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The density-functional approach to quantum electrodynamics extends
traditional density-functional theory andopens the possibility to describe
electron–photon interactions in terms of effective Kohn–Shampotentials.
In this work, we numerically construct the exact electron–photon Kohn–
Sham potentials for a prototype system that consists of a trapped elec-
tron coupled to a quantized electromagnetic mode in an optical high-Q
cavity. Although the effective current that acts on the photons is known
explicitly, the exact effective potential that describes the forces exerted
by the photons on the electrons is obtained from a fixed-point inversion
scheme. This procedure allows us to uncover important beyond-mean-
field features of the effective potential that mark the breakdown of
classical light–matter interactions. We observe peak and step structures
in the effective potentials, which can be attributed solely to the quantum
nature of light; i.e., they are real-space signatures of the photons. Our
findings show how the ubiquitous dipole interaction with a classical
electromagnetic field has to be modified in real space to take the quan-
tum nature of the electromagnetic field fully into account.

time-dependent density functional theory | strong light matter
interaction | quantum electrodynamics | photon matter correlations |
quantum electrodynamical density functional theory

In the last decades, the quantum nature of light has inspired
many experimental and theoretical developments in physics. In

particular, the fields of cavity (1) and circuit (2) quantum elec-
trodynamics (QED) have recently seen exceptional progress. For
instance, slow photons in vacuum (3) and two-ion superradiant
states (4) have been observed, and only recently the chemical
landscape of a molecule has been modified using strong coupling
to photons (5, 6), which can be also termed QED chemistry.
However, traditional ab initio approaches developed to in-

vestigate large quantum systems (see, e.g., refs. 7–12) are not fully
applicable in situations where the quantum nature of light
becomes important. These many-body methods ignore typically
the quantum-mechanical coupling to photons and usually take
only the classical Coulomb interaction into account. Recently, an
approach that treats particles (electrons, ions) and the photons on
equal footing and closes the gap between traditional many-body
and quantum-optical methods has been proposed (13–15). This
so-called quantum-electrodynamical density-functional theory
(QEDFT) allows the representation of the coupled particle–
photon system by two uncoupled, yet nonlinear auxiliary quantum
systems. The resulting multicomponent Kohn–Sham systems are
subject to effective potentials that take into account the particle–
particle (Coulomb) interaction and the particle–photon interaction.
If we use approximations to this new type of Kohn–Sham potentials,
the resulting equations become numerically feasible and ab
initio calculations of large quantum systems (16–18) coupled to
photons are possible. Although a wealth of approximations to
the particle–particle interaction part of the effective potential
are known (see, e.g., refs. 8, 9, 19) at the moment there is only
one approximation for the particle–photon part of the effective

potential beyond the classical mean-field approximation
available (20). Indeed, besides its existence and uniqueness, so
far nothing is known about the exact real-space properties
of this particle–photon effective potential and how it models
the interaction between charged particles and quantized
photon fields.
In this article, we present the exact space- and time-resolved

Kohn–Sham potential for a coupled multicomponent electron–
photon system in an optical cavity. The prototype system that we
consider in the present work is a 2D quantum ring containing one
electron that is coupled to a single photon mode. We construct the
exact effective potential by a fixed-point procedure (21–24) and
study ground-state properties as well as the time evolution of the
electron–photon system. In the first case we identify electronic
states in the weak- and strong-coupling regime, which cannot be
generated by any classical light field in dipole approximation. In
the time-dependent framework, we analyze the quantum effects of
the photon field by putting the field initially into (i) a coherent
state and (ii) a linear superposition of two Fock number states and
show when the quantum nature of the photon field induces the
dominant contribution to the Kohn–Sham electron–photon ex-
change–correlation (xc) potential. Here we find that the electron–
photon interaction is responsible for steps and peaks in the exact
Kohn–Sham potential. Similar steps and peaks have been found in
purely electronic time-dependent density functional theory (TDDFT)
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in e.g., charge-transfer processes (25, 26), but these exact features
have so far only been observed for the time-dependent case in
one-dimensional models (25).
The static and dynamical behavior of the coupled electron–

photon systems that we consider in the present work is given by
the following Hamiltonian (14, 15),
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X
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The first part of the Hamiltonian describes the electronic
subsystem and contains the nonrelativistic kinetic energy, the
external-potential energy due to a classical external potential
vextðrtÞ and the Coulomb-interaction energy. The second part of
the Hamiltonian accounts for the presence of the photons, where
the electron–photon interaction is described in dipole approxima-
tion, i.e., the dipole-moment operator R=

P
iri couples linearly to

the photon displacement coordinate q̂α =−
ffiffiffiffiffiffi
Z

2ωα

q
ðâ†α + âαÞ, which is

proportional to the quantized displacement field component of
the αth mode, i.e., D̂α =−e0ωαλαq̂α=e. Although we restrict our-
selves here to dipole coupling, all findings shown below also apply
for beyond-dipole situations.* The electron–photon coupling is
given by λα = λαeα, where eα is the polarization vector of the pho-
ton field. The value of the coupling can be changed from the
weak- to the ultra-strong-coupling limit in circuit QED experi-
ments (27, 28). (For later reference, we measure λα in units of
½ ffiffiffiffiffiffiffiffiffiffi

meV
p

=nm�). In addition, the Hamiltonian contains a quadratic
electron self-interaction vesðRÞ=

P
αðλα ·RÞ2=2 and the photons

interact furthermore with a classical external current jαextðtÞ. We
emphasize that both external potentials, i.e., vextðrtÞ and jαextðtÞ, can
be used to control the quantum system.
In QEDFT the electron–photon system is exactly described by

two reduced quantities that couple to the external control fields
(13–15). In the case of the Hamiltonian [1] these reduced
quantities are the usual electronic density nðrtÞ= hn̂ðrÞi, where
n̂ðrÞ=P

iδðr− riÞ, and the expectation value of the photon co-
ordinates qαðtÞ= hq̂αi. In principle, we only need to calculate
these expectation values and can then determine (for a fixed
initial state) all properties of the electron–photon system. To
calculate nðrtÞ and qαðtÞ one only needs to solve the corre-
sponding coupled equations of motions for these two basic var-
iables in the system, i.e., the Ehrenfest equations (14, 15).

∂2t qαðtÞ=ωαλα ·RðtÞ−ω2
αqαðtÞ−

jαextðtÞ
ωα

, [2]

∂2t nðrtÞ=−~∇ ·QðrtÞ+ 1
m

~∇ ·
�
nðrtÞ~∇ vextðrtÞ

�
+
1
m

X
α

λα · ~∇ hΨjn̂ðrÞðλα ·R−ωαq̂α ÞjΨi, [3]

with the local-force density of the electrons given by QkðrtÞ=P
l∂lTklðrtÞ+WkðrtÞ, where the first term describes the momentum-

stress forces and the second term is responsible for the forces
due to the particle–particle interactions. To solve these implicit
equations, we would need to find explicit expressions in terms of
nðrtÞ and qαðtÞ for the different force densities. We note that, in
the equations of motion for the photon coordinates, all terms are
explicitly known, and hence the unknown expressions that take
care of the proper description of the electron–photon inter-
actions are contained solely in the electronic equation. To
make approximations for these unknown quantities easier,
one can adopt a Kohn–Sham scheme, such that approxima-
tions in terms of the force densities of the uncoupled and
noninteracting system become possible. This approach has
been applied highly successfully to electronic-structure calcu-
lations (see, e.g., refs. 8, 9, 19). In a Kohn–Sham approach to
the electron–photon system the missing forces are accounted
for by the effective potential vsðrtÞ that naturally splits into two
parts vsðrtÞ= vextðrtÞ+ vMxcðrtÞ, where vext is the external potential
of the original problem, and vMxc (mean-field exchange correla-
tion) denotes the effective potential due to the interaction with
the photons. In general, vsðrtÞ contains both, the contributions
due to the Coulombic electron–electron repulsion in the original
many-body problem, and in addition the contributions from the
electron–photon interaction, here in dipole approximation. How-
ever, because our aim is to investigate the effective potentials due
to the coupling between photons and electrons, we restrict ourselves
here to a single electron in an semiconductor GaAs quantum ring,
which is placed in a cavity and is assumed to couple to a specific
cavity photon mode, as depicted schematically in Fig. 1.
This restriction to a single electron has the advantage that

we only have contributions of the electron–photon interaction
in the effective Kohn–Sham potential vsðrtÞ and can exclu-
sively study only their behavior.† In addition in single-electron
problems, we can incorporate the electron self-interaction
vesðrÞ=

P
αðλα · rÞ2=2 exactly, thus the exact Kohn–Sham poten-

tial is given by vsðrtÞ  =   vextðrÞ  +   vesðrÞ  +   vMxcðrtÞ. We treat the
electron in this semiconductor medium by using an effective

Fig. 1. The figure schematically illustrates a 2D optical cavity containing
one atom, with a single electron. The coupling of the electron to the cavity
mode at resonance frequency ωα and with electron–photon coupling
strength λα modifies the dynamics of the electron density nðrtÞ, which moves
in the external potential vextðrtÞ.

*We note that in the dipole approximation the wavelength of the quantized electro-
magnetic field is assumed to be much larger than the electronic system and hence only
the lowest order in a spatial Taylor expansion of the field is kept. In this approximation
the spin-dependent magnetization density of the electronic system, which couples to the
curl of the photon field (15), has no contribution to the electron–photon interaction. Thus
the matter–photon coupling does not depend on spin but still this approximation includes
the dominant photon quantum effects, e.g., spontaneous emission. However, if the electron–
photon interaction is taken beyond the dipole approximation then the coupling to the
photons depends explicitly on the spin of the electrons.

†In the case of many electron systems the effective field changes due to nonzero inter-
action forces WkðrtÞ in QkðrtÞ of Eq. 3. Additionally the momentum-stress forcesP

l∂lTklðrtÞ and the electron self-interaction λαhΨjn̂ðrÞðλα ·RÞjΨi are changed. We point
out that both, the interaction contribution WkðrtÞ as well as the explicit electron–photon
contribution in Eq. 3 come from the coupling to the photon field in Coulomb gauge. The
electron–electron interaction can also be interpreted in terms of the exchange of (vir-
tual) photons and both contributions merge for different gauges (e.g. Lorentz gauge).

15286 | www.pnas.org/cgi/doi/10.1073/pnas.1518224112 Flick et al.

www.pnas.org/cgi/doi/10.1073/pnas.1518224112


massm= 0.067me (29) and we use vextðrÞ  =   12mω2
0r

2   + V0e−r
2=d2,

where r2   =   x2   +   y2, to describe the quantum ring. This potential
effectively confines the electron in a harmonic trap, which con-
tains a Gaussian peak in the center. For the system at hand, we
choose the experimental parameter values (29) Zω0   = 10 meV,
V0   =   200 meV, d= 10  nm, and the effective dielectric constant
κ= 12.7e0. The 2D electronic system has a nondegenerate ground
state and a twofold degeneracy in the excited states (29). We
choose the photon frequency ωα in resonance with the transition
between the ground state and the first excited state in the elec-
tronic system. Thus, Zωα   =   1.41 meV. For simplicity, we restrict
ourselves to one of the two independent polarization directions of
the field mode and use eα = ð1,1Þ without loss of generality. In
experiments weak- to ultra-strong coupling (27, 28), which corre-
sponds here to λα   ≥   0.134

ffiffiffiffiffiffiffiffiffiffi
meV

p
=nm, has been realized. To

be comparable to such experiments, in this paper we choose
three values for the electron–photon interacting strength
λα = 1.68  ·   10−3

ffiffiffiffiffiffiffiffiffiffi
meV

p
=nm, 3.36  ·   10−3

ffiffiffiffiffiffiffiffiffiffi
meV

p
=nm (weak-coupling

limit), and 0.134
ffiffiffiffiffiffiffiffiffiffi
meV

p
=nm (ultra-strong coupling limit).

The Kohn–Sham scheme then decouples the two subsystems,
which leads us to two evolution equations of the form

iZ∂tϕðrtÞ=−
Z2

2m
~∇

2
ϕðrtÞ+ vsðrtÞϕðrtÞ, [4]

iZ∂tjα, ti= 1
2
�
p̂2α   +   ω2

αq̂
2
α

	jα, ti+ jαs ðtÞ
ωα

q̂αjα, ti, [5]

where the Kohn–Sham photon wavefunction is given by jα, ti  =P
ncnjn, ti and jn, ti are the Fock number states of cavity mode α.

The Kohn–Sham construction furthermore requires that the ini-
tial state of the Kohn–Sham system has to have the same density
nðr, 0Þ and time-derivative _nðr, 0Þ as the coupled system. The
same is required for the basic variable in the photon system,
i.e., qαð0Þ and _qαð0Þ.
To determine the in general unknown effective potential vsðrtÞ in

terms of nðrtÞ and qαðtÞ, we use a fixed-point method originally
developed for purely electronic TDDFT (21–24). Although naively
one could expect that a fixed-point iteration is also needed to de-
termine the effective current jαs ðtÞ, from Eq. 2 this current is known
explicitly, i.e., jαs ðtÞ  =   jαextðtÞ  +   ω2

αλα   ·  RðtÞ. Hence we only need to
determine vsðrtÞ, for which we use the fixed-point formula

−
1
m

~∇ ·
�
nðrtÞ~∇ vk+1ðrtÞ

�
= ∂2t ½nð½vk�, rtÞ− nðrtÞ�

−
1
m

~∇ ·
�
nð½vk�, rtÞ~∇ vkðrtÞ

�
. [6]

To find the fixed points of this equation, we solve first the
Schrödinger equation for vk (using zero-boundary conditions)
and from the exact many-body solution we determine the corre-
sponding n½vk�. Next, we use a multigrid solver to invert the
Sturm–Liouville problem in Eq. 6, which yields vk+1. This pro-
cedure is repeated until convergence to the fixed point has been
reached. To speed up convergence, we use a direct inversion in
the iterative subspace approach (30). We have tested the validity
of this approach in the time-independent situation by comparing
to the well-known analytic inversion formula for one-electron
and two-electron singlet problems (31);

vð0Þs ðrÞ= Z2

2m

~∇
2 ffiffiffiffiffiffiffiffiffiffiffi

n0ðrÞ
p
ffiffiffiffiffiffiffiffiffiffiffi
n0ðrÞ

p +E0. [7]

Using exact diagonalization (32), we are able to calculate the
exact ground state of the correlated electron–photon system.
We use a 127 × 127 2D real-space grid for the electron and 40
photon number states. This amounts to a dimensionality of the
full problem of 127 × 127 × 40 = 645,160 basis functions. From
this we then determine with the above iteration procedure the
exact vs. Because we treat the interaction with the photon field
in dipole approximation, the mean-field field contribution to
the effective potential is vMðrtÞ=−ωαqαðtÞλα ·   r.‡ If the impact
of the quantum nature of the cavity light field would be negligi-
ble, the classical field would be the only contribution. This is
expected to hold in the case of large photon numbers or coherent
photon states or equivalently when the electronic system is driven
by a strong classical external laser pulse. In Fig. S1 and Movie S1
we provide a supplementary example of a correlated electron–
photon propagation with nonfactorizable initial state driven by

A B

C D

E F

Fig. 2. A shows the ground-state density for a weak-coupling case with
λα = 1.68  ·   10−3 meV1/2/nm and in B we illustrate a strong-coupling case
with λα = 0.134 meV1/2/nm. The corresponding ground-state Mxc potential
for λα = 1.68  ·   10−3 meV1/2/nm is displayed in C and for λα = 0.134meV1/2/nm
displayed in D. In E and F, cuts (blue λα =1.68  ·   10−3 meV1/2/nm and red
λα = 0.134 meV1/2/nm) through vMxc along the diagonal (C ) /antidiagonal
(D) are shown. The white arrow in A indicates the polarization direction of
the field mode.

‡We note that in many-electron problems additional contributions from the electron
self-interaction vesðrÞ also appear in the electron–photon mean-field potential
vMðrtÞ (14).
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such an external laser pulse. In this correlated example the elec-
tronic dynamics is mainly driven by the external laser pulse and the
classical mean-field approximation performs reasonably well.
Thus, if we use vMxc   =   vM   +   vxc, the nondipole corrections (to
all orders in r) due to vxc are a direct measure of the nonclassical
light–matter interaction.
First, let us investigate the effective potential in the case of the

ground state of the multicomponent system. In Fig. 2A we show a
ground-state density in the weak-coupling case (λα = 1.68  ·   10−3
meV1/2/nm). Compared with the cavity-free case, we see a slight
prolongation of the density along the x= y axis. If we increase the
coupling to strong coupling (λα =   0.134 meV1/2/nm), this feature
becomes more dominant and the charge density of the electron
becomes even separated (Fig. 2B). If we consider the Mxc po-
tential we observe a peak in the middle of the cavity, which
models the forces that the photons exert on the electron to
elongate its charge distribution (see Fig. 2C for weak coupling
and Fig. 2D for strong coupling). In Fig. 2 E and F, we show
diagonal cuts through vMxcðrÞ for the weak (blue) as well as the
strong coupling (red) regime. We see how vMxc pushes the den-
sity farther apart the stronger the coupling becomes. Such a
splitting cannot be generated using a static classical field in di-
pole coupling. Hence the nondipole contributions of the vMxc
mark the nonclassical interaction with the photons, and are a
necessary feature to model the exact forces exerted by the
photons on the charged particles. To further substantiate our
findings we have determined the photon-number expectation
value hâ†αâαi as well as the purity γ =Trðρ2phÞ of the ground state,
where ρph is the reduced photon density matrix. Here, a purity

value that deviates from 1 indicates that the state is not factor-
izable into photon and electron wave functions. Therefore, the
purity is a measure for electron–photon entanglement. For weak
coupling we have 1.18  ·   10−3 photons and γ = 0.999764 and for
strong coupling we find 3.19 photons in the ground state with
γ = 0.4919. This clearly indicates that the ground state is a hybrid
state of the photons and the electron with stronger entanglement
in the strong-coupling regime. A further parameter that we
consider in our analysis is the Mandel Q parameter (33):

Q=



â
†

α
â
†

α
âαâα

�
−


â
†

α
âα
�2



â
†

α
âα
� , [8]

which measures the deviation of the photon statistics from a
Poisson distribution and thus is a measure for the quantum
nature of the photonic subsystem. If the field is in a quasi-
classical state, i.e., in a coherent state, then Q= 0. For weak
coupling we find Q= 3.88  ·   10−4, and for strong coupling we
have Q= 0.4567. This further supports that this model has a
highly nonclassical ground state of the coupled matter–photon
system.
Next, we turn our attention to the time-dependent situation.

As initial states of the combined matter–photon system (as well
as for the corresponding Kohn–Sham system) we consider two
different cases. In both cases we choose factorizable initial states,
which consist of the electronic ground state of the unperturbed
quantum ring and the photon field in (i) a coherent state with
hâ†αâαi= 4 and in (ii) a superposition of the vacuum state and the

A

B

C

D

E

F

G

I

J

K

L

M

NH

Fig. 3. Coherent state as initial state for the photon mode: In A we display the dipole of the exact (black) and mean-field (red) time evolution. In B we
contrast the exact Mandel parameter QðtÞ (see main text for definition) (solid black) and γðtÞ (dotted black) with the corresponding mean-field values (red). C,
F, I, and L show the corresponding Mxc potentials at different times (t = 0,3.67,   4.53,   and 7.29  ps); D, G, J, andM show the corresponding diagonal cuts of the
Mxc potentials; and in E, H, K, and N we present the corresponding densities. The Inset in B shows Q(t) between t = 3 and 5 ps. The negative Q(t) in the exact
solution indicates nonclassical behavior in the photon mode. Movie S2 shows the full time evolution from 0 to 23 ps.
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one-photon state with hâ†αâαi= 0.5. In both examples, we choose
the electron–photon coupling strength λα   =   3.36  ·   10−3 meV1/2/nm.
To numerically propagate the system, we use a Lanczos scheme
and propagate the initial state in (i) 160,000 [(ii) 360,000] time
steps with Δt= 0.146 fs. We start with the analysis of example 1.
Here, we compare the exact dynamics to the dynamics induced
by the (self-consistent) classical mean-field approximation. In
Fig. 3A we display the time evolution of the exact experimentally
accessible dipole moment (black) and contrast it to the classical
approximation (red). Because the field is initially in a coherent
state and resembles a classical field, the evolution of the classical
approximation is for a short time similar to the exact one. Be-
tween t= 0 and t= 6 ps, the classical approximation is the dom-
inant part for most of the time in vMxcðrtÞ (Fig. 3C). Nevertheless,
also in this time interval we find large beyond dipole corrections
to vMxcðrtÞ, which appear at the turning points of the dipole
evolution and vanish afterward. Precisely at these times, we ob-
serve several peaks and steps in the 2D surface plot of the ef-
fective potential (Fig. 3 F and I) that describe the nonclassical
forces due to the interaction with the photon mode. After t= 6 ps,
the beyond-dipole correction becomes the dominant part in
vMxcðrtÞ and we find a dominating peak in the 2D surface plot
(Fig. 3L). The peak structure of vMxc becomes clearly visible in
Fig. 3 G, J, and M, where we plot the diagonal of vMxc for the
different time steps. To further analyze this time-dependent
system, we computed the (now time dependent) Mandel QðtÞ
parameter and the purity γðtÞ.
In Fig. 3B we contrast the exact results (black) to those found

from the mean-field calculation (red). The purity (dotted
black) as well as the Mandel QðtÞ parameter (solid black) are in

agreement with our previous observations, namely that around
t= 6 ps, where these parameters start to deviate more strongly
from the mean-field values, the classical description breaks
down. We point out, that in our (decoupled) Kohn–Sham system
these parameters are by construction constant and equivalent to
the mean-field values, and the Kohn–Sham photon field only
changes the number of photons in the coherent state. Hence, the
values of these parameters become nontrivial functionals of the
initial state as well as n and qα. In particular the assessment of
the purity allows us to conclude that the peaks in vMxc are as-
sociated with how close to a factorizable (electronic) state the
many-body system is. For small times, the system remains close
to a factorizable state (purity value close to 1) and we find peaks
and steps only at the turning point of the dipole moment, while
later in time memory effects become dominant and cause per-
manent peaks and steps. Finally we note that although we have
termed all beyond-dipole contributions to vMxcðrtÞ as nonclassical
(because they come solely from the quantum nature of light), the
nonclassicality of the photon field alone is often associated with
a negative QðtÞ. In Fig. 3B we have thus provided an inset to
highlight that (up to t= 5 ps; Fig. 3B, Inset) such sub-Poissonian
statistics, which cannot be described by any probability distri-
bution in phase space, are also present in our prototype system.
Next, we analyze in detail our example (ii) in Fig. 4. We again

compare the exact dynamics to the time evolution induced by
the (self-consistent) classical mean-field approximation. For the
photon mode we choose in this example as initial state a su-
perposition of the lowest two Fock number states. Although the
field is in this case initially in a state that does not resemble a
classical situation as in our first example, the evolution of the
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Fig. 4. (Color online) Superposition of Fock number states as initial state for the photon mode: In A we display the dipole of the exact (black) and mean-field
(red) time evolution. In B we contrast the exact QðtÞ (solid black) and γðtÞ (dotted black) with the corresponding mean-field values (red). In C, F, I, and L, we
show the corresponding Mxc potentials at different times (t = 0,1.56,   13.92,   and  37.83  ps); in D, G, J, and M, we show the corresponding diagonal cuts of the
Mxc potentials; and in E, H, K, and N, we present the corresponding densities. Movie S3 shows the full time evolution from 0 to 50 ps.
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classical approximation is for small times similar to the exact
one. Between t= 0 ps and t= 2 ps, the classical approximation is
the dominant part for most of the time in vMxcðrtÞ (Fig. 4C).
Nevertheless, also in this time interval we find large beyond-
dipole corrections to vMxcðrtÞ. After the first turning points of the
dipole evolution, a dominant peak in vMxc appears (Fig. 4F).
Later, we observe again several peaks and steps appearing in the
2D surface plot of the effective potential (Fig. 4 F and I) that
describe the nonclassical forces due to the interaction with
the photon mode. After t= 2 ps, the beyond-dipole correction
becomes the dominant part in vMxcðrtÞ and we find a dominating
peak in the 2D surface plot. The peak structure of vMxc becomes
clearly visible in Fig. 4G, J, andM, where we plot the diagonal of
vMxc for the different time steps. The purity (dotted black) as well
as the Mandel QðtÞ parameter (solid black) are in agreement
with our previous observations in the coherent state example,
that around t= 2 ps, where these parameters start to deviate
more strongly from the mean-field values, the classical de-
scription breaks down. For small times, the system remains close
to a factorizable state, while later memory effects become
dominant and cause permanent peaks and steps. Both examples
shown in Figs. 3 and 4 illustrate how a Kohn–Sham approach can
exactly describe the different regimes of quantized photon fields
that interact with matter.
In conclusion, we have presented the real-space signatures

of the exact effective potentials for a Kohn–Sham approach to

cavity QED. We have identified step and peak structures that are
reminiscent of the steps and peaks in the exact Kohn–Sham
potential of traditional TDDFT, but arise here solely due to the
coupling to quantized photon fields. These effective potentials
account for the forces that the photons and the electrons exert
on each other if we use an uncoupled Kohn–Sham system to
describe the coupled matter–photon system. Provided we have a
good approximation to the effective potential (20), which in-
cludes the peak and step structures observed here that are
caused by the nonclassical light–matter interaction, the Kohn–
Sham approach can be used to perform ab initio calculations of
large quantum systems interacting with photons in a high-Q
cavity. In this case we have a valuable computational tool for
QED chemistry (5, 6), which would open up a new field of
research for the electronic structure community. Besides de-
veloping approximations to the Mxc potential, a further im-
portant line of research is the extension of the current work to
cavities with loss (15), which is the standard situation in most
cavity-QED experiments. Work along these lines is currently in
progress in our group.
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