor of the dth model. Hence, for a 

variable not included in the dth model, ψdj would be zero, otherwise it would be one. 

Further, wd is a model indicator, equal to 1 if the dth model is selected and zero otherwise. 

The model selection probability for the dth model in the ith county is given by the probability 

pid. Additionally, in the equations, i ≠ 1 , ni is the number of neighbors for county i, and i ∼ 

1 indicates that the two counties i and 1 are neighbors. This is an intrinsic CAR (23) model, 

which adds the desired spatial structure to the model selection process.

Following the application of BMS, we re-fit the selected linear predictors to the appropriate 

counties to gain interpretable results. Following that, to explicitly interpret the results in 

terms of the regression coefficients, we must back-transform the estimates because we 

standardized the data prior to the model fits.

Bayesian Model Averaging

Bayesian model averaging is similar to the BMS technique described in the previous section 

(14). This method averages over the D possible models, M1,…, MD to find the posterior 

distribution of θ as follows:

where P(Mdi| y1,…,y159) is the prior model probability for model d in county i, and P(θ| y1 ,

…,y159, Md,i) is determined by marginalizing the posterior of the model parameters. The 

posterior probability for model Md,i is given by (11, 14):

Here, a spatial structure is imposed on P(Md,i) by way of the CAR model as we saw with the 

BMS method. Furthermore, following this method, we must re-fit the selected linear 

predictors and back-transform the parameter estimates in the same way as indicated in the 

BMS technique to gain interpretable, comparable results.

Results

The results below illustrate the application of BMS and BMA as described above. Following 

the application of the model selection techniques, we re-fit the selected linear predictors to 

the appropriate counties.
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The results from fitting these models with the real data using the BMS method are displayed 

in Figure 3 and suggest that it may be beneficial to use the second alternative linear 

predictor option in the Northern and Western counties of the state as the weights produced 

for those counties are fairly large. By the same guidelines, the third alternative linear 

predictor option may be optimal for the Southern and Western counties. Given the fact that 

there is some overlap in these results, this indicates that either predictor could be appropriate 

for these counties. Thus, there is not a clear best alternative linear predictor for those 

counties. From these results, we also see that it is beneficial to place correlated covariates in 

separate linear predictors and allow the BMS process to determine which is most appropriate 

across the county map. Additionally, we note that the distribution of the county weights 

across the county map for p1 and p2 are very similar to each other as were the parameter 

estimates, αj1 and αj2, associated with the initial individual model fits shown in Table 2. 

This indicates that median income may have a more palpable relationship with colon cancer 

incidence compared to PPBPL. Furthermore, these results do suggest that there is a spatial 

relationship between these predictors and colon cancer incidence.

This application of the BMA method produced different results from those obtained using 

the BMS method. We use the 0.3 cut off to determine model significance in this instance 

because in a situation where there is no most appropriate model, the model probabilities 

would equal 0.3. This value is determined by summing across the three county weights 

produced by simulation, dividing by 3, and taking the mean of the summed values across all 

counties. Thus, the BMA model probability results shown in Figure 4 suggest that the 

second alternative linear predictor option should be used for the Northern counties while the 

third linear predictor option seems appropriate for the majority of the county map, 

particularly the Southern and Western counties. Additionally, the first alternative linear 

predictor appears important in some of the central counties. Again, we see that there is some 

overlap in the appropriate linear predictors, but in the case of BMA, the differences are 

trivial for the majority of counties. This suggests that the BMA method designates all of the 

linear predictors as interchangeable across the county map. We also continue to see some 

similarities between the distributions produced for p1 and p2 . These similarities are not as 

distinct as they were in the BMS method results, however. Additionally, the results below do 

still suggest that there is a spatial relationship present for colon cancer incidence.

Table 3 illustrates individual model re-fits for the appropriate counties with the selected 

linear predictors based on both the BMS and BMA results. From the results above, first we 

chose to fit the 53 most Northern counties with the second linear predictor and the remaining 

Southern counties with the third alternative linear predictor. In comparison to the initial 

individual model fits in Table 2, in Table 3 we observe increases in the magnitudes of the 

parameter estimates for Alt2 while Alt3 stays roughly the same.

