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Abstract
Brain blood barrier breakdown as assessed by contrast-enhanced (CE) T1-weighted MR

imaging is currently the standard radiological marker of inflammatory activity in multiple scle-

rosis (MS) patients. Our objective was to evaluate the performance of an alternative model

assessing the inflammatory activity of MS lesions by texture analysis of T2-weighted MR

images. Twenty-one patients with definite MSwere examined on the same 3.0TMR system

by T2-weighted, FLAIR, diffusion-weighted and CE-T1 sequences. Lesions and mirrored con-

tralateral areas within the normal appearing white matter (NAWM) were characterized by tex-

ture parameters computed from the gray level co-occurrence and run length matrices, and by

the apparent diffusion coefficient (ADC). Statistical differences betweenMS lesions and

NAWMwere analyzed. ROC analysis and leave-one-out cross-validation were performed to

evaluate the performance of individual parameters, and multi-parametric models using linear

discriminant analysis (LDA), partial least squares (PLS) and logistic regression (LR) in the

identification of CE lesions. ADC and all but one texture parameter were significantly different

within white matter lesions compared to within NAWM (p < 0.0167). Using LDA, an 8-texture

parameter model identified CE lesions with a sensitivity Se = 70% and a specificity Sp = 76%.

Using LR, a 10-texture parameter model performed better with Se = 86% / Sp = 84%. Using

PLS, a 6-texture parameter model achieved the highest accuracy with Se = 88% / Sp = 81%.

Texture parameter from T2-weighted images can assess brain inflammatory activity with suffi-

cient accuracy to be considered as a potential alternative to enhancement on CE T1-weighted

images.
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Introduction
Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous
system featured by the onset of multifocal white matter (WM) inflammatory foci resulting in
irreversible parenchymal damage. Shortly after its introduction in clinical practice, magnetic
resonance imaging (MRI) became the most sensitive imaging modality in the detection of
chronic lesions as well as the assessment of inflammatory activity [1].

Conventional MR examination usually includes fluid attenuated inversion recovery
(FLAIR) and T2-weighted (T2-W) imaging for lesion load delineation, together with contrast-
enhanced (CE) T1-weighted (T1-W) imaging to detect foci of brain blood barrier (BBB) dis-
ruption due to local inflammation. Diffusion-weighted imaging (DWI), from which mapping
of the apparent diffusion coefficient (ADC) is derived, may give additional information about
cell loss and/or ultrastructural disorganization within diseased parenchyma. Though diffuse
involvement of the CNS with the MS disease process has been highlighted by histopathological
studies, acute inflammatory foci occur, which may be assessed either by the a posteriori demon-
stration of lesion size enlargement and/or de novo lesion appearance on serial T2-W images at
the chronic phase, or by contemporary contrast-enhancement on T1-W images of a single
examination at acute phase [2]. In the latter condition, the BBB breakdown allows leakage of
the gadolinium chelates from the vascular compartment to intercellular interstitium resulting
in a local T1 time shortening of adjacent spins producing hyper signal intensity on CE T1-W
images. Despite recent technical advances in DW and diffusion tensor imaging, changes in dif-
fusion parameters in MS remain equivocal e.g. regarding the link between ADC values and
inflammation within CE lesions on T1 images [3–5].

Texture analysis (TA) has been investigated as an alternative quantitative approach to detect
contrast-enhanced MS lesions [6], differentiate MS lesions from cerebral microangiopathies
[7], characterize different sub-areas (core, rim) within lesions undergoing ‘active’ demyelin-
ation [8], differentiate between relapsing and remitting MS lesions [9], study perfusion charac-
teristics of MS lesions [10], act as surrogate markers of lesion load and tissue integrity in MS
[11,12], differentiate between primary progressive and relapsing-remitting MS phenotypes
[13], differentiate MS lesions in patients with advanced vsmild disability status [14], make an
outcome prognosis in patients with a clinically isolated syndrome [15], and assess the persis-
tence or recovery of acute lesions in relapsing-remitting patients [16].

