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The ability to discriminate between similar sensory stimuli relies on
the amount of information encoded in sensory neuronal popula-
tions. Such information can be substantially reduced by correlated
trial-to-trial variability. Noise correlations have been measured
across a wide range of areas in the brain, but their origin is still far
from clear. Here we show analytically and with simulations that
optimal computation on inputs with limited information creates
patterns of noise correlations that account for a broad range of
experimental observations while at same time causing information
to saturate in large neural populations. With the example of a
network of V1 neurons extracting orientation from a noisy image,
we illustrate to our knowledge the first generative model of noise
correlations that is consistent both with neurophysiology and
with behavioral thresholds, without invoking suboptimal encoding
or decoding or internal sources of variability such as stochastic
network dynamics or cortical state fluctuations. We further show
that when information is limited at the input, both suboptimal
connectivity and internal fluctuations could similarly reduce the
asymptotic information, but they have qualitatively different effects
on correlations leading to specific experimental predictions. Our
study indicates that noise at the sensory periphery could have a
major effect on cortical representations in widely studied discrimina-
tion tasks. It also provides an analytical framework to understand
the functional relevance of different sources of experimentally
measured correlations.
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The response of cortical neurons to an identical stimulus varies
from trial to trial. Moreover, this variability tends to be cor-

related among pairs of nearby neurons. These correlations, known
as noise correlations, have been the subject of numerous experi-
mental as well as theoretical studies because they can have
a profound impact on behavioral performance (1–7). Indeed,
behavioral performance in discrimination tasks is inversely pro-
portional to the Fisher information available in the neural responses,
which itself is strongly dependent on the pattern of correlations. In
particular, correlations can strongly limit information in the sense
that some patterns of correlations can lead information to saturate to
a finite value in large populations, in sharp contrast to the case of
independent neurons for which information grows proportionally to
the number of neurons. However, the saturation is observed for only
one type of correlations known as differential correlations. If the
correlation pattern slightly deviates from differential correlations,
information typically scales with the number of neurons, just like it
does for independent neurons (7). These previous results clarify how
correlations impact information and consequently behavioral per-
formance but fail to address another fundamental question, namely,
Where do noise correlations, and in particular information-limiting
differential correlation, come from? Understanding the origin of
information-limiting correlation is a key step toward understanding
how neural circuits can increase information transfer, thereby im-
proving behavioral performance, via either perceptual learning or
attentional selection.
Several groups have started to investigate sources of noise cor-

relations such as shared connectivity (2), feedback signals (8), in-
ternal dynamics (9–11), or global fluctuations in the excitability of

cortical circuits (12–16). Global fluctuations have received a lot of
attention recently as they appear to account for a large fraction
of the measured correlations in the primary visual cortex. Corre-
lations induced by global fluctuations, however, do not limit
information in most discrimination tasks (with the possible ex-
ception of contrast discrimination for visual stimuli). Therefore,
if cortex indeed operates at information saturation, the source of
information-limiting correlations is still very much unclear.
In this paper, we focus on correlations induced by feedforward

processing of stimuli whose information content is small com-
pared with the information capacity of neural circuits. Using
orientation selectivity as a case study, we find that feedforward
processing induces correlations that share many properties of the
correlations observed in vivo. Moreover, we also show feedfor-
ward processing leads to information-limiting correlations as a
direct consequence of the data processing inequality. Interestingly,
these information-limiting correlations represent only a small frac-
tion of the overall correlations induced by feedforward processing,
making them difficult to detect through direct measurements of
correlations. Finally, we demonstrate that correlations induced by
global fluctuations cannot limit information on their own, but can
reduce the level at which information saturates in the presence of
information-limiting correlations. Despite our focus on orien-
tation selectivity, our results can be generalized to other modali-
ties, stimuli, and brain areas.
In summary, this work identifies a major source of noise corre-

lations and, importantly, a source of information-limiting noise
correlations, while clarifying the interactions between information-
limiting correlations and correlations induced by global fluctuations.

Significance

Populations of neurons encode information in activity patterns
that vary across repeated presentation of the same input and
are correlated across neurons (noise correlations). Such noise
correlations can limit information about sensory stimuli and
therefore limit behavioral performance in tasks such as dis-
crimination between two similar stimuli. Therefore it is im-
portant to understand where and how noise correlations are
generated. Most previous accounts focused on sources of var-
iability inside the brain. Here we focus instead on noise that is
injected at the sensory periphery and propagated to the cortex:
We show that this simple framework accounts for many
known properties of noise correlations and explains behavioral
performance in discrimination tasks, without the need to assume
further sources of information loss.
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Results
Information-Limiting Noise Correlations Induced by Computation.We
first characterize the noise correlations produced by a simple
feedforward network and study whether they limit information in
the population. We consider a population of model V1 neurons
with spatially overlapping receptive fields extracting orientation
from an image presented to the retina (Fig. 1A). We model V1
neurons as standard linear–nonlinear Poisson (LNP) units with
Gabor receptive fields followed by a rectifying nonlinearity and
Poisson spike generation. The image consists of an oriented
Gabor corrupted by independent pixel noise in the retina (e.g.,
due to noisy photoreceptors). The noise is additive Gaussian white
noise with SD equal to 20% of the range of retinal response levels
(estimated from refs. 17 and 18), except where otherwise noted.
For simplicity, our model lumps the retina and the lateral genic-
ulate nucleus (LGN) into a single layer. Dividing up this layer in
multiple stages would not affect our conclusions qualitatively,
while significantly complicating the analytical approximations. As
a measure of information, we use linear Fisher information, be-
cause it quantifies the performance (i.e., the inverse variance) of
the optimal linear readout in fine discrimination tasks (19),
which are commonly studied experimentally (20). To quantify the
behavioral discrimination performance that could be achieved
based on such a network, we assume throughout the text that all
of the information encoded in the network responses will be

extracted and used to guide behavior. Equations for the network
and information analysis are reported in Methods, and further
derivations are reported in SI Appendix. Details of the simulation
parameters used for each figure are provided in SI Appendix,
Tables S2–S5.
For this simple network, it is possible to derive analytically the

mean and covariance of the neural response in the V1 layer
(Methods, Eq. 3 and SI Appendix, section 1). This analysis reveals
that the V1 orientation tuning curves and noise correlation pat-
terns are qualitatively similar to those observed experimentally
(Fig. 1 B and C). Noise correlations in our model arise because
receptor noise propagating from the retina into V1 is shared be-
tween neurons according to their filter overlap. Because the filter
of a neuron determines its tuning, it follows that neurons with
similar tuning will be more correlated than neurons with dissimilar
tuning. Thus, correlations that emerge from computation naturally
reproduce the limited-range structure that has been observed ex-
perimentally in visual cortex (1, 21–25). Furthermore, pairwise
correlations in the network decay with the distance between the
centers of the filters and do so more rapidly for small than for
large filters (SI Appendix, Fig. S1), as found in a recent comparison
of V1 and V4 (25).
Pairwise correlations measured in V1 experimentally are on

average small, ∼0.1 for similarly tuned neurons (26). In contrast,
the network of Fig. 1C exhibits much higher correlations. The
reason for this discrepancy is that, in the feedforward model, the
correlation coefficient is effectively a measure of the overlap
between the filters representing two neurons. In Fig. 1C all filters
are perfectly overlapping in space and spatial frequency and
differ only in the preferred orientation and amplitude (param-
eter details in SI Appendix, Table S2). On the other hand, in
typical recordings neurons display a heterogeneity of receptive
field sizes, positions, and spatial frequency preferences (27). Fig. 2A
shows that a network with heterogeneous filter properties drawn
from the typical distributions found in V1 experiments (parameter
details in SI Appendix, Table S3) indeed produces much lower
correlation coefficients (mean correlation coefficient 0.09 for
neurons with similar orientation preference and 0.03 across the
entire population).
Our feedforward network can reproduce the pattern of corre-

lations observed in vivo but it is not clear yet whether these cor-
relations limit the information in the V1 layer of the network. A
simple intuitive argument shows that information-limiting corre-
lations must be present. Given the noise corrupting the visual
input in our model, the information about orientation in the image
is finite as long as the number of pixels is finite. Moreover,
according to the data-processing inequality (28), any amount of
posterior processing in the cortex can at most preserve the amount
of information present in the input. Consequently, if we keep
the size of the image constant, the information conveyed by the
network as a function of the number of V1 units must eventually
saturate to a value equal to or smaller than the information
available in the retina.
This is indeed the case in our model. Using analytical expres-

sions for tuning curves and covariance matrices (Methods, Eq. 3),
we can calculate the linear Fisher information in the V1 layer. As
illustrated in Fig. 1D, information in V1 increases with population
size initially, but saturates for larger populations. Note that this is
also the case for the population with heterogeneous filters (Fig.
2B), for which the resulting tuning curves for orientation have
heterogeneous width and amplitude, although saturation occurs at
a larger number of neurons. In ref. 7, it was shown that only a very
special type of correlations known as differential correlations can
limit information in large population codes. Because the correla-
tions induced by the feedforward network limit information, they
must contain differential correlations for large networks.
These results generalize to other stimuli besides orientation.

Qualitatively, any stimulus that is displayed to a noisy receptor
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Fig. 1. A feedforward orientation network accounts for heterogeneous
tuning, realistic correlations, and limited information. (A) Schematic of the
orientation network. (A, Bottom) The visual input is a Gabor image. (A, Mid-
dle) Neurons in the sensory periphery add noise to the visual inputs. (A, Top)
Due to cortical expansion, V1 neurons share part of their noisy inputs, in-
troducing noise correlations and limiting information about any stimulus. Note
that we model only one cortical hypercolumn: The receptive fields of all
neurons in the population fully overlap in space. (B) Orientation tuning curves
for a subset of neurons. (C) Average pairwise noise correlations in the network
are positive and decay with the difference in preferred orientation. (D) In-
formation as a function of the number of neurons in the V1 layer (solid black
line). Information in V1 saturates for a large number of neurons. In this par-
ticular case, the network is optimal as indicated by the fact that information
saturates at the upper limit of information imposed by the input information
(dashed green line). The noise in the sensory periphery was set to yield a
discrimination threshold of 2°. Simulation parameters are specified in SI Ap-
pendix, Table S2.
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with finite capacity will have finite information and therefore
induce differential correlations in subsequent layers. Similarly,
neurons with more overlap in their linearized receptive fields will
share more feedforward-induced noise and therefore have larger
noise correlation, giving rise to the experimentally observed noise
profile. The quantitative results of tuning curves, covariance ma-
trices, and Fisher information (Methods, Eq. 3) rely on the as-
sumption that the input pattern can be parameterized as IðsÞ, where
s is the manipulated stimulus. When this is true, a linear decoder is
sufficient to perform optimal fine discrimination, in the sense that
the linear decoder would recover all of the Fisher information.
Therefore, our analysis shows that a simple feedforward model,

which also explicitly considers the noise injected by the sensory
periphery into sensory signals, accounts for realistic noise corre-
lations as well as for limited information, without the need to
postulate any additional internal source of correlated noise.

Network Optimization Cannot Increase Information Indefinitely. The
data-processing inequality guarantees that information saturates
in large networks, but it does not fully determine the value at
which information saturates; it provides only an upper bound.
The saturation value depends on whether the network performs
optimal computation. If there are suboptimal steps, the information
will saturate below the upper bound.
When this is the case, it is possible to improve the efficiency of

the code by optimizing the tuning and noise correlations. Be-
havioral improvement achieved by perceptual learning and at-
tention is typically accompanied by increased sensitivity in single
neurons (i.e., tuning sharpening or amplification) (29, 30) and
reduced noise correlations (24, 31, 32), suggesting that these
might by efficient strategies to increase information. Many pre-
vious theoretical studies have derived more general solutions for
the optimal shape of tuning curves under the assumption of in-
dependent response variability (33–36). Others have considered
the effects of correlated variability on coding accuracy for a fixed
set of tuning curves (3, 4, 6, 37). However, in these studies, the
authors considered population codes consisting of isolated units
whose tuning curves and correlations can be manipulated in-
dependently. In a network model like the one we considered, this
is not an option: The tuning curves and the correlations cannot
be independently adjusted (19, 38). Instead, the only way to
optimize the network consists in modifying the connectivity that
determines in turn both the tuning curves and the correlations.
In the case of our model, it is possible to determine analytically

the optimal connectivity profile for orientation discrimination (i.e.,
the one that allows the network to recover all of the input in-
formation), along with the resulting correlation structure. In the
above example the oriented Gabor stimuli can be formalized by a
function IðθÞ parameterized by orientation θ, where the vector
notation denotes image pixels. Given the linear filters Fi of the
neural population, the tuning curves are given by the responses to
Gabor images parameterized by orientation, i.e., the rectified dot

product between filter and image (Methods, Eq. 3). Similarly, the
noise covariance matrix is given by the product of the filter matrix
(a matrix containing each filter as a row) and its transpose, plus a
stimulus-dependent diagonal matrix for the Poisson step (Meth-
ods, Eq. 3).
As we show in Methods and SI Appendix, section 2, the linear

Fisher information in a neural population without Poisson noise
is given by FIneural =FIinput cos2ðαÞ, where α is the angle between
the derivative I′ðsÞ and the vector space spanned by the filters. If
I′ðsÞ can be written as a linear combination of the filters, the
angle α= 0 and all input information is preserved, corresponding
to optimal connectivity. In the case of an oriented Gabor stim-
ulus, this is the case if a subset of the neural filters is also given by
Gabors of the same size and spatial frequency as the stimulus:
The input information is preserved because I′ðsÞ can be ap-
proximated by the difference of two Gabor filters of nearby
orientations. Note that whereas this is the case for a homoge-
neous population where all neural filters have the same fre-
quency as the stimulus, it is also true for heterogeneous filters
(Fig. 2B) as long as the stimulus frequency is not outside the range
covered by the filters. On the other hand, if, for instance, all of the
neural Gabor filters share the same spatial frequency, and such
frequency differs from that of the stimulus, information will be lost
(Fig. 3C). This is intuitively clear if one thinks for instance of a
discrimination task between two signals: It is a well-known result
of signal processing that the optimal template is the difference
between the patterns to be discriminated (39). These results carry
over for neurons that are additionally corrupted by independent
Poisson noise, if the population is large enough, as illustrated
in Fig. 3C.
Therefore, although a suboptimal network contains less in-

formation than an optimal one, information does not grow in-
definitely in either case. Importantly, the optimal tuning curves
predicted by our approach are very different from the one pre-
dicted by efficient coding approaches that ignore that both arise
as a consequence of connectivity and limited input information.
It is well known for instance that for a population code for a 1D
variable such as orientation, corrupted by independent Poisson
noise, the information is optimized when the tuning curves are
infinitely sharp (33). This is not the case in our network: Tuning
width depends on the shape of the filters (SI Appendix, section 3);
e.g., if the suboptimal Gabor filter has a higher spatial frequency
(lower spatial wavelength) than the optimal one, tuning curves will
be sharper for suboptimal than optimal neurons (Fig. 3A). Second,
in our network optimality does not imply decorrelation either.
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Fig. 3. Network optimization does not imply sharpening or decorrelation.
(Top) A population of filters with size and spatial frequency matched to the
stimulus is optimal. (A) Tuning curves for optimal filters (black) are not
sharper than for suboptimal filters (purple). (B) Noise correlations in the
optimal network are not uniformly lower than in the suboptimal network.
(C) Suboptimal filters cannot extract asymptotically all of the information
contained in the input. Simulation parameters are specified in SI Appendix,
Table S2.
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For instance, because noise correlations are determined by filter
overlap, if suboptimal Gabor filters have a higher spatial frequency
than the optimal one, optimizing the connectivity will lead to a
broadening of the limited-range structure, rather than a uniform
decrease in magnitude (Fig. 3B). Conversely, the optimal homo-
geneous population requires fewer neurons than a heterogeneous
population to reach saturation (Fig. 2B), but the former has uni-
formly larger correlations (Fig. 2A).

A Quadratic Nonlinearity Yields Contrast-Independent Correlations
and Decoding. So far, we have considered a model with a recti-
fying nonlinearity but experimental data suggest that the non-
linearity in vivo is closer to a quadratic function [as is used in
standard models of simple cells in V1 (40)]. Importantly, the
results we have presented so far do not depend substantially on
this choice: In both cases, linear rectified and quadratic, corre-
lations decline with difference in preferred tuning, information is
limited by the input, and the maximal input information can be
recovered using optimal filters (SI Appendix, Fig. S2). However,
there are two important aspects of this network that are critically
dependent on the choice of nonlinearity.
First, whereas correlations in the linear-rectifying model de-

pend on both stimulus and contrast, they are approximately in-
variant in the quadratic model (SI Appendix, sections 4 and 5,
and Fig. 4A). It has been reported that noise correlations in vi-
sual cortex are largely invariant to both stimulus value and
stimulus strength on behaviorally relevant timescales (i.e., a few
hundred milliseconds) (21, 22). This observation thus favors
the quadratic over the linear-rectifying nonlinearity. Second, the
quadratic model leads to simpler decoding, because both the
tuning curves and the covariance matrix scale approximately
homogeneously with contrast. Because the locally optimal linear
decoder of neural activity is proportional to the product of the
inverse covariance matrix with the vector of tuning curve deriv-
atives (19), the optimal linear decoder scales homogeneously as
well (SI Appendix, section 5). This has the advantage that if
contrast fluctuates from trial to trial, as is the case in natural

circumstances, the optimal decoder does not need to be adapted
as the same relative decoding weights can be used on different
trials (Fig. 4B). Furthermore, because the product of the inverse
covariance with the tuning curves is invariant to contrast, the
feedforward model with quadratic nonlinearity implements a lin-
ear probabilistic population code that is invariant to contrast (41).
Although the optimal linear decoder is independent of con-

trast, it is not independent of the level of input noise for both
nonlinearities (Fig. 4C and SI Appendix, sections 4 and 5). The
intuition is that, for purely Poisson variability, the most informa-
tive neurons (i.e., those with large decoding weights) are tuned
away from the stimulus to be decoded, because their tuning curve
has maximal slope, leading to a broad decoder profile. Conversely,
if the input noise is much larger than the Poisson variability, then
it is sufficient to assign large weight to the two neurons closest to
the stimulus to be decoded, one on each side (as explained in the
previous section, the difference between such two neurons is es-
sentially the output of the optimal template); therefore, when
the noise is mostly due to input variability, the decoder’s profile
is narrow. Varying the relative contribution of input noise and
Poisson variability results in a gradual broadening or narrowing of
the decoder’s profile. Thus, our framework predicts that, if the
input noise level is manipulated by adding pixel noise, perceptual
learning on one particular noise level should improve perfor-
mance for that particular noise level but not necessarily for higher
or lower levels. Lu and Dosher (42) indeed reported that training
on noisy stimuli does not transfer to noiseless stimuli. Note that in
addition to affecting the optimal decoder profile, the level of input
noise determines also the input information level and therefore
the level at which the network information saturates. We found
that cortical information does not simply scale with input noise
level, but the population size required for saturation changes as
well. Thus, in a population with homogeneous filters, 95% of the
input information was recovered by ∼500 neurons at 50% input
noise level but more than 10,000 neurons are needed at 5% noise
level (SI Appendix, Fig. S3). This prediction can also be tested
experimentally by recording from large cortical populations while
adding different amounts of pixel noise to the stimuli.

Global Fluctuations Reduce, but Do Not Limit, Information. So far we
have discussed properties of the response variability that arises
from variability in the sensory periphery, and we have shown that
a simple feedforward model is sufficient to account both for
limited information in large populations and for many properties
of experimental noise correlations. However, recent studies have
revealed that noise correlations in visual areas also reflect slow
internal fluctuations that are shared between groups of neurons
and proposed that such fluctuations are the main source of ex-
perimentally measured noise correlations (12–16). However, the
impact of this prominent source of correlation on information is
largely unknown, except for two empirical studies of auditory
(43) and visual (44) cortex whose results are based on small groups
of neurons and cannot be extrapolated to large populations. Ex-
trapolation from small populations to large populations is indeed
prone to very large errors (7). Therefore, we asked how global
fluctuations affect feedforward-generated noise correlations and
what impact they have on information.
Following ref. 15, we model global fluctuations resulting from

the product of a fluctuating gain factor with an underlying
stimulus-driven rate. In our case, the latter is determined by
the feedforward filtering of the noisy stimulus. In SI Appendix,
section 6, we show that such global fluctuations modify the feed-
forward covariance by rescaling it (i.e., expanding the noise co-
variance equally in all directions) and adding a one-dimensional
perturbation (Fig. 5A). As a result, noise correlations are ampli-
fied for all neuronal pairs and regardless of whether the neuronal
filters are homogeneous (Fig. 5B) or heterogeneous (Fig. 5C).

A

C
or

re
la

tio
n 

co
ef

fic
ie

nt

LINEAR

QUADRATIC

Contrast

B

Preferred orientation

Contrast
1 .5
.2 .1

C

N
or

m
al

iz
ed

 d
ec

od
in

g 
w

ei
gh

t

0.1 0.2 0.5 1
0

0.25

0

0.25

0.1 0.2 0.5 1

N
or

m
al

iz
ed

 d
ec

od
in

g 
w

ei
gh

t

Contrast

Ext. noise
0 5
10 20

Preferred orientation

-0.4
-0.2

0
0.2
0.4

−90 0 90
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

-0.6
-0.4
-0.2

0
0.2
0.4
0.6

−90 0 90

-0.2

0

0.2

Fig. 4. Optimal decoding with linear and quadratic V1 models. (A) Noise
correlations depend on image contrast in the linear model (Top), but are ap-
proximately contrast invariant in the quadratic model (Bottom). (B) Weights of
the locally optimal decoder of orientation around 0° plotted as a function of
the preferred orientation of each neuron. The optimal linear decoder depends
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the amount of noise added at the sensory periphery in both models. In B and C
the normalization convention for the decoding weights is wnorm = wopt FI =
Σ−1 f′, where Σ is the covariance matrix and f′ is the derivative of the tuning
curves (Methods and SI Appendix, section 5). Note that the decoding weights
in both models are smooth despite heterogeneous tuning. Simulation pa-
rameters are specified in SI Appendix, Table S4.
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Because global fluctuations amplify noise correlations, do they
also destroy information? Intuitively, a global scaling of the
population response affects only the height of the population hill
of activity, leaving the location of the peak (and therefore the
stimulus value extracted by a linear readout) unchanged. There-
fore, one could expect that global fluctuations do not change in-
formation. In SI Appendix, section 6 we show that this is only
partly correct: Global fluctuations do decrease the asymptotic
information in a large population, to an extent that depends on
the level of the fluctuations. Intuitively, this is because multipli-
cative global fluctuations expand the original noise covariance,
and the expansion is equally large in all directions: Therefore,
noise is amplified also in the direction of the signal, thus increasing
the magnitude of differential correlations. However, global fluc-
tuations by themselves cannot limit information in large pop-
ulations, consistent with the original intuition (Fig. 5 D and E).
Furthermore, global fluctuations reduce asymptotic information

only if the decoder does not have access to the fluctuating gain
factor. If the latter is known, one can easily divide it out and re-
cover the full input information. For example, if global fluctua-
tions in a neural population arise due to a fluctuating top–
down signal but the same top–down signal is also available
to the downstream circuits reading out the population, the in-
formation loss due to global fluctuations would not be relevant for
behavior even though it is measured in neural recordings. Goris
et al. (15) and Ecker et al. (14) conjectured nonsensory signals
such as arousal, attention, and adaptation to be among the major
causes of global fluctuations in awake animals; whether these
signals are shared across sensory and decision areas and removed
at the decision stage is currently unknown.
If the fluctuating gain parameter is not shared with decision

areas and asymptotic information is affected by global fluctua-
tions, attention could also be interpreted as a mechanism that
improves behavioral performance by reducing the variance of
global fluctuations. Such an interpretation would be consistent

with the finding that attention is often accompanied by uniform
decorrelation (31, 32) and with the recent observation that directing
attention to a target decreases the variance of global fluctuations
(45). Rather than by decorrelating an existing correlation pattern as
originally suggested (31), attention in this scenario would increase
information by suppressing gain fluctuation as an additional, det-
rimental source of variance.

Computation-Induced Noise Correlations Contain a Tiny Amount of
Differential Correlations. The tuning curve pattern, correlation pat-
tern, and information saturation behavior of our model (Figs. 1 and
2) seem in apparent contradiction with the results of ref. 6. Both
their and our models have heterogeneous tuning curves and positive
correlations proportional to tuning curve similarity, but although
they report that information grows unboundedly with network size,
it saturates in our case. What is the reason for this discrepancy?
The discrepancy comes from the fact that our model, unlike

the one of Ecker et al. (6), contains information-limiting corre-
lations. Still, the overall pattern of correlations is dominated by
non-information-limiting correlations; this is why overall corre-
lations look similar in both models. Moreno et al. (7) already
suggested that differential correlations might be small compared
with other correlations in vivo but our model allows us to test this
idea quantitatively in a realistic model of cortical computation.
As we show in SI Appendix, section 7, any information-limiting

covariance matrix can be split into a positive definite non-
information-limiting part and an information-limiting part, which
is proportional to the product of the tuning curve derivatives. The
size of the information-limiting part is determined by the relative
size of the behavioral threshold and the tuning curve width,
squared. Recall that, under the assumption that all of the in-
formation encoded in V1 will be extracted and used to guide be-
havior, behavioral thresholds are inversely related to linear Fisher
information via Eq. 7 in Methods. If the behavioral threshold is
much smaller than the tuning curve width, the magnitude of the
information-limiting part is very small, while having a significant
impact on information. For instance, in the case of orientation
discrimination at high contrast, with a threshold of roughly 2° and
tuning width of roughly 20°, the square of their ratio is 0.01; i.e.,
information-limiting correlations contribute to 1% of the total
correlations. Given the size and measurement error of experimen-
tally observed correlations, this implies that it would be very hard to
detect differential correlations directly in experimental data.
In Fig. 6 we compare the information, tuning curves, and cor-

relations of our model and a model in which the differential cor-
relations have been artificially removed. For a behavioral threshold
of 2°, the contribution of the differential correlations is so small that
it is virtually impossible to discern the difference in the correlations
plot (Fig. 6B). This is true not only on average, but also on a pair-by-
pair basis: Even ignoring measurement errors, the difference in
correlation coefficients with vs. without differential correlations is
larger than 0.05 in only about 5% of the pairs and larger than 0.1 in
only 0.2% of the pairs (SI Appendix, Fig. S4). The impact on in-
formation, however, is dramatic: When the tiny amount of differ-
ential correlations is removed, saturating information turns into
nonsaturating information (Fig. 6C).
This resolves the apparent paradox: Having a set of tuning

curves and correlations that look similar to experimental data
does not determine the information content in the population,
because a tiny error in the measured correlation can have a huge
impact on measured information for large populations.

Paradoxes of Cortical Models That Do Not Operate at Saturation. So
far we have shown that a simple model based on noisy inputs and
feedforward computation accounts for realistic and information-
limiting correlations. We also saw that in a large network tiny
differential correlations will have a huge impact on information
because they are solely responsible for saturation. But is the
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Simulation parameters are specified in SI Appendix, Table S3.
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number of neurons involved in a given computation large enough
to make the black curve in Fig. 7 saturate? In the specific example
of V1 and orientation, this means assuming that the number of
relevant V1 neurons for the discrimination (i.e., those that are
orientation tuned and project to higher cortex) is much larger than
the number of peripheral inputs. This is a biologically realistic
assumption: For instance, based on anatomy considerations we
estimated that the experimental stimuli used in typical psycho-
physics studies (20) would activate ∼300,000 relevant V1 neurons
(46–48) but only 10,000 LGN neurons (48). Similar ratios of inputs
to outputs have been reported previously for V1 (49) and other
sensory cortices (50–52).
Whereas saturation of information for large populations is an

inevitable necessity given limited input information, there also
exists the possibility that the brain operates at a point of the sat-
uration where information still grows if more neurons are added.
However, the behavioral thresholds that would be expected from
independent variability (or non-information-limiting correlations
alone) and realistic numbers of neurons are an order of magnitude
smaller than what is found experimentally (Fig. 7) (53).
Furthermore, it is unclear how this scenario can be made

consistent with two key experimental observations on the relation
between single-neuron activity and perceptual choices (assuming
that the population responses are read out optimally and dis-
regarding feedback effects, assumptions we discuss below). First,
neurometric thresholds (i.e., the minimal stimulus difference that
can be discriminated reliably from the responses of a single neu-
ron) are comparable to psychometric thresholds (i.e., those mea-
sured in the perceptual discrimination task) (54, 55) (Fig. 8A).
This result is hard to explain in the nonsaturated regime: If
information grows linearly with the number of neurons, the single-
neuron information is negligible compared with the full pop-
ulation, and therefore the neurometric threshold is large com-
pared with the psychometric threshold (Fig. 8 B and C). Second,
the activity of single neurons can be used to predict behavioral
responses on a trial-by-trial basis, as quantified by choice proba-
bilities (a measure of the correlation between neural activity and
choice) (Fig. 8D) (54, 56–58). However, in the absence of satu-
ration the contribution of each single neuron to behavior is min-
imal and vanishes in the limit of large populations (Fig. 8 E and F).
These results assume that the behavioral performance of the an-
imal corresponds to that of the optimal decoder and that choice
probabilities are not influenced by feedback effects. Indeed, one
way to rescue a model with nonsaturating information is to assume
that in areas like V1 there is much more information than subjects
are able to extract in a simple task like orientation discrimination.
Such a suboptimal readout of V1 stands in conflict with the ability
of human subjects (53) to approximate ideal observer perfor-
mance in orientation discrimination in the presence of external
noise, at least after perceptual learning, as can be shown by a

simple calculation (SI Appendix, section 8). For instance, in the
experiments of Dosher and Lu (53), when the stimuli were not
corrupted by external noise, human subjects needed between
0.75% and 2.2% signal contrast to achieve 80% correct perfor-
mance, whereas the ideal observer needs between 0.6% and 1.2%
signal contrast; similarly, for the largest amount of external noise
tested in the experiment, subjects needed between 4.5% and 7%
signal contrast and the ideal observer between 3.5% and 7% (Fig.
9). Also a recently developed formalism of relating choice prob-
abilities to stimulus preferences gives support to the scenario of
saturated information and optimal readout as opposed to non-
saturated information and suboptimal readout (59). The above
arguments address the case of computationally simple tasks like
orientation discrimination; for hard tasks like object recognition
under naturalistic viewing conditions the readout of V1 is likely
suboptimal due to extensive computational approximations of
downstream circuitry (60).
It is also possible that choice probabilities are high not because

of saturating information but because they are enhanced by
feedback from areas related to decision making (57, 61). How-
ever, a time-course analysis of the decision signal (8, 57, 58) and
inactivation studies (62) suggest that feedback alone is not suf-
ficient to explain the observed above-chance choice probability.
Therefore, this scenario remains speculative but certainly de-
serves to be investigated in the future.

Discussion
Noise correlations have attracted considerable attention over the
last few years because of their impact on the information of neural
representations. Of particular importance is to understand the
origin of one type of correlations known as differential correla-
tions, the only kind of correlations that can make information
saturate to a finite value for a large neuronal population. Here,
using orientation selectivity in V1 as a case study, we show that
noise in peripheral sensors and potentially suboptimal computa-
tion are sufficient to account for a significant fraction of noise
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correlations and in particular differential correlations. In contrast,
previous influential accounts have emphasized the potential role
of internal noise in the emergence of noise correlations, due for
instance to shared cortical input (2) or chaotic dynamics in bal-
anced networks (9, 10, 63). This correlated internal noise has been
suggested to limit information and therefore behavioral perfor-
mance (2, 11). The problem with this approach is that internal
noise is unlikely to limit information, unless it is fine-tuned to
contain differential correlations (7). This is particularly unlikely
given that differential correlations are stimulus specific. Thus, if
cortex happens to generate noise that contains differential corre-
lations for, say, direction of motion, these correlations could not
make information saturate for speed of motion or many other
perceptual variables. One might argue that even if internally
generated correlations do not contain differential correlations,
they might reduce information substantially relative to inde-
pendent variability, such as the correlation structure explored by
ref. 6. This corresponds to a red line with lower slope in Fig. 7 and
narrows the gap between decoding performance and behavioral
performance. However, it is unclear whether a noise correlation
structure like that of ref. 6 could actually be generated purely by
internal noise. Another recently proposed alternative is that dif-
ferential correlations are induced via feedback from decision-
related areas (61). However, such differential correlations do not
necessarily impact information because they are known to the
decision area and could be easily factored out.
It is therefore unclear whether internal variability contributes

significantly to information-limiting differential correlations. In-
stead, we have argued elsewhere that the main sources of in-
formation limitation are variability in peripheral sensors and
suboptimal computation (60). This study shows that the two
sources do indeed generate information-limiting correlations
and lead to overall patterns of correlations very similar to those
observed in vivo. Interestingly, we also found that only a tiny
fraction of correlations in our model are differential correlations.
Moreno et al. (7) previously suggested that this might explain why

the overall patterns of correlations in vivo bear no resemblance to
the pattern predicted by pure differential correlations. We have
shown here that this is indeed the case in a realistic model of
orientation selectivity. More specifically, we found that when
tuning curve widths are larger than psychophysical thresholds,
differential correlations will be tiny compared with nonlimiting
ones (Fig. 6). This has important ramifications for experimental-
ists because it suggests that detecting differential correlations di-
rectly will be highly challenging: A tiny measurement error can
give rise to drastically different population information. It might
be easier to measure information directly from simultaneous re-
cordings of large neuronal populations but this might require one
to record for a population of several thousand active neurons,
which is currently beyond what is technically possible.
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An interesting question to ask is how the differential corre-
lations induced by feedforward connectivity are modified by re-
current connectivity. In ref. 64, it was shown that a recurrent
network of balanced excitatory and inhibitory connections can
decorrelate weak feedforward-induced correlations to be arbitrarily
small, as the network size increases. However, the feedforward-
induced correlations in this study did not contain differential cor-
relations, because the size of the input layer grew together with the
output layer. Moreno et al. (7) found that a balanced recurrent
network can reduce average correlations even if differential correla-
tions are present in the input, but this decorrelation had only a
minimal effect on information and only for small networks. The
reason is twofold: First, not the average level of correlations, but only
the specific pattern of differential correlations is responsible for in-
formation saturation in large networks. Second, differential correla-
tions must be present, because the input information is limited, which
by the data-processing inequality implies that also the output in-
formation must be limited. In our case, the input information is
limited because the sensory periphery is noisy and has a small ca-
pacity compared with cortex. The results of Moreno et al. (7) suggest
that although recurrent connectivity might affect the overall size and
shape of noise correlations, it will not affect information saturation or
substantially affect the size of the network necessary for saturation.
This work allowed us also to understand how global fluctua-

tions influence information in population codes. Global fluctu-
ations have been identified as a major source of correlations in
vivo. However, global fluctuations on their own do not generate
differential correlations for orientation and, as such, do not
strongly impact information for orientation and any other sen-
sory variables except perhaps contrast. Nonetheless, if differential
correlations are already present in a code, we showed that global
fluctuations can lower the level at which information saturates. This
suggests an intriguing theory of attentional control: Attention might
increase information in population codes, and thus improve be-
havioral performance, by reducing global fluctuations. This would
predict that attention should lead to an overall drop of correlations
(Fig. 5), which is indeed what has been observed in vivo.
Recent work has addressed the question of how sensory noise

affects coding and optimal receptive fields of single neurons (65).
More closely related to our work, how correlations induced by
feedforward connectivity affect information was explored pre-
viously by refs. 19, 38, and 66–68. As in our model, it was found
that feedforward-induced correlations have a big impact on in-
formation and affect the choice of optimal tuning curves. Our
model goes beyond these earlier studies in that it explicitly limits
information at the input and in that it allows quantifying ana-
lytically the information loss relative to the input, comparing
neural information to psychophysical thresholds and separating
information-limiting and nonlimiting correlations.
Importantly, our model makes testable experimental predic-

tions. It predicts in particular correlations of individual pairs given
the filters associated with each neuron. Moreover, the relation
between tuning and noise correlation has an explicit dependence
on the level of input noise. This could be readily tested by re-
cording from neurons with closely overlapping receptive fields
while manipulating the input noise.
Even though we focused our discussion on orientation selec-

tivity and V1, our model readily generalizes to other modalities,
stimuli, and brain areas. Instead of a Gabor image parameterized
by orientation, IðsÞ can be made to denote any high-dimensional
input parameterized by a low-dimensional stimulus, such as au-
ditory or tactile stimuli parameterized by frequency. Similarly the
neural filters Fi can be defined with respect to the appropriate
high-dimensional input space. In all such cases, noise in the input
will limit information and induce correlations in the neural rep-
resentation. Similarly the analytical results on optimality in the
case of matched filters and the relationship between filters, tuning
curves, and covariance generalize to this case.

What is not yet addressed in our model is the case of a high-
dimensional input Iðs, tÞ, which depends not only on a well-con-
trolled stimulus s but also on a fluctuating nuisance variable t. Such
a case arises, for example, in object recognition under naturalistic
viewing conditions where s corresponds to object categories in a
discrimination task and t corresponds to irrelevant image features
that need to be marginalized out (69). In such a situation, sophis-
ticated nonlinear processing is required to reformat information
in such a way that it can be read out linearly. A specific example was
studied in the coding of visual disparity in binocular images, with
the stimulus given by a random stereogram (70). However, that
study addressed only single neuron rather than population in-
formation. It would be interesting to generalize our model for such
processing and predict correlations in higher visual areas.

Methods
Orientation Network Model. The model we used for the simulations is based on
a network comprising a noisy input layer followed by a bank of orientation-
selective filters with static nonlinearity and Poisson spike generation. Here we
provide a brief summary of the model details. Full mathematical derivations
and network parameters for the simulations are presented in SI Appendix.

The inputs to the network are Gabor patches corrupted by additive white
noise with variance σ20,

~Ijθ∼N �IðθÞ, σ20 1P�, [1]

where P is the number of pixels in the image, 1P is the identity matrix of size
P × P, and IðθÞ is a noiseless Gabor with orientation θ.

The V1 model neurons filter the sensory input by a Gabor Fi ∈RP oriented
according to their preferred orientation θi, followed by a rectifying nonlinearity
and a Poisson step. The neural response of neuron i is then sampled from

ri ∼ Poisson
�h

Fi ·~I
i
+

�
, [2]

where ½�+ denotes half rectification. The tuning curves and covariance matrix
are given by

fiðθÞ= Æriæ≈ ½Fi · IðθÞ�+ [3]

ΣijðθÞ=Cov
�
ri , rj

�
≈ σ20

�
Fi · Fj

�
+ + δij fiðθÞ,

where the approximation is valid for small input noise and for neurons that
are well above the firing threshold.

The correlation coefficient for two neurons i≠ j is given by

ρij =
σ20
�
Fi · Fj

�
+ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ20jFi j2 + fiðθÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ20jFj j2 + fjðθÞ
q . [4]

From expression [4] we see that the correlations between the neurons will be
proportional to the overlap of their filters Fi and Fj, giving rise to the limited-
range structure of correlations. In particular, the result that neurons with
similar receptive fields share more feedforward-induced noise correlation is
not specific to Gabor filters and orientation and can be generalized to other
stimuli and modalities.

More details and an analytical approximation to tuning curves and co-
variance matrix for Gabor filters can be found in SI Appendix, section 1.

The Fisher information about orientation in the image is given by

FIinputðθÞ= 1
σ20
jI′ðθÞj2,

where ′=d=dθ is the derivative. For a finite number of pixels, information is
limited. The linear Fisher information in the neural population without
Poisson noise is given by

FIneural =
X
ij

fi′ðθÞΣ−1
ij fi′ðθÞ= 1

σ20
I′ðθÞ ·

X
ij

FiðF · FÞ−1ij Fj · I′ðθÞ= FIinput cos
2 α,

where α is the angle between the derivative I′ðsÞ and the vector space
spanned by the filters. If I′ðsÞ can be written as a linear combination of the
filters, this angle is zero and the input information is preserved. More details
can be found in SI Appendix, section 2.
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For the simulations in Fig. 4, we also considered a quadratic nonlinearity
rather than half rectification. The tuning curves and covariance matrix can
also be computed in closed form and are given by

f ðNLÞi ðθÞ=
�
f ðLÞi ðθÞ

�2
+ΣðLÞ

ii

ΣðNLÞ
ij ðθÞ= 4ΣðLÞ

ij f ðLÞi ðθÞf ðLÞj ðθÞ+ 2
�
ΣðLÞ
ij

�2
,

where f ðLÞi ðθÞ and ΣðLÞ
ij ðθÞ correspond to tuning curves and covariance matrix,

respectively, of the linear model. This allows us to calculate the correlation
coefficients in Fig. 4A. The normalized decoding weights for both linear and
nonlinear models are defined as

wnorm =Σ−1f′.

More details can be found in SI Appendix, section 5.
For the simulations in Fig. 5, we extended the network by introducing an

internal source of shared variability, modeled as a positive random variable
that multiplies the rate of the neurons before the Poisson step, as in ref. 15.
In this case, the neural response of neuron i is then sampled from

ri ∼ Poisson
�
g
h
Fi ·~I

i
+

�

g∼Γ

 
1
σ2g

,  
1
σ2g

!
; Ægæ= 1,

[5]

where σ2g is the variance of the internal fluctuations. This extension does
not change the tuning curve of the neurons, but it changes the covariance
matrix to

ΣðgÞ =
�
σ2g + 1

�
Σ+ σ2gff

⊤ +diagðfÞ, [6]

where, in the right-hand side, Σ is the same as in Eq. 3, and diagðfÞ is a di-
agonal matrix with entries given by the tuning curves of the neurons. More
details can be found in SI Appendix, section 6.

Analysis of Model Neural Responses. We computed linear Fisher information
directly from its definition, using the analytical expressions derived for the
tuning curves and covariance,

FI= f′⊤Σ−1f′, [7]

where the symbol ′ denotes the derivative with respect to the stimulus.
In Fig. 8, we plot neurometric discrimination thresholds and choice

probabilities (CP). The discrimination threshold for a neural population with
linear Fisher information FI is

δpopulation =
1ffiffiffiffi
FI

p [8]

and the discrimination threshold for a single neuron is

δneuroni =

ffiffiffiffiffiffi
Σii

f2i

s
. [9]

We computed CPs using the analytical expression derived in ref. 71:

CPi = 0.5+ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξ−2i − 1

q −1

ξi =
δpopulation

δneuroni
.

[10]
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