Next, we consider applying the linear predictors based exactly on the BMS results. Here, if 

BMS produced a weight greater than 0.5, that county was included in the model re-fit for the 

associated alternative linear predictor. This is not a strict cutoff for the BMS method, it is 

simply what seemed appropriate for these data as this is the value that all weight would 

acquire if there were no true model. This value is determined in the same way as the BMA 

0.3 cutoff value described above. The appropriate counties selected for Alt2 are considered 
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to be in area A2 while the area for the counties selected with Alt3 is named A3. Based on 

these definitions and in comparison to their respective initial model fits (Table 2), the 

estimates associated with Alt2 and Alt3 decrease in magnitude as well as value. Here, for 

both linear predictors, the parameter estimates associated with percent AA population are no 

longer well estimated.

Discussion

Our results present evidence suggesting that there is a spatial structure in the distribution of 

colon cancer incidence. These results also show that the model selection techniques are 

useful in determination of the appropriate linear predictors for different areas of the county 

map. Additionally, there are many reasons why some of the selected linear predictors may 

not perform as well as expected. These include: 1) the larger size and more separation 

among the Southern counties; 2) the limited number of counties selected when restricting the 

included counties to those with a weight of 0.5 or more; and 3) the strength of association in 

the data: in general, these predictors may not have a very strong relationship with colon 

cancer incidence. Thus, they are difficult to first select and then fit to produce well estimated 

parameter estimates.

Based on the results above, both techniques suggest that median income and percent AA 

population are useful in predicting colon cancer incidence in the Northern counties of 

Georgia. Alternatively, these results also suggest that PPBPL and percent AA population are 

useful in predicting incidence of colon cancer in the Southern counties of the state of 

Georgia. After applying the appropriate transformations defined in the Statistical Methods 

section titled Bayesian Model Selection, the explicit interpretations of the parameter 

estimates from the individual model re-fits are as follows. For the Northern counties, every 

$1000 increase in median income indicates that 1.09 times as many incidences of colon 

cancer occur, and each 1% increase in AA population indicates that 1.02 times as many 

incidences of colon cancer occur. For the Southern counties, every one unit increase in 

PPBPL indicates 0.87 times as many incidences of colon cancer occur, and every one 

percent increase in percent AA population indicates that 1.02 times as many incidences of 

colon cancer occur. These estimates are not very large in magnitude because they are 

incremental, continuous increases per unit of the parameter of interest; they are also 

displayed in Table 4.

For BMS, we receive very clear indications that the linear predictors which include either 

PPBPL or median income are preferred over the linear predictor that includes both. We also 

see that these two linear predictors are clustered in specific areas, with some overlap, of the 

county map. Once we look into re-fitting the selected models, we see that the second linear 

predictor seems to have a slightly stronger relationship with colon cancer incidence than the 

third in their appropriately selected counties. Furthermore, A1 and A2 produce even less 

substantial results. These losses in substantiality may be due to the limited number of 

counties selected or the smaller size and closer proximity to each other involved with the 

counties in the Northern part of the state, or both.
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Some of our simulation studies have suggested that the BMA technique does not perform as 

well in detecting smaller levels of association in the data (25). The results here also suggest 

that this may be an issue for these data. Our predictors are not among the most important 

risk factors mentioned previously, thus they are not considered of high association with 

incidence of colon cancer. BMA does not appear to choose one linear predictor clearly over 

the other, though it does seem to have a slight preference of the second two alternatives in 

comparison to the first. In general, BMA will not produce probabilities of the same 

magnitude as the weights produced by BMS because they are scaled such that they add to 1. 

This leads to slightly more interpretable results produced with BMA. Regarding measures of 

goodness of fit measures, because in BMA each of the linear predictors are fit individually 

then averaged to create the averaged posterior, this method offers the ability to examine how 

well each of the alternative linear predictors perform, while BMS does not.

Both BMS and BMA techniques illustrate the importance of keeping collinear variables in 

separate alternative linear predictors. In both sets of results, we see that the first alternative 

linear predictor, which contains two collinear predictors, is somewhat under-stimulated in 

comparison to the other two alternatives. This is most distinguished in the BMS results. 