Texture refers to the spatial arrangement of primitive attributes, either visual or actual, of a
surface. A brick in a brick wall,—or on a smaller scale the grains of a brick, constitutes a trivial
example of a primitive attribute of the surface following a regular spatial arrangement. In medi-
cal imaging, primitive attributes are defined by image pixels, and texture refers to the visual
appearance–or perceived properties–of the image, which can be more or less coarse, fine, uni-
form, granular, periodic or irregular. In mathematical terms, texture refers to the spatial distri-
bution of the gray levels in the image matrix. Contrary to bricks in a brick wall, gray levels in
medical images often follow more complex patterns, requiring high-order statistics or fre-
quency approaches to characterize their arrangement. Numerical expressions have thus far
been developed to assess the contrast, homogeneity, coarseness, and more broadly, all complex
(non-visible to the human eye) variations in the distribution of the gray levels. All these numer-
ical expressions have been referred to as ‘texture parameters’ [17,18].

In practice, TA generates a set of parameters that captures the pictorial content of the
image, which may be useful for detection or classification purposes. The rationale behind the
concept is that texture results from the process that created the surface. In MR imaging of MS
lesions, it is assumed that the distribution of gray levels within the lesion results from the
underlying ultra-structural properties of tissues affected by the disease processes, with or
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without therapeutic interventions [19]; a concept which has recently been validated by the his-
topathological analysis of brain white matter lesions appearing hyper-intense on T2-WMR
images [20].

In a pioneering study, Yu et al. differentiated between enhanced and unenhanced brain MS
lesions using a combination of 8 texture parameters with a sensitivity (Se) of 88% and a speci-
ficity (Sp) of 96% [21]. T2-WMR images were acquired from a spin-echo sequence on a 0.28T
MR system in a small group of 8 patients. To our knowledge, this study has remained the only
one specifically investigating TA as a potential alternative to CE T1-W imaging to identify
acute inflammation within MS lesions.

One major reason to repeat this study design was that TA critically relies on image quality
as well as on numerical solutions to measure it [22,23]. The experiment initially designed by
Yu was repeated on a 3.0T system offering increased signal-to-noise ratio resulting in improved
spatial resolution. Two TA methods and three statistical classifiers were implemented. A three-
step assessment was undertaken: (i) texture and ADC parameters were compared in MS lesions
vs normal appearing white matter (NAWM), (ii) the performance of individual parameters in
identifying CE lesions was evaluated, and (iii), parameters were combined into multi-paramet-
ric models, the performances of which were assessed after cross-validation.

The availability of such an alternative model to contrast-enhanced MR imaging for moni-
toring inflammatory activity in MS patients is clearly beneficial in an era of economic con-
straints and for limiting systemic risks in persons with impaired kidney function.

Materials and Methods

Institutional EC board approval
The study was approved by our institutional ethics committee (CEBHF, Commission d’Ethique
Biomédicale Hospitalo-Facultaire, Université Catholique de Louvain). Written informed con-
sent of patients in the retrospective group (group 1) of the study was obtained for retrospec-
tively reprocessing their imaging data extracted from the institutional PACS. Written consent
was also obtained from patients in the prospective group (group 2) for repeating twice the
T2-W acquisition before and after CA perfusion.

Inclusion criteria, patients’ groups, and study design
Inclusion criteria in the study were as follows for the two (see below) patients’ groups: (i) a defi-
nite diagnosis of MS according to the 2010 revised McDonald's criteria for dissemination in
space (DIS) and dissemination in time (DIT), (ii) a relapsing-remitting disease course, (iii) the
presence of enhanced inflammatory lesions on CE-T1 images at the time of inclusion, and (iiii)
the absence of any other co-existent neurological disorder. The study included two distinct
groups of patients:

Patients from the retrospective group 1 were from the routine clinical practice in which
patients receive intravenous injections of CA at a standard dose of 0.1 mmol.kg-1 of gadobenate
dimeglumine (Multihance1, Bracco Imaging Europe1, Wavre, Belgium) outside the MR sys-
tem. The timing of CA administration is synchronized with the end of the examination of the
preceding patient. The MS patient is then introduced into the MR system almost immediately
after CA perfusion. A standardized protocol is then applied with T2-W, FSE-FLAIR, and DWI
sequences being acquired before the acquisition of CE T1-W images. Therefore, a constant
delay ranging from 10 to 15 minutes between CA perfusion and T1 images acquisition is
obtained. Twenty-one patients were extracted from the clinical database and PACS. 44 con-
trast-enhanced lesions, 37 unenhanced lesions and 44 regions of interest (ROI) in NAWM
were delineated on CE T1-W images of patients in group 1.
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Patients from the prospective group 2 had a different examination protocol. An intravenous
access line was installed before examination. An initial pre-contrast T2-W sequence was acquired
before CA perfusion. After CA perfusion of 0.1 mmol.kg-1 of gadobenate dimeglumine followed
by 30 mL saline flush at a rate of 2 mL.s-1 with an automated power injector, a two-minute pause
was observed and a similar protocol as for group 1 was thereafter applied including a repeated
post-contrast T2-W sequence at the start. Both groups of patients had thus far post-contrast
T1-W images in a similar delay ranging from 10 to 15 minutes after CA perfusion. Nine patients
were recruited in this group, in which 14 contrast-enhanced lesions were delineated on CE T1-W
images. TA was then performed on both pre- and post-contrast T2-W data.

