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Abstract

Wright’s F-statistics, and especially FST, provide important insights into the evolutionary 

processes that influence the structure of genetic variation within and among populations, and they 

are among the most widely used descriptive statistics in population and evolutionary genetics. 

Estimates of FST can identify regions of the genome that have been the target of selection, and 

comparisons of FST from different parts of the genome can provide insights into the demographic 

history of populations. For these reasons and others, FST has a central role in population and 

evolutionary genetics and has wide applications in fields that range from disease association 

mapping to forensic science. This Review clarifies how FST is defined, how it should be 

estimated, how it is related to similar statistics and how estimates of FST should be interpreted.

Nearly every plant or animal species includes many partially isolated populations. As a 

result of genetic drift or divergent natural selection, such populations become 

genetically differentiated over time. For example, recent analyses based on more than 370 
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short tandem repeat loci1 (microsatellites) and 600,000 SNPs2 suggest that only 5–

10% of human genetic diversity is accounted for by genetic differences among populations 

from major geographical regions. These results indicate that there are far more similarities 

among geographically distinct human populations than differences. But what does it mean to 

say that 5–10% of diversity is accounted for by differences among populations, and how is 

this figure derived? The short answer is that the estimate of FST among human populations 

sampled from these regions is 0.05 for the microsatellite data and 0.10 for the SNP data. 

However, this answer helps only if one understands what FST is, how it is estimated from 

data and what it means to get two different estimates for the same set of populations when 

different genetic markers are used.

Working independently in the 1940s and 1950s, Sewall Wright3 and Gustave Malécot4 

introduced F-statistics as a tool for describing the partitioning of genetic diversity within and 

among populations. In a paper published in 1931 (REF. 5), Wright had already provided a 

comprehensive account of the processes that cause genetic differentiation among 

populations. He showed that the amount of genetic differentiation among populations has a 

predictable relationship to the rates of important evolutionary processes (migration, mutation 

and drift). For example, large populations among which there is much migration tend to 

show little differentiation, whereas small populations among which there is little migration 

tend to be highly differentiated. FST is a convenient measure of this differentiation, and as a 

result FST and related statistics are among the most widely used descriptive statistics in 

population and evolutionary genetics.

But FST is more than a descriptive statistic and a measure of genetic differentiation. FST is 

directly related to the variance in allele frequency among populations and, conversely, to 

the degree of resemblance among individuals within populations. If FST is small, it means 

that the allele frequencies within each population are similar; if it is large, it means that the 

allele frequencies are different. If natural selection favours one allele over others at a 

particular locus in some populations, the FST at that locus will be larger than at loci in which 

among-population differences are purely a result of genetic drift. Genome scans that 

compare single-locus estimates of FST with the genome-wide background might therefore 

identify regions of the genome that have been subjected to diversifying selection6–8. 

Alternatively, if the demographic history of populations affects the genetic variation on sex 

chromosomes in a different way from the genetic variation on autosomes, the estimates of 

FST derived from sex chromosome markers might be different from those derived from 

autosomal markers9.

Estimates of FST are also important in association mapping of human disease genes and in 

forensic science. The same evolutionary processes that increase differentiation among 

populations also increase the similarity among individuals within populations. Therefore, 

FST must be considered when allele frequencies are compared between cases and controls to 

ensure that the differences between them are greater than expected by chance. Similarly, the 

probability of a match between a suspect and a crime scene sample is specific to the set of 

people who might reasonably be expected to be sources of the sample. However, defining 

this set is difficult, so a ‘θ correction’ is applied to population frequencies to accommodate 

variation among subpopulations. The θ correction depends on the value of FST.
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In this review, we discuss how FST is defined, describe approaches for estimating it from 

data and illustrate several ways in which analysis of FST can provide insights into the 

genetic structure and evolutionary dynamics of populations. In addition, we discuss four 

statistics that are related to FST (GST, RST, ΦST and QST), clarify the differences among 

them and recommend when each should be used.

These additional statistics partition genetic diversity into within- and among-population 

components. of the four, GST is most closely related to FST, and it has been widely used as a 

measure of genetic differentiation among populations. However, as we describe below, GST 

is an appropriate measure of genetic differentiation only when the contribution of genetic 

drift to among-population differences is not of interest. As a result, the contexts in which it 

is useful are limited. By contrast, RST (for microsatellite data) and ΦST (for molecular 

sequence data) are useful in a wide range of contexts in which it is important to account for 

the mutational ‘distances’ among alleles, and QST is useful in the analysis of continuously 

varying traits.

Definitions

Wright introduced FST as one of three interrelated parameters to describe the genetic 

structure of diploid populations3. These parameters are: FIT, the correlation between 

gametes within an individual relative to the entire population; FIS, the correlation between 

gametes within an individual relative to the subpopulation to which that individual belongs; 

and FST, the correlation between gametes chosen randomly from within the same 

subpopulation relative to the entire population. We describe here how these parameters are 

defined in terms of the departure of genotype frequencies from Hardy–Weinberg 

proportions.

Deriving measures of genetic diversity

As an example of how to calculate genetic diversity, consider two populations that are 

segregating for two alleles at a single locus. The frequency of allele A1 in the first 

population is labelled as p1 and its frequency in the second population is labelled as p2. The 

frequency of genotype A1A1 in the first population is labelled as x11,1, the frequency of 

genotype A1A2 in the first population is labelled as x12,1, and so on. The genotype 

frequencies in the two populations are given by the following set of equations:
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(1)

In this context, f1 and f2 are often referred to as the within-population inbreeding 

coefficients, but this term can be misleading. In practice, f is a measure of the frequency of 

heterozygotes compared with that expected when genotypes are in Hardy–Weinberg 

proportions. Inbreeding leads to a deficiency of heterozygotes relative to Hardy–Weinberg 

expectations, so when there is inbreeding in both populations, f1 and f2 will have positive 

values. But if individuals avoid inbreeding or if there is heterozygote advantage, then 

heterozygotes will be more common than expected under Hardy–Weinberg expectations, 

and f1 and f2 will be negative. In short, f1 and f2 are measures of how different the genotype 

proportions within populations are from Hardy–Weinberg expectations, and positive values 

of f indicate a deficiency of heterozygotes, whereas negative values indicate an excess.