Additionally, the results given here indicate the importance of using these spatial models for 

incidence of colon cancer. We received meaningful, important results when performing the 

initial individual, non-spatial model fits, but we gain even more information by allowing the 

model selection techniques to determine the appropriate linear predictor for each individual 

county. Furthermore, the model re-fits illustrate how these techniques perform better when 

the regions of interest are smaller and closer together. This issue has been noted in our 

simulation studies as well. Both model selection techniques suggested that Alt2 was a good 

choice for the Northern counties, and when we re-fit that linear predictor for only those 

Northern counties, we saw the parameter estimates become even more substantial. For the 

A1 and A2 counties, however, this was not as clear even though we still gain some 

meaningful results for these counties.

Conclusion

Based on this exploration of the spatial structure of colon cancer incidence, our findings 

suggest that there is much information to gain by employing spatial model selection 

techniques to determine the appropriate linear predictor that best explains the variation in the 

data. Through the application of these techniques, we determined the important predictors 

for the different areas of the county map, and these indicate that median income and percent 

AA population are important predictors of colon cancer incidence in the Northern counties 

of the state while PPBPL and percent AA population are important for the Southern counties 

of the state. By employing these two methods in combination, we were able to detect some 

interesting and important aspects of these data.
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Abbreviations

AHRF Area Health Resources Files

AA African American

PPBPL percent persons below poverty level

UER unemployment rate of those age 16+

SIR standardized incidence ratio

BMS Bayesian model selection

BMA Bayesian model averaging

CAR conditional autoregressive
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Figure 1. 
Geographical distribution of predictors from the AHRF dataset.
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Figure 2. Map of the Standardized Incidence Ratio for the 2003 colon cancer data
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Figure 3. 
County-specific model selection probabilities corresponding to Alt1, Alt2 and Alt3, based 

on the BMS procedure.
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Figure 4. 
County probabilities based on the BMA procedure.
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Table 1
Alternative linear predictor contents

Model Contents

Alt1 α0 + α1x1 + α2x2 + α3x3 + α4x4 + ui

Alt2 α0 + α1x1 + α4x4 + ui

Alt3 α0 + α2x2 + α4x4 + ui
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Table 2

Individual fits of possible linear predictors. Posterior mean and standard deviations are displayed.

Alt1 Mean (SD) Alt2 Mean (SD) Alt 3 Mean (SD)

Intercept 1.49 (0.08)* 1.49 (0.08)* 1.48 (0.09)*

Median income (x1) (in thousands) 0.69 (0.19)* 0.65 (0.09)* ---

PPBPL (x2 ) 0.10 (0.23) --- -0.69 (0.11)*

UER (x3 ) -0.14 (0.10) --- ---

% AA population (x4 ) 0.28 (0.13)* 0.26 (0.09)* 0.41 (0.12)*

*
Indicates that a predictor is well estimated or ‘significant’ and SD stands for standard deviation.

Ann Epidemiol. Author manuscript; available in PMC 2017 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Carroll et al. Page 17

Table 3

Selected linear predictor re-fits.

Counties included (number) North (53) Mean (SD) South (106) Mean (SD) A2 (50) Mean (SD) A3 (48) Mean (SD)

Linear Predictor Alt2 Alt3 Alt2 Alt3

Intercept 1.50 (0.15)* 1.49 (0.10)* 1.51 (0.11)* 1.52 (0.11)*

Median Income (in thousands) 0.87 (0.17)* --- 0.51 (0.13)* ---

PPBPL --- -0.63 (0.13)* --- -0.43 (0.18)*

% AA population 0.28 (0.15)* 0.36 (0.14)* 0.08 (0.12) -0.01 (0.19)

*
Indicates that a predictor is well estimated or ‘significant,’ SD stands for standard deviation, and the definitions of A2 and A3 are as follows: The 

appropriate counties selected for Alt2 are considered to be in area A2 while the area for the counties selected with Alt3 is named A3.
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Table 4

Transformed mean parameter estimates for linear predictor re-fits.

Counties included (number) North (53) South (106) Predictor Standard Deviation

Linear Predictor Alt2 Alt3 ---

Median Income (in thousands) exp (0.87 / 9.75) = 1.09 --- 9.75

PPBPL --- exp (-0.63 / 4.58) = 0.87 4.58

% AA population exp (0.28 /17.47) = 1.02 exp (0.36 /17.47) = 1.02 17.47
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