The rationale for recruiting the two different groups of patients was the concern that TA
was performed on post-contrast T2-W data in the main retrospective group 1. Since T2-W
images were unaffected by CA perfusion at visual examination, the a priori hypothesis was that
texture parameter values should also be unaffected by CA perfusion. To verify the hypothesis,
the second prospective validation group 2 was subsequently recruited.

MRI examinations
All MR examinations were performed using the same 3.0T whole body system (Achieva 3T,
Philips Healthcare, Best, The Netherlands) with a 32-channel SENSE receiver head coil.
Patients were imaged in the supine position using the following sequences: FSE T2-W sequence
(scan parameters: TR/TE = 2565/80 ms, FOV = 230x184 mm, acquisition matrix = 384x246,
slice thickness = 3 mm, interslice gap = 0 mm, 46 slices, in-plane spatial resolution after
reconstruction = 0.45x0.45 mm), FSE FLAIR (scan parameters: TR/TE/TI = 11000/125/2800
ms, FOV = 230x183 mm, acquisition matrix = 352x189, slice thickness = 3 mm, interslice
gap = 0 mm, 46 slices, in-plane spatial resolution after reconstruction = 0.51x0.51 mm), EPI
DWI sequence (scan parameters: TR/TE = 4144/55 ms, pulse width = 12.1 ms, time between
gradients = 26.3 ms, b = 0/100 s.mm-2, FOV = 230x230 mm, acquisition matrix = 128x101,
slice thickness = 3 mm, interslice gap = 0 mm, 46 slices, in-plane spatial resolution after
reconstruction = 0.90x0.90 mm) and 3D GRE T1-W sequence (scan parameters: TR/TE = 318/
2.67 ms, FOV = 230x230 mm, acquisition matrix = 384x246, slice thickness = 3 mm, interslice
gap = 0 mm, 46 slices, in-plane spatial resolution after reconstruction = 0.45x0.45 mm).

Images analysis
MR images of all patients (group 1 and 2) were consensually reviewed by both a senior resident
and an experienced neuroradiologist (1 and 25 years of experience, respectively). MS lesions
were categorized as enhanced or non-enhanced from the analysis of CE T1-W images. For
each lesion, the slice with the largest cross-sectional dimensions was selected. The region of
interest corresponding to the whole lesion was manually segmented on the T2-W image in a
similar slice location (Fig 1). A contralateral mirrored ROI in NAWMwas generated thereafter.
Only lesions with homogeneous enhancement of 5 mm in diameter or more (according to the
long axis) were considered for analysis.

Prior to the calculation of texture and ADC parameters, DWI was spatially registered with
T2-W images using a rigid transformation [24], thereby replicating ROIs drawn on the T2-W
images on the diffusion-weighted ones, which resulted in an anatomical match between texture
and ADC ROIs.

The visual texture of ROIs was analyzed using the gray level co-occurrence matrix (GLCM)
and the run length matrix (RLM) [17,25]. From the GLCM, nine texture parameters describing
the gray levels’ interdependence in the image matrix were estimated. Computation parameters
were: distance of one pixel between two neighboring pixels, average of the angular relationships
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on the four main directions, and five bits of gray levels. From the RLM, eleven texture parame-
ters describing the distribution of runs of gray levels in the image were estimated with the same
computation parameters. The mean value (over all pixels in the ROI) of the texture parameters
was calculated. The list of parameters is given in Table 1.