Now consider the genotype frequencies in a combined sample that consists of a proportion c 

of individuals from the first population and a proportion 1 – c of individuals from the second 

population. Similar to the way in which the genotype frequencies in each population differ 

from Hardy–Weinberg expectations based on the allele frequency in each population, 

genotype frequencies in the combined sample differ from Hardy–Weinberg expectations 

based on the average allele frequency. The allele frequencies are given by:

(2)

in which π = cp1 + (1 – c)p2 is the average allele frequency for A1 in the combined sample 

and F is the total inbreeding coefficient10. F can be expressed as:

(3)

in which f = cf1 + (1 – c)f2 is the average within-population departure from Hardy–Weinberg 

expectations and θ is a measure of allele frequency differentiation among populations (see 

BOX 1 for a summary of the mathematical notation used in this review). We can define θ as:
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(4)

in which  is the variance in allele frequency among populations. π(1 – π) is the variance in 

the allelic state for an allele chosen randomly from the entire population, so it can be 

regarded as a measure of genetic diversity in the entire population. θ can therefore be 

interpreted as the proportion of genetic diversity that is due to the differences in allele 

frequency among populations.

Wright first developed these ideas in the context of a model of discrete populations, in 

which each population is the same size and receives immigrants from all other populations 

at the same rate5. However, the same statistical argument can be applied to any partitioning 

of genetic diversity in which the populations differ in allele frequency, whether or not those 

populations are discrete11. Therefore, when we use θ as a purely descriptive statistic that 

describes the partitioning of genetic diversity among ‘populations’, we do not need to make 

assumptions about whether the ‘populations’ we sample are discrete or about the 

evolutionary processes that might have led to differences among them. Nonetheless, other 

methods of analysis could be more informative in continuously distributed populations12–14.

Linking f, θ and F to Wright’s F-statistics

Using a different approach, Cockerham10,15 showed that f, θ and F can also represent 

intraclass correlation coefficients. He showed that f is the correlation between alleles within 

individuals relative to the population to which they belong, θ is the correlation between 

alleles within populations relative to the combined population and F is the correlation 

between alleles within individuals relative to the combined population. These are the 

definitions that Wright gave for FIS, FST and FIT, respectively. In short, f and FIS can be 

thought of either as the average within-population departure from Hardy–Weinberg 

expectations or as the correlation between alleles within individuals relative to the 

population to which they belong. θ and FST can be thought of either as the proportion of 

genetic diversity due to allele frequency differences among populations or as the 

correlations between alleles within populations relative to the entire population. F and FIT 

can be thought of either as the departure of genotype frequencies in the combined sample 

from Hardy–Weinberg expectations or as the correlation between alleles within individuals 

relative to the combined sample.

In Wright’s notation, subscripts refer to a comparison between levels in a hierarchy: IS refers 

to ‘individuals within subpopulations’, ST to ‘subpopulations within the total population’ 

and IT to ‘individuals within the total population’16. The hierarchy in equation 1 can be 

extended indefinitely to accommodate such structures. For example, Wright16 describes 

variation in the frequency of the Standard chromosome in Drosophila pseudoobscura in the 

western United States at the level of demes (D; local populations), regions (R; groups of 

several demes), subdivisions (S; groups of several regions) and the total range (T). The 

corresponding F-statistics are related in the same multiplicative way as f, θ and F:
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(5)

In this scheme, FDR measures the differentiation among demes within a region, FRS 

measures the differentiation among regions within subdivisions and FST measures the 

differentiation among subdivisions within the total range.

If we return to the examples of genetic differentiation among human populations that were 

mentioned at the beginning of this review, we can now see that an estimate for FST or θ of 

0.05 (from microsatellites) and 0.10 (from SNPs) suggests that only 5–10% of human 

genetic diversity is a result of genetic differentiation among human populations. What might 

be surprising is that the two estimates are derived from the same set of populations — this 

indicates that the amount of genetic differentiation among human populations is greater at 

SNP loci than at microsatellites.

Estimation

Statistical sampling

When Wright and Malécot introduced F-statistics, they did not distinguish between the 

parameters defined in the preceding section and the estimates of those parameters that we 

make from data. Not making this distinction is similar to confusing the mean height of the 

human population with an estimate of the mean height calculated from a sample of the 

population. Estimates of height must account for the variation associated with taking a finite 

sample from a population. New samples from the same population will have different 

characteristics. We refer to this variation as statistical sampling17 (BOX 2). In the context of 

F-statistics, statistical sampling refers to the variation associated with collecting genetic 

samples from a fixed set of populations that have fixed but unknown genotype frequencies. 

The magnitude of variation associated with statistical sampling can be reduced by increasing 

the size of within-population samples.

Genetic sampling

There is an important difference between estimates made by F-statistics and estimates of 

height. In addition to accounting for statistical sampling, F-statistics must account for 

differences among the sets of populations that have been sampled. These differences might 

arise either because the populations that are sampled are only a subset of all of the 

populations that could be sampled (statistical sampling of populations rather than statistical 

sampling of genotypes within populations) or because the populations that are sampled 

represent only one possible outcome of an underlying stochastic evolutionary process. even 

if we could take the set of sampled populations back to a previous point in time and re-run 

the evolutionary process under all of the same conditions (the same population sizes, 

mutation rates, migration rates and selection coefficients), the genotype frequencies in the 

new set of populations would differ from those in the populations that were actually 

sampled18. This genetic sampling17 is an unavoidable consequence of genetic drift. The 

magnitude of variation associated with genetic sampling cannot be reduced by increasing 

either the number of individuals sampled within populations or the number of populations 
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sampled. Indeed, the characteristics of genetic sampling are shown by estimates of F-

statistics.

In simple cases, it might make sense to estimate statistical parameters using simple functions 

of the data, such as the sample mean. In more complicated cases, such as those presented by 

F-statistics, it is useful to have well-defined approaches for constructing estimates. 

Statisticians have developed several different approaches for estimating parameters from 

data19. Three widely used approaches are the method of moments, the method of maximum 

likelihood and Bayesian methods.

Approaches to estimating FST: method-of-moments estimates

The method of moments produces an estimate by finding an algebraic expression that makes 

the expected value of certain sample statistics equal to simple functions of the parameters 

that are being estimated (as explained in more detail below)19. Method-of-moments 

estimates are designed to have low bias in the sense that if samples are taken repeatedly 

from the same population, the average of the corresponding sample estimates will be close 

to the unknown population parameter. These estimates have the additional advantages that 

they are easy to calculate and do not require any assumptions about the shape of the 

distribution from which the sample is drawn, other than that it has a mean and variance.

For F-statistics, method-of-moments estimates17,20,21 are based on an analysis of variance 

(ANOVA) of allele frequencies. ANOVA is a statistical method that tests whether the means 

of two or more groups are equal and can therefore be used to assess the degree of 

differentiation between populations. Briefly, if the variance among populations is the same 

as the variance within populations, there is no population substructure. ANOVA calculations 

are framed in terms of mean squares. Therefore, in practice, one calculates the expected 

mean square among populations (that is, the variance of sample allele frequencies around 

the mean allele frequency over all populations) and the expected mean square within 

populations (that is, the heterozygosity within populations when genotypes are in Hardy–

Weinberg proportions) averaged over all possible samples (statistical sampling) from all 

possible populations with the same evolutionary history (genetic sampling). These expected 

values are then equated to the observed mean squares that are calculated from a sample, and 

the resulting set of equations is solved for the corresponding variance components. 

Following the work of Cockerham10,22, F-statistics are defined in terms of these variance 

components (BOX 3).

Approaches to estimating FST: maximum-likelihood and Bayesian estimates

In contrast to method-of-moments estimates, likelihood and Bayesian estimates are difficult 

to calculate and require the specification of the probability distribution from which the 

sample was drawn. Once this probability distribution is specified, we can calculate a 

quantity called the likelihood, which is proportional to the probability of our observed data 

given those parameters. A maximum-likelihood estimate for the parameters is obtained by 

finding the values of the unknown parameters that maximize that likelihood19. In most 

cases, maximum-likelihood estimates are biased. Nonetheless, they typically have a smaller 

variance and deviate less from the unknown population parameter than the corresponding 
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method-of-moments estimates19. For these and other reasons, the method of maximum 

likelihood is the most widely used technique for deriving statistical estimators23,24.

Bayesian estimates share many of the advantages associated with maximum-likelihood 

estimates because they use the same likelihood to relate the data to unknown parameters. 

However, they differ from maximum-likelihood estimates because the likelihood is modified 

by placing prior distributions on unknown parameters, and estimates are based on the 

posterior distribution, which is proportional to the product of the likelihood and the 

prior distributions. Both maximum-likelihood and Bayesian methods suffer the disadvantage 

that simple algebraic expressions for the estimates are rarely available. Instead, the estimates 

are obtained through computational methods. Because the Markov chain Monte Carlo 

methods (MCMC methods) used for analysis of Bayesian models do not require a unique 

point of maximum likelihood to be identified, Bayesian estimates can be obtained even in 

complex models with thousands or tens of thousands of parameters, for which numerical 

maximization of the likelihood would be difficult or impossible26.

For F-statistics, the likelihood approach27,28 specifies a probability distribution that 

describes the variation in allele frequencies among populations and a multinomial 

distribution that describes genotype samples within populations. θ is related to the 

variance of the probability distribution that describes the among-population distribution of 

allele frequencies, and the genotype frequencies are determined by the allele frequencies in 

each population and f. Estimates are obtained by maximizing the likelihood function with 

respect to θ, f and the allele frequencies. The Bayesian approach uses the same likelihood 

function, and after placing appropriate prior distributions on f, θ and allele frequencies, 

MCMC methods are used to sample from the posterior distributions of f and θ.

Comparing the methods

With more than 5,000 citations, the moments method described by Weir and Cockerham20 

has been widely used, partly because of its robustness and partly because it is simple to 

implement. The maximum-likelihood methods also give simple equations when the 

distribution of allele frequencies among populations is assumed to be normal27, but only if 

the sample sizes are equal29. Bayesian methods allow probability statements to be made 

about F-statistics, and extensions of these methods allow the relationship between F-

statistics and demographic or environmental covariates to be explored in the context of a 

single model30. However, implementations of Bayesian methods may be computationally 

demanding.

A simple data set is used in BOX 3 to illustrate the slightly different estimates obtained from 

each approach. Estimates of FST using moments and Bayesian methods have not been 

extensively compared, but our experience suggests that the differences in estimates are small 

when the average number of individuals per population is moderate to large (>20), when the 

number of populations is moderate to large (>10–15) and when most populations are 

polymorphic. When differences arise, they reflect differences in the treatment of allele 

frequency estimates when alleles are rare or sample sizes are small. The Bayesian approach 

‘smooths’ population allele frequencies towards the mean24 and does so more aggressively 
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when alleles are rare or sample sizes are small. The moments approach treats the sample 

frequencies as fixed quantities without such smoothing. The simulation results in REF. 31 

are consistent with this interpretation, although they compare Bayesian estimates with 

estimates of GST
32, which does not account for genetic sampling.

Related statistics

Population geneticists have proposed several statistical measures that are related to FST. 

Here, we describe four of them: GST, RST, ΦST and QST. Nei33 introduced GST as a measure 

of population differentiation. We discuss its relationship to FST in BOX 2. Haplotype and 

microsatellite data contain information not only about the frequency with which particular 

alleles occur but also on the evolutionary distance between them. Statistics such as ΦST (for 

haplotype data) and RST (for microsatellite data) are intended to take advantage of this 

additional information and to provide greater insight into the patterns of relationships among 

populations. Whereas FST, ΦST and RST all apply to discrete genetic data, QST is an 

analogous statistic for continuously varying traits. If the markers used to estimate FST can be 

presumed to be selectively neutral, comparing an estimate of QST with an estimate of FST 

can provide investigators with evidence that natural selection has shaped the pattern of 

variation in the quantitative trait.

RST, ΦST and AMOVA

The methods for estimating f, θ and F described above are appropriate for multi-allelic data 

when the alleles are regarded as equivalent to one another. However, when the data consist 

of variation at microsatellite loci or of nucleotide sequence (haplotype) information, related 

methods that allow mutation rates to differ between different pairs of alleles might be more 

appropriate. Excoffier et al.34 introduced analysis of molecular variance (AMOVA) for 

analysis of haplotype variation. AMOVA is based on an analysis-of-variance framework 

that is analogous to the one developed by Weir and Cockerham20. The mean squares in an 

AMOVA analysis are based on a user-specified measure of the evolutionary distance 

between haplotypes, and AMOVA leads to quantities that are analogous to classical F-

statistics (BOX 1). Similarly, the mean squares used to calculate RST
35,36 are based on 

differences in the number of repeats between alleles at each microsatellite locus. Although 

the result of both analyses is a partitioning of genetic variance into within- and among-

population components analogous to FST, neither has a direct interpretation as a parameter 

of a statistical distribution. Instead, they estimate an index that is derived from two different 

statistical distributions: the distribution of allele (haplotype or microsatellite) frequencies 

among populations and the distribution of evolutionary distances among alleles. 

Nonetheless, such measures may be thought of as estimating the additional time since the 

common ancestry of randomly chosen alleles that accrues as a result of populations being 

subdivided37,38, provided that the measure of evolutionary distance between any two alleles 

is proportional to the time since their most recent common ancestor. Extensive simulation 

studies have shown that estimates of RST may be unreliable unless many loci are used39–41, 

but unlike FST the expected value of RST does not depend on the rate of mutation. Estimates 

of ΦST or RST may be useful when mutations have contributed substantially to allelic 

differences among populations, but their usefulness may be limited by the extent to which 
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the mutational model underlying the statistics matches the actual mutational processes 

occurring in the system39.

QST and polygenic variation

Spitze42 noted that another quantity analogous to θ can be estimated for continuously 

varying traits. Specifically, we can define:

(6)

in which  is the additive genetic variance among populations and  is the 

additive genetic variance within populations.  can be estimated from between-population 

crosses, and  can be estimated from within-population crosses. Because the total variance 

in between-population crosses is , QST is the proportion of additive genetic 

variance in a trait that is due to among-population differences. If the trait is selectively 

neutral, if all genetic variation is additive and if the mutation rates at loci contributing to the 

trait are the same as those at other loci, we expect QST and FST to be equal43,44. Comparing 

the magnitude of QST and FST may therefore indicate whether a particular trait has been 

subject to stabilizing selection (QST<FST) or diversifying selection (QST>FST). 

However, because of the uncertainties associated with estimates of QST and FST, such 

comparisons are likely to be useful only when they are available for a moderately large 

number of populations (>20)45. Furthermore, caution is necessary when suggesting that a 

comparison of QST and FST provides evidence for stabilizing selection because non-additive 

genetic variation tends to change QST, even for a neutral trait46.

Applications

F-statistics include both FST, which measures the amount of genetic differentiation among 

populations (and simultaneously the extent to which individuals within populations are 

similar to one another), and FIS, which measures the departure of genotype frequencies 

within populations from Hardy–Weinberg proportions. Here, we focus on the applications of 

FST for several reasons (BOX 4).

Estimating migration rates

Wright5 showed that if all populations in a species are equally likely to exchange migrants 

and if migration is rare, then:

(7)

in which m is the fraction of each population composed of migrants (the backward migration 

rate)47 and Ne is the effective population size of local populations48. Because of 

this simple relationship, it is tempting to use estimates of FST from population data to 

estimate Nem.
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Unfortunately, it has been recognized for many years that this simple approach to estimating 

migration rates might fail49. The most obvious reason for this failure is that populations are 

rarely structured so that all populations exchange migrants at the same rate, which causes 

some populations to resemble one another more than others. If differentiation between 

populations is solely a result of isolation by distance50, for example, then the slope of the 

regression of FST/(1 – FST) on either the logarithm of between-population distance (for 

populations distributed in two dimensions) or the between-population distance alone (for 

populations in a linear habitat) is proportional to Deδ
2, in which De is the effective density of 

the population (De = Ne/area) and δ2 is the mean squared dispersal distance51. However, if 

differentiation is the result not only of isolation by distance but also of natural selection or if 

the drift–migration process has not reached a stationary point, the slope of this relationship 

cannot be interpreted as an estimate of migration. Moreover, a pure migration–drift process, 

a pure drift–divergence process or a combination of the two could produce the same 

distribution of allele frequencies. Indeed, migration–drift, drift–divergence or a combination 

of the two can account for any pattern of allele frequency differences among populations52. 

Therefore, although pairwise estimates of FST (or ΦST or RST) provide some insight into the 

degree to which populations are historically connected37,38, they do not allow us to 

determine whether that connection is a result of ongoing migration or of recent common 

ancestry.

There are additional difficulties with interpreting estimates of FST. Different genetic 

markers may give different estimates of FST for many reasons, and to derive an estimate of 

migration rates from FST, one must assume that the particular set of markers that are chosen 

have the expected relationship with Nem. This may often be problematic. For example, 

differences between FST estimates from human microsatellites (0.05) and SNPs (0.10) 

cannot reflect differences in migration rate because both estimates are derived from the same 

set of individuals and the same set of populations — the Human Genome Diversity Project–

Centre d’Étude du Polymorphisme Humain sample1,2,53. The use of coalescent-based 

approaches (see later section) that incorporate models of the mutational process is one 

method of overcoming this difficulty54–56.

Inferring demographic history

Population-specific or pairwise estimates of FST may provide insights into the demographic 

history of populations when estimates are available from many loci. For example, Keinan et 

al.9 reported pairwise estimates of FST for 13,600–62,830 autosomal SNP loci and 1,100–

2,700 X chromosome SNP loci in human population samples from northern Europe, East 

Asia and West Africa. Because there are four copies of each autosome in the human 

population for every three copies of the X chromosome, one would expect there to be 

greater differentiation at X chromosome loci than at autosomal loci. Specifically, for two 

populations that diverged t generations ago, one might expect:

(8)

in which Ne is the effective size of the local populations. Therefore, if Q is defined as:
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(9)

Q is approximately:

(10)

Q is approximately 0.75 for comparisons between East Asians and northern Europeans (Q = 

0.72 ± 0.05), but it is substantially smaller for comparisons between West Africans and other 

populations in the sample (Q = 0.58 ± 0.03 for the comparison with northern Europeans and 

Q = 0.62 ± 0.03 for the comparison with East Asians). These results suggest either sex-

biased dispersal (long-range immigration of males from Africa after non-African 

populations were initially established) or selection on X chromosome loci after the 

divergence of African and non-African populations.

Identifying genomic regions under selection

Similarly, locus-specific estimates of FST may identify genomic regions that have been 

subject to selection. The logic is straightforward; the pattern of genetic differentiation at a 

neutral locus is completely determined by the demographic history of the populations (that 

is, the history of population expansions and contractions), the mutation rates at the loci 

concerned and the rates and patterns of migration among the populations6,57–60. In a typical 

multilocus sample, it is reasonable to assume that all autosomal loci have experienced the 

same demographic history and the same rates and patterns of migration. If the loci also have 

similar mutation rates and if the variation at each locus is selectively neutral, the allelic 

variation at each locus represents a separate sample from the same underlying stochastic 

evolutionary process. loci showing unusually large amounts of differentiation may indicate 

regions of the genome that have been subject to diversifying selection, whereas loci showing 

unusually small amounts of differentiation may indicate regions of the genome that have 

been subject to stabilizing selection58. Several groups have used such genome scans to 

examine patterns of differentiation in the human genome.

By comparing locus-specific estimates of FST with the genome-wide distribution, Akey et 

al.6 identified 174 regions (out of the 26,530 examined) that showed what they called 

‘signatures of selection’ in the human genome. of these loci, 156 showed unusually large 

amounts of differentiation (suggesting diversifying selection) and 18 showed unusually 

small amounts of differentiation (suggesting stabilizing selection). By contrast, when Weir 

et al.7 examined the high-resolution Perlegen (~1 million SNPs) and phase I HapMap (~0.6 

million SNPs) data sets in humans to examine locus-specific estimates of FST, they also 

found large differences in FST among loci, but their analyses suggested that the very high 

variance associated with single-locus estimates of FST precluded using these estimates to 

detect selection. Both sets of investigators noted a particular problem with single-locus 

estimates when using high-resolution SNP maps: the high correlation between FST estimates 

when loci are in strong gametic disequilibrium makes it difficult to determine whether the 

FST at any particular SNP is markedly different from expectation.
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Although single-locus estimates of FST are highly uncertain, simulation studies suggest that 

when loci are inherited independently, background information about a few hundred loci is 

sufficient to allow the reliable identification of loci that are subject to selection when a 

suitable criterion for detecting ‘outliers’ is used8,58,61. Although few loci are falsely 

identified as being subject to selection when they are neutral, genome scans using FST may 

often fail to detect selection when it is present. For example, when a single allele is strongly 

favoured in all populations, not only is FST expected to be nearly zero but variation is also 

expected to be nearly non-existent, rendering estimates of FST either highly unreliable or 

unobtainable. Similarly, when selection is weak, data from many loci are needed to 

recognize that the estimate of FST at the locus involved is unusual. More importantly, as 

mentioned above, high-resolution genome scans must account for the statistical association 

between closely linked loci. Guo et al.8 used a conditional autoregressive scheme 

to identify 57 loci that showed unusually large amounts of among-population differentiation 

in a sample of 3,000 SNP loci on human chromosome 7 separated by only 860 nucleotides 

on average. Sixteen of these markers are associated with LEP, a gene encoding a leptin 

precursor that is associated with behaviours that influence the balance between food intake 

and energy expenditure62 (FIG. 1). Moreover, association studies in one French population 

had previously suggested a relationship between one of the SNPs identified as an outlier in 

this study and obesity63.

Forensic science and association mapping

In forensic science, matching a genetic profile taken from a suspect with a profile taken 

from a stain left at a crime scene serves as evidence linking the suspect to the crime. To 

quantify the strength of this evidence, it is useful to determine the probability of a random 

match — that is, the probability that the genetic profile at the crime scene matches that of 

the suspect if the suspect was not the source of the stain. In some cases, two people, the 

suspect and the person who left the crime sample, may belong to a subpopulation for which 

there is no specific allele frequency information. In such a case, we can use a θ correction64 

to calculate the probability of a match based on allele frequency information from a larger 

population of which the subpopulation is a part. The probability of a random match takes 

into account the allele frequency variation among subpopulations within the wider 

population for which allele frequencies are available. For example, if the matching profile 

consisted of a homozygote AA at a single locus and if pA is the population frequency of 

allele A, the probability that the crime profile is AA given that the suspect is AA and the 

suspect is not the source of the stain is (REF. 65):

(11)

There is a similar equation for heterozygotes, and these θ-correction results are multiplied 

over loci. The 1996 National research Council report66 recommended using θ = 0.01 except 

for small isolated subpopulations, for which they suggested that a value of θ = 0.03 was 

more appropriate. The practical effect of the θ correction is that the numerical strength of the 

evidence against a suspect is reduced. If pA = 0.01, for example, the uncorrected probability 

of a match is 0.0001. However, with θ = 0.01, the probability of a match is an order of 
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magnitude larger — 0.0012. With θ = 0.03, it is even larger — 0.0064. Therefore, it is much 

less surprising to see a match when we take account of the population substructure than 

when we ignore it.

In association mapping, case–control studies compare the allele frequencies at genetic 

markers (generally SNPs) between groups of people with a disease and groups who do not 

have the disease. When frequencies at a marker locus differ between the groups, it is 

interpreted as evidence for gametic disequilibrium between the marker and a disease-related 

gene. This in turn suggests that the marker and disease-related genes are in close proximity 

on the same chromosome. However, as many authors have pointed out, population 

substructure unrelated to disease status could cause the same kind of allele frequency 

difference67–70. The genomic control method is one way to account for population 

substructure. It uses background estimates of FST to control for subpopulation differences 

that are unrelated to disease status67,68. If cases and controls have different marker allele 

frequencies for reasons unconnected with the disease, as would be shown by frequency 

differences across the whole genome, an uncorrected case–control test would give spurious 

indications of marker–disease associations.

Relationship to coalescent-based methods

When Kingman introduced the coalescent process to population genetics just over 25 years 

ago71,72, it revolutionized the field. Many approaches to the analysis of molecular data, 

particularly molecular sequence and SNP data, now take advantage of the conceptual, 

computational and analytical framework that coalescent-based methods provide73–79. For 

example, whereas F-statistics provide only limited insight into the rates and patterns of 

migration, statistics based on the coalescent process can provide insights into the rates of 

mutation, migration and other evolutionary processes. Coalescent analysis is based on 

maximizing the likelihood of a given sample configuration or sampling from the 

corresponding Bayesian posterior distribution. The likelihood is constructed from the 

genealogical histories for the sample that are consistent with the unknown evolutionary 

parameters of interest; for example, the size of the population or populations from which the 

sample was taken, or the history of population size changes, mutation rates, recombination 

rates or migration rates55,80–86. Coalescent analyses are likely to provide precise estimates 

of effective population size, mutation rates and migration rates when certain conditions are 

met — that is, when the model used for analysis is consistent with the demographic history 

of populations from which samples are collected, with the migration patterns among 

populations in the sample and with the mutational processes that generated allelic 

differences in the sample, and also when it is reasonable to presume that the drift–mutation–

migration process has reached an evolutionary equilibrium54,73. When these assumptions are 

not met it may not be reasonable to estimate the related evolutionary parameters, and the 

examples presented above show that analyses based on F-statistics may still provide 

substantial insights.
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Conclusions

Sewall Wright5 provided a comprehensive account of the processes leading to genetic 

differentiation among populations nearly 80 years ago, but he did not provide the tools that 

empirical population geneticists needed to apply his insights to understanding variation in 

wild populations. During his work on isolation by distance in the plant Linanthus parryae in 

the 1940s50,87, the theory of F-statistics that he and Gustave Malécot later developed3,4,16,88 

began to emerge. Because of the insights that F-statistics can provide about the processes of 

differentiation among populations, over the past 50 years they have become the most widely 

used descriptive statistics in population and evolutionary genetics. From the time population 

geneticists first began to collect data on allozyme variation89–94 to recent analyses of SNP 

variation in the human genome2,9,95–97, F-statistics, and FST in particular, have been used to 

investigate processes that influence the distribution of genetic variation within and among 

populations. Unfortunately, neither Wright nor Malécot distinguished carefully between the 

definition of F-statistics and the estimation of F-statistics. In particular, until Cockerham 

introduced his indicator formalism10,22, few if any population geneticists understood that 

estimators of F-statistics must take into account both statistical sampling and genetic 

sampling.

The statistical methodology for estimating F-statistics is now well established. With the 

availability of methods to estimate locus- and population-specific effects on 

FST
7,8,27,58,61,98, geneticists now have a set of tools for identifying genomic regions or 

populations with unusual evolutionary histories. Through further extensions of this 

approach, it is even possible to determine the relationship between the recent evolutionary 

history of populations and environmental or demographic variables99. The basic principles 

of how population size, mutation rate and migration are related to the genetic structures of 

populations have been well understood for nearly 80 years. Analyses of F-statistics in 

populations of plants, animals and microorganisms have broadened and deepened this 

understanding, but these analyses have mostly been applied to data sets that contain a small 

number of loci. The age of population genomics is now upon us100,101. The 1,000 Genomes 

project and the International HapMap Project give a hint of what is to come. Despite the 

scale of these projects, much of the data can be understood fundamentally as allelic variation 

at individual loci. As a result, we expect F-statistics to be at least as useful in understanding 

these massive data sets as they have been in population and evolutionary genetics for most 

of the past century.
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Glossary

Genetic drift The random fluctuations in allele frequencies over time that are due 

to chance alone.
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Short tandem 
repeat loci

Loci consisting of short sequences (2–6 nucleotides) that are 

repeated multiple times. Alleles at short tandem repeat loci differ 

from one another in their number of repeats.

Variance A measure of the amount of variation around a mean value.

Diversifying 
selection

Selection in which different alleles are favoured in different 

populations. It is often a consequence of local adaptation (in which 

genotypes from different populations have higher fitness in their 

home environments owing to historical natural selection).

Hardy–Weinberg 
proportions

When the frequency of each diploid genotype at a locus equals that 

expected from the random union of alleles. That is, the genotypes 

AA, Aa and aa will be at frequencies p2, 2pq and q2, respectively.

Heterozygote 
advantage

A pattern of natural selection in which heterozygotes are more likely 

to survive than homozygotes.

Likelihood A mathematical function that describes the relationship between the 

unknown parameters of a statistical distribution — for example, the 

mean and variance of the allele frequency distribution among 

populations or the allele frequency in a particular population — and 

the data. It is directly proportional to the probability of the data 

given the unknown parameters.

Prior distribution A statistical distribution used in Bayesian analysis to describe the 

probability that parameters take on a particular value before 

examining any data. It expresses the level of uncertainty about those 

parameters before the data have been analysed.

Posterior 
distribution

A statistical distribution used in Bayesian analysis to describe the 

probability that parameters take a particular value after the data have 

been analysed. It reflects both the likelihood of the data given 

particular parameters and the prior probability that parameters take 

particular values.

Markov chain 
Monte Carlo 
methods

Methods that implement a computational technique that is widely 

used for approximating complex integrals and other functions. In 

this context, these methods are used to approximate the posterior 

distribution of a Bayesian model.

Multinomial 
distribution

A statistical distribution that describes the probability of obtaining a 

sample with a specified number of objects in each of several 

categories. The probability is determined by the total sample size 

and the probability of drawing an object from each category. The 

binomial distribution is a special case of the multinomial distribution 

in which there are two categories.

Additive genetic 
variance

The part of the total genetic variation that is due to the main (or 

additive) effects of alleles on a phenotype. The additive variance 
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determines the degree of resemblance between relatives and 

therefore the response to selection.

Stabilizing 
selection

Selection in which either the same allele or the same genotype is 

favoured in different populations.

Effective 
population size

Formulated by Wright in 1931, the effective population size reflects 

the size of an idealized population that would experience drift in the 

same way as the actual (census) population. The effective population 

size can be lower than the census population size owing to various 

factors, including a history of population bottlenecks and reduced 

recombination.

Coalescent-based 
approaches

Approaches that use statistical properties of the genealogical 

relationship among alleles under particular demographic and 

mutational models to make inferences about the effective size of 

populations and about rates of mutation and migration.

Conditional 
autoregressive 
scheme

A statistical approach developed for analysis of data in which a 

random effect is associated with the spatial location of each 

observation. The magnitude of the random effect is determined by a 

weighted average of the random effects of nearby positions. In most 

applications, the weights of the averages are inversely related to the 

spatial distance between two sample points.
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Box 1

Mathematical notation

In this box, we provide definitions for the mathematical symbols used throughout the 

Review.
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Parameter Definition

Among-population allele frequency distribution

π Mean allele frequency

Variance in allele frequency

Wright’s F-statistics and Cockerham’s θ-statistics

FIS Correlation of alleles within an individual relative to the subpopulation in which it occurs; 
equivalently, the average departure of genotype frequencies from Hardy–Weinberg 
expectations within populations

FST Correlation of randomly chosen alleles within the same subpopulation relative to the entire 
population; equivalently, the proportion of genetic diversity due to allele frequency 
differences among populations

FIT Correlation of alleles within an individual relative to the entire population; equivalently, the 
departure of genotype frequencies from Hardy–Weinberg expectations relative to the entire 
population

f Co-ancestry for alleles within an individual relative to the subpopulation in which it occurs; 
equivalent to FIS

θ Co-ancestry for randomly chosen alleles within the same subpopulation relative to the entire 
population; equivalent to FST

F Co-ancestry for alleles within an individual relative to the entire population; equivalent to 
FIT

Φ-statistics and RST
*

ΦIS Excess similarity of alleles within an individual relative to the subpopulation in which it 
occurs; analogous to FIS

ΦST Excess similarity among randomly chosen alleles within the same subpopulation relative to 
the entire population; equivalently, the proportion of genetic diversity (measured as the 
expected squared evolutionary distance between alleles) due to differences among 
populations; analogous to FST

ΦIT Excess similarity of alleles within an individual relative to the entire population; analogous 
to FIT

RST Excess similarity among randomly chosen alleles within the same subpopulation relative to 
the entire population; equivalently, the proportion of genetic diversity (measured as the 
expected squared difference in repeat numbers between alleles) due to differences among 
populations; analogous to FST

Measuring genetic differentiation among populations in quantitative traits

Additive genetic variance within populations

Additive genetic variance among populations

QST Proportion of additive genetic variation in the entire population due to differences among 
populations; analogous to FST

*
ΦST from analysis of molecular variance (AMOVA) is used for haplotype data (for example, nucleotide 

sequence data or mapped restriction site data) and requires a measure of evolutionary distance among all pairs 

of haploytpes. RST is used for microsatellite data and requires that alleles are labelled according to the number 

of repeat units that they contain.
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Box 2

Genetic sampling versus statistical sampling

Genetic drift leads to differences among populations that are described by the distribution 

of allele frequencies among those populations. The variance of this distribution is directly 

related to FST (see equation 2), but in a typical study only a subset of populations is 

sampled. Therefore, in addition to accounting for the variation associated with sampling 

from populations, estimates of F-statistics must account for the variation associated with 

sampling sets of populations from the allele frequency distribution.

Genetic (or evolutionary) sampling

Part a of the figure shows the distribution of allele frequencies among populations 

corresponding to a mean allele frequency of π = 0.5 and FST = θ = 0.1. If two sets of 

populations (represented by dark and light circles) are sampled from this distribution, the 

allele frequencies in the first set of populations (light circles) will differ from those in the 

second set (dark circles). Part b provides an example in which two different sets of five 

population frequencies are drawn randomly from the distribution of allele frequencies 

shown in part a.

The variation in allele frequencies illustrated in part a reflects the effect of genetic or 

evolutionary sampling. The differences between the sets of samples in part b reflect the 

effect of sampling particular populations from the distribution of allele frequencies in 

part a and are analogous to the results that would be expected in an empirical study if it 

were repeated on a different set of populations.

Statistical sampling

Part c illustrates the more familiar idea of statistical sampling. It shows the distribution of 

sample allele frequencies obtained in 1,000 samples of 20 individuals from the 

population with the largest allele frequency in the population sample on the left in part b. 

Statistical sampling refers to the variation in sample composition that is expected when 

alleles are repeatedly sampled from a population with a particular allele frequency.
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Investigators can control the amount of variation associated with statistical sampling by 

increasing the number of individuals sampled within populations: the larger the number 

of individuals sampled, the less that the sample allele frequencies will differ from the 

underlying population frequencies. By contrast, investigators cannot control the amount 

of variation associated with genetic sampling: the variation associated with genetic 

sampling is an intrinsic property of the underlying stochastic evolutionary process that 

contributes to the differentiation among populations.

The relationship between FST and GST

Nei introduced the statistic GST as a measure of genetic differentiation among 

populations33. It is defined in terms of the population frequencies in part b, not the allele 

frequency distribution in part a. By contrast, estimates of FST account for genetic 

sampling and they are intended to reflect the properties of the allele frequency 

distribution in part a. As a result, FST and GST measure different properties. Therefore, 

GST will be an appropriate measure only when interest focuses on characteristics of the 

particular samples illustrated in part b. In a typical population study, θ will be a more 

appropriate measure of differentiation.
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It might seem that similar arguments should apply to exact tests of population 

differentiation102 because they also use permutations of sample configurations to 

determine whether populations are differentiated from one another. However, the 

permutation test is equivalent to determining whether the allele frequency distribution in 

part a has a variance greater than zero, so exact tests implicitly consider both statistical 

and genetic sampling effects.
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Box 3

Comparing methods for estimating FST

To illustrate the differences among calculating method-of-moments, maximum-

likelihood and Bayesian estimates of F-statistics, we use data from a classic study on 

human populations that investigated the allele frequency differences at blood group loci 

(see the table). We use a subset of the data that were originally reported by Workman and 

Niswander103. Their data consist of genotype counts at several loci in Native American 

Papago and were collected from ten political districts in south-western Arizona. 

Estimates of FIS, FST and FIT derived from the MN blood group locus suggest that there 

is little departure of the genotype frequencies from Hardy–Weinberg expectations within 

each district and little genetic differentiation among the districts.

Method-of-moments analysis

Analysis of variance on the indicator variable yij,k, in which yij,k = 1 if allele i in 

individual j of population k is M, gives moment estimates for the variance components of 

, and , in which G stands for genotypes (alleles 

within individuals), I stands for individuals (individuals within populations) and P stands 

for populations (among populations). Following Cockerham10:

Therefore, the moment estimates are F = 0.0348, θ = 0.00402 and f = 0.0309. As 

expected for human populations, there is little evidence that the genotype proportions 

within each political district differ from Hardy–Weinberg expectations (f ≈ 0). Similarly, 

there is little evidence of genetic differentiation among political districts (θ ≈ 0).

Bayesian and likelihood analysis

By contrast, current implementations of a Bayesian approach to analysing these data 

typically assume independent uniform (0,1) prior distributions for both f and θ. The 

posterior mean of f and θ for these data are 0.0503 and 0.0189, respectively. The 

posterior distribution of f has a mode near 0 but is broad (with a 95% credible interval of 

0.0033–0.123), which causes the posterior mean of f to be larger than the method-of-

moments estimate. Similarly, the estimates of allele frequencies within each population 
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are uncertain and the estimate of θ takes this uncertainty into account, suggesting that 

there is slightly more among-population differentiation than detected with moment 

estimates. For comparison, the maximum-likelihood estimates are F = 0.0408, θ = 

0.00640 and f = 0.0346 (obtained by estimating the variance components in a Gaussian 

mixed model applied to the indicator variables and by using Cockerham’s definitions of 

F, f and θ in terms of the variance components).
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Parameter Method of moments Maximum likelihood Bayesian

f 0.0309 0.0346 0.0503

θ 0.00402 0.00640 0.0189

F 0.0348 0.0408 0.0683

To extend the method-of-moments approach to multiple alleles and multiple loci, calculations are done 

separately for every allele at every locus and the sums of squares are combined17,27. To extend the likelihood 

or Bayesian approaches, we make the assumption that f and θ have the same value at every locus and that 

genotype counts are sampled independently across loci and populations104,105.
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Box 4

Why focus on FST?

We focus here on FST for several reasons. First, FIS is easier to interpret. It is defined 

with respect to the populations that are included in the sample, either through population-

specific estimates or through the average of those estimates. By contrast, FST is defined 

and interpreted with respect to the distribution of allele frequencies among all 

populations that could have been sampled, not merely those that have been included in 

the sample. As a result, estimates of FST must account for genetic sampling, which 

introduces a level of complexity and subtlety that requires extra attention.

Second, the application of F-statistics to problems in population and evolutionary 

genetics often centres on estimates of FST. For example, when interpreting aspects of 

demographic history, such as sex-biased dispersal out of Africa in human populations9, 

detecting regions of the genome that might have been subject to stabilizing or 

diversifying selection8,58,61 or correcting the probabilities of obtaining a match in a 

forensic application for genetic substructure within populations106, estimates of FST often 

play a crucial part in interpretations of genetic data. Estimates of FIS reveal important 

properties of the mating system within populations, but estimates of FST reveal properties 

of the evolutionary processes that lead to divergence among populations.

Finally, in many populations of animals, and in human populations in particular, within-

population departures from Hardy–Weinberg proportions are small. Where they are 

present, such departures may reveal more about genetic substructuring within populations 

than about departures from random mating. Moreover, although estimates of FIS may 

provide insights into the patterns of mating in inbred populations of plants or animals, the 

direct analysis of mother–offspring genotype combinations is usually more informative 

and reliable107,108.
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Figure 1. Locus-specific estimates of FST on human chromosome 7
Estimates are as inferred from the phase II HapMap data set95. Horizontal bars indicate the 

locations of known genes. The red circles are posterior means for SNPs with estimates that 

are detectably different from the genomic background (purple circles). All ‘outliers’ show 

significantly more differentiation among the four populations in the sample than is 

consistent with the level of differentiation seen in the genomic background. The excess 

differentiation suggests that these SNPs are associated with genomic regions in which loci 

have been subject to diversifying selection among populations. CALU, calumenin; FSCN3, 

ascin homolog 3; GCC1, GRIP and coiled-coil domain containing 1; GRM8, glutamate 

receptor, metabotropic 8; LEP, leptin; SND1, staphylococcal nuclease and tudor domain 

containing 1. Figure is modified, with permission, from REF. 8 © (2009) American 

Statistical Association.
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Parameter Definition

Among-population allele frequency distribution

π Mean allele frequency

Variance in allele frequency

Wright’s F-statistics and Cockerham’s θ-statistics

FIS Correlation of alleles within an individual relative to the subpopulation in which it occurs; equivalently, the average departure of 
genotype frequencies from Hardy–Weinberg expectations within populations

FST Correlation of randomly chosen alleles within the same subpopulation relative to the entire population; equivalently, the 
proportion of genetic diversity due to allele frequency differences among populations

FIT Correlation of alleles within an individual relative to the entire population; equivalently, the departure of genotype frequencies 
from Hardy–Weinberg expectations relative to the entire population

f Co-ancestry for alleles within an individual relative to the subpopulation in which it occurs; equivalent to FIS

θ Co-ancestry for randomly chosen alleles within the same subpopulation relative to the entire population; equivalent to FST

F Co-ancestry for alleles within an individual relative to the entire population; equivalent to FIT

Φ-statistics and RST
*

ΦIS Excess similarity of alleles within an individual relative to the subpopulation in which it occurs; analogous to FIS

ΦST Excess similarity among randomly chosen alleles within the same subpopulation relative to the entire population; equivalently, 
the proportion of genetic diversity (measured as the expected squared evolutionary distance between alleles) due to differences 
among populations; analogous to FST

ΦIT Excess similarity of alleles within an individual relative to the entire population; analogous to FIT

RST Excess similarity among randomly chosen alleles within the same subpopulation relative to the entire population; equivalently, 
the proportion of genetic diversity (measured as the expected squared difference in repeat numbers between alleles) due to 
differences among populations; analogous to FST

Measuring genetic differentiation among populations in quantitative traits

Additive genetic variance within populations

Additive genetic variance among populations

QST Proportion of additive genetic variation in the entire population due to differences among populations; analogous to FST

*
ΦST from analysis of molecular variance (AMOVA) is used for haplotype data (for example, nucleotide sequence data or mapped 

restriction site data) and requires a measure of evolutionary distance among all pairs of haploytpes. RST is used for microsatellite data and 

requires that alleles are labelled according to the number of repeat units that they contain.
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Parameter Method of moments Maximum likelihood Bayesian

f 0.0309 0.0346 0.0503

θ 0.00402 0.00640 0.0189

F 0.0348 0.0408 0.0683

To extend the method-of-moments approach to multiple alleles and multiple loci, calculations are done separately for every allele at every 

locus and the sums of squares are combined17,27. To extend the likelihood or Bayesian approaches, we make the assumption that f and θ 

have the same value at every locus and that genotype counts are sampled independently across loci and populations104,105.
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