Statistical analysis
Parameters values were expressed as the mean ± standard deviation. In the first analysis, tex-
ture parameters and ADC values within both enhanced and unenhanced MS lesions vs

Fig 1. Method of ROI delineation and pixel-wise texture analysis from the gray level co-occurrence
matrix (GLCM). a) Axial-transverse post-contrast T1-W image showing multiple enhanced lesions. b) T2-W
image in similar slice location revealing additional hyper-intense unenhanced lesions. c) Segmentation on the
same image as in b) of the largest active lesion as well as the contralateral mirrored area within NAWM. d)
Corresponding DWI with gradient factor bo = 0 s.mm-2. e) Corresponding DWI with gradient factor b = 1000 s.
mm-2. f) ADC parametric map registered on anatomical T2-W image with superimposition of the ROIs drawn
on c. g) Zoom of ADCmapped image on largest enhanced lesion (after erasing ROIs’ contours). h-m)
Parametrical maps of the following texture parameter: h) contrast, i) correlation, j) homogeneity, k) sum
average, l) sum variance and m) difference variance with mean value estimated on a 3x3 sliding window and
normalized on the 0–255 range. Individual texture parameters revealed different local and regional statistical
properties of the gray levels between MS lesions and NAWM and between enhanced and unenhanced MS
lesions.

doi:10.1371/journal.pone.0145497.g001

Table 1. List of parameters used for the characterization of MS lesions.

PARAMETER TYPE PARAMETER DESCRIPTION

Diffusion

1 ADC Apparent Diffusion Coefficient

Texture

2* Energy Measure of local uniformity of gray levels

3* Entropy Measure of randomness of gray levels

4* Contrast Measure of the amount of gray levels variations

5* Homogeneity Measure of local homogeneity. It increases with less contrast

6* Correlation Measure of linear dependency of gray levels of neighboring pixels

7* Inverse difference moment Measure of local homogeneity of the gray levels

8* Sum average Measure of overall image brightness

9* Sum variance Measure of how spread out the sum of the gray levels of voxel pair is

10* Difference in variance Measure of variation in the difference in gray levels between voxel pairs

11† SRE Short Run Emphasis (first property of run-length distribution)

12† LRE Long Run Emphasis

13† GLN Gray-Level Nonuniformity

14† RLN Run-Length Nonuniformity

15† RP Run percentage

16† LGRE Low Gray-Level Run Emphasis

17† HGRE High Gray-Level Run Emphasis

18† SRLGE Short Run Low Gray-Level Emphasis

19† SRHGE Short Run High Gray-Level Emphasis

20† LRLGE Long Run Low Gray-Level Emphasis

21† LRHGE Long Run High Gray-Level Emphasis

*Parameters derived from the co-occurrence matrix

† Parameters derived from the run length matrix.

doi:10.1371/journal.pone.0145497.t001
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mirrored ROIs in NAWM were compared. AWilcoxon signed rank test was performed as a
non-parametric test because the normality of data distribution was not verified by the D’Agos-
tino-Pearson test. A Bonferroni-type correction for performing three comparisons was applied
and a p-value< 0.0167 was therefore considered as statistically significant.

In the second analysis, the performance of individual parameters in the discrimination of
enhanced vs unenhanced lesions was assessed by a non-parametric receiver operating characteris-
tic (ROC) curves analysis. Performance was interpreted as follows: AUC< 0.7 = poor,
0.7� AUC< 0.8 = fair, 0.8� AUC< 0.9 = good, 0.9� AUC< 1.0 = excellent. Parameters were
ranked according to their performance by comparing Areas Under the ROC Curves (AUC).

In the third analysis, texture parameters and ADC were combined. Three multi-parametric
classifiers were tested: linear discriminant analysis (LDA) [26], logistic regression models (LR)
[27], and partial least squares (PLS) models [28]. As one cannot know a priori how many and
which parameters played a significant role in the classification of MS lesions, all possible com-
binations of 2 to 21 parameters of the 21 parameters (20 texture parameters plus 1 ADC
parameter constituting the independent variables of the analysis) were successively submitted
to the classifiers. No variable reduction technique was used.

To estimate how accurately the classifiers would perform in practice, a leave-one-out cross-
validation was applied [29]. The percentage of correctly classified enhanced lesions defined the
classifier sensitivity (Se) and the percentage of correctly classified unenhanced lesions defined
the classifier specificity (Sp). Se and Sp were used to identify the set of parameters yielding the
best classification models of enhanced lesions.

All calculations were carried out with Matlab (Matlab R2011b, MathWorks1, Natick, MA,
USA) and R-Project for Statistical Computing (http://www.r-project.org/). Open source codes
“KeyRes-Technologies” and “grayrlmatrix” under Matlab were used for computing texture
parameters. The software ImageJ (http://rsbweb.nih.gov/ij/) was used for the segmentation of
the ROIs.

Results

Texture within NAWM vs MS lesions
Texture parameters and ADC values are given in Table 2 together with the significance levels
for the statistical differences. Differences between enhanced lesions and NAWM, similarly to
those between unenhanced lesions and NAWM, were statistically significant (p< 0.0167) for
all parameters except for texture parameter LRHGE.

Performance of individual texture parameters
AUC values, sensitivity and specificity of selected cut-offs are given in Table 3, while ROC
curves are displayed on Fig 2. ROC analysis showed that the performance of texture parameters
ranged from poor (AUC sum variance = 0.638) to good (AUC RLN = 0.835). Individually, three
parameters (Sum variance, LRHGE, ADC) did not perform better than a random classifier
(p(AUC > 0.5) > 0.0167). A comparison of AUCs for parameters with a performance rated at
least ‘good’ did not yield any statistically significant difference (p> 0.384, regardless of the
comparison). A clear-cut ranking of these parameters according to their performance was
therefore impossible, as was subsequently the identification of the best performing parameter.

Performance of multi-parametric models
In the retrospective patient’s group (group 1), the best model from LDA classified enhanced
lesions correctly in 31/44 cases (Se = 70%) and unenhanced lesions in 28/37 cases (Sp = 76%),
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relying on eight texture parameters (Entropy, Correlation, Sum Variance, SRE, LRE, RLN, RP,
SRHGE) (Fig 2). The best model from PLS classified enhanced lesions correctly in 39/44 cases
(Se = 88%) and unenhanced lesions in 30/37 cases (Sp = 81%), relying on two different sets of
six texture parameters as follows: either the combination of (Correlation, Inverse Difference
Moment, Sum Variance, GLN, RLN, LRHGE) or the combination of (Energy, Contrast, Corre-
lation, Inverse difference Moment, GLN, LRHGE). According to the Youden index, the best
model was based on LR and relied on ten texture parameters (Entropy, Homogeneity, Inverse
Difference Moment, Difference Variance, LRE, RLN, RP, LGRE, SRHGE, LRLGE) through
which enhanced lesions were classified correctly in 38/44 cases (Se = 86%) and unenhanced
lesions were classified correctly in 31/37 cases (Sp = 84%). The best performing logistic regres-
sion model can be written as F(z) = ez/(1+ez), where F(z) is the probability of presence of the
characteristic of interest and z is defined as follows:

z ¼ �32:61� 0:686�Entropy � 8:365�Homogeneity þ 13:70� Inverse Difference Moment
þ 2:144�Difference Variance� 12:44�LREþ 0:998�RLN� 5:050�RP
þ 4:974�LGRE� 0:750�SRHGEþ 12:37�LRLGE

It should be noted that LDA, LR or PLS relying on other combinations and/or a larger number
of parameters did not improve the classification.

Table 2. Mean values (± standard deviation) of texture parameters and ADC parameter. The highly significant p-values observed demonstrate that the
texture within NAWM is different when compared to MS lesions (enhanced or unenhanced), suggesting differences in the actual structure of the two tissues.
Entropy was found higher in enhanced lesions when compared to unenhanced ones, suggesting that the randomness of gray levels was higher. This was
confirmed by the lower Homogeneity and Energy in this type of lesion. Overall, this may suggest that the histologic substrate of enhancing lesions is more het-
erogeneous; an assumption that, however, needs to be investigated on experimental models allowing comparison between texture patterns and anatomo-
pathological substrate to be confirmed.

enhancing lesion (EL) non-enhancing lesion (NEL) NAWM pEL vs NAWM pNEL vs NAWM

Energy 24.3 ± 20.9 41.0 ± 19.5 84.3 ± 34.3 4.3 10−13 8.0 10−9

Entropy 208 ± 29.2 182 ± 26.1 131 ± 32.6 3.6 10−13 2.6 10−9

Contrast 11 ± 8.0 4.7 ± 3.4 1.6 ± 0.7 8.2 10−15 1.5 10−11

Homogeneity 121 ± 29.1 151 ± 22.1 189 ± 19.5 1.0 10−13 7.5 10−10

Correlation 52.8 ± 28.1 26.9 ± 13.9 7.3 ± 2.8 1.1 10−15 3.6 10−14

Inv. Diff. Moment 123 ± 32.5 156 ± 23.3 195 ± 18.7 1.1 10−13 5.9 10−10

Sum average 150 ± 32.9 122 ± 20.8 79.0 ± 12.6 1.1 10−13 5.7 10−13

Sum variance 81.7 ± 31.3 67.1 ± 21.7 45 ± 9.7 2.6 10−10 3.5 10−7

Difference variance 99.3 ± 29.8 77.3 ± 17.6 59.9 ± 10.3 7.2 10−11 4.4 10−6

ADC (10−6 mm2.s-1) 1014 ± 227.8 1046 ± 168.4 751 ± 70.9 2.7 10−10 4.9 10−12

SRE 0.004 ± 0.002 0.006 ± 0.002 0.012 ± 0.003 8.6 10−16 6.9 10−14

LRE 322 ± 127 213 ± 74.1 96.0 ± 24.8 5.8 10−16 3.5 10−14

GLN 49 ± 44 86 ± 73 19 ± 22 2.0 10−8 2.8 10−12

RLN 13 ± 12 26 ± 14 20 ± 23 3.9 10−3 2.0 10−3

RP 0.75 ± 0.12 0.62 ± 0.10 0.50 ± 0.12 2.2 10−12 2.7 10−6

LGRE 0.80 ± 0.09 0.72 ± 0.08 0.56 ± 0.12 2.4 10−13 6.9 10−9

HGRE 2.73 ± 1.59 3.98 ± 1.58 7.94 ± 4.72 2.9 10−12 3.2 10−6

SRLGE 0.003 ± 0.001 0.004 ± 0.001 0.006 ± 0.002 6.4 10−12 4.2 10−7

SRHGE 0.01 ± 0.01 0.02 ± 0.01 0.09 ± 0.06 9.2 10−16 1.7 10−12

LRLGE 256 ± 116 152 ± 63 55 ± 21 3.2 10−16 5.6 10−14

LRHGE 851 ± 402 869 ± 371 734 ± 459 7.0 10−2 3.0 10−2

Statistical differences assessed with the Wilcoxon signed-rank test (significance level p < 0.0167).

doi:10.1371/journal.pone.0145497.t002
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Finally, the LR model previously identified as the best classification model was used in the
prospective patients’ group (group 2) of the study. Enhanced lesions were correctly classified as
active lesions in 14/14 (Se = 100%) either they were characterized with pre-contrast texture
parameters or with post-contrast texture parameters, thereby demonstrating that, (i) CA perfu-
sion has no substantial effect on texture parameters computed from T2-W images, and (ii) the
10 texture parameter model enabled identification of enhanced lesions with a high sensitivity.

Discussion
The first observation drawn from the study was that all but one of the texture parameters were
significantly different within white matter (WM) lesions than within normal appearing white
matter (NAWM) as seen by visual examination of the T2-W images. This observation con-
firmed the ability of the technique to discriminate between normal and diseased WM and was
consistent with previously published results in the field [20,30–32]. It also supported the
assumptions that, (i) texture parameters are suitable for brain tissue classification and that, (ii)
texture parameters can be used to evaluate local changes in the MR appearance of the white
matter e.g. for monitoring the disease processes.

The second observation from the study was that the performance of eight of the individual
texture parameters was evaluated as ‘good’ for differentiating lesions from NAWM. However,
these mono-parametric models displayed high specificity but only fair sensitivity, thereby

Table 3. Performance of individual parameters in differentiating between enhanced and unenhancedMS lesions assessed by non-parametric
receiver operating characteristic (ROC) curves. The significant p-values observed show that individual texture parameters are able to differentiate
between the two types of MS lesions. Eight texture parameters displayed a level of individual performance that was at least ‘good’. None of these eight
parameters was found to be significantly better performing than the other.

AUC Se (%) Sp (%) Cut-off p-value 1

Energy * 0.805 65.9 91.9 22.5 <0.0001

Entropy * 0.800 59.1 97.3 211 <0.0001

Contrast 0.798 70.5 81.1 5.28 <0.0001

Homogeneity * 0.809 61.4 97.3 119 <0.0001

Correlation 0.789 61.4 91.9 44.3 <0.0001

Inv. Diff. Moment * 0.806 59.1 97.3 122 <0.0001

Sum average 0.763 61.4 86.5 143 <0.0001

Sum variance 0.638 63.6 63.2 67.6 0.0264

Difference variance 0.736 54.5 91.9 98.2 <0.0001

ADC 0.583 51.2 78.4 937 0.2061

SRE 0.770 61.4 86.5 0.0038 <0.0001

LRE 0.761 68.2 78.4 259 <0.0001

GLN 0.754 63.6 81.1 40.9 <0.0001

RLN * 0.835 75.0 83.8 14.2 <0.0001

RP * 0.800 63.6 94.6 0.723 <0.0001

LGRE 0.764 56.8 94.6 0.80 <0.0001

HGRE * 0.805 65.9 91.9 2.63 <0.0001

SRLGE 0.738 79.5 64.9 0.004 <0.0001

SRHGE * 0.800 56.8 97.3 0.008 <0.0001

LRLGE 0.778 68.2 78.4 189 <0.0001

LRHGE 0.526 22.7 94.6 492 0.6845

1 Parameters performing significantly better than a random classifier (p(AUC > 0.5) < 0.0167).

* Parameters with AUC � 0.8 considered for a pair-wise comparison of performance.

doi:10.1371/journal.pone.0145497.t003
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precluding accurate identification of acute inflammatory enhanced MS lesions. In turn, multi-
parametric models based on texture parameters from T2-WMR images enabled differentiation
between enhanced and unenhanced lesions with high sensitivity. We therefore confirmed the
results reported by Yu et al [21] by using an updated MR technique, a larger data set data and
by testing different statistical classifiers for the decision rule. The performance level of our anal-
ysis appeared lower (Se = 86% / Sp = 84% based on LR) compared to that reported in Yu’s
study (Se = 88% / Sp = 96%). We assumed that differences in MR protocols (3.0T vs 0.28T, in-
plane spatial resolution 0.45x0.45 mm vs 1x1 mm, slice thickness 3 mm vs 6 mm, higher homo-
geneity of the RF field with the Achieva system, higher signal to noise ratio with the 32-channel
receiver-only SENSE head coil) yielded improved image quality of the T2-W images [33],
which in turns affected texture parameter values and TA performance. The second reason for
the difference in performance may arise from a difference in sample size and the absence of
cross-validation in Yu’s study, though such validation is mandatory to obtain an unbiased esti-
mate of the predictive accuracy. The use of techniques such as cross-validation, bootstrapping
or Bayesian confidence interval should be systematic in such studies to obtain a reliable assess-
ment of the classifier’s performance, which is both useful to estimate the relevance of the work-
ing hypothesis, and mandatory for clinical implementation.

Fig 2. Receiver-Operating Characteristic analysis for evaluating the performance of individual parameters andmultiparametric models in
discriminating enhanced lesions from unhencanced lesions.

doi:10.1371/journal.pone.0145497.g002
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The ADC parameter was not demonstrated to contribute significantly to the identification of
inflammatory lesions as defined by enhancement on post-contrast T1-W images. Microstructural
tissue damage in MS leads to an overall reduction of biological barriers of highly anisotropic
healthy brain tissue. Disorganization and barrier breakdown (e.g. myelin) theoretically leads to
an increase in free water diffusivity within damaged tissue compared to contralateral NAWM in
patients or normal WM of healthy subjects. Several studies have confirmed an increase in water
diffusivity within MS lesions [3,34–36], resulting from an increase in ‘free’ extracellular space
either by extracellular edema at the acute inflammatory phase, or by demyelination at the chronic
phase. However, the assumption that acute inflammation within enhanced lesions could display
significantly different ADC values (or mean diffusivity values when diffusion tensor imaging is
used) than within the chronic gliotic/demyelinated scar tissue of unenhanced lesions is still
unverified and the reasons for variability in ADC value changes within enhanced lesions remain
controversial [37,38]. Complex and mixed transient pathophysiological mechanisms such as
acute inflammation, ongoing demyelination and maybe secondary remyelination may compete
and modify changes in diffusivity in one direction or another.

There are methodological limitations to our study. This study is mainly retrospective using
clinical material issued from routine practice. Sensitivity of TA was assessed on a limited num-
ber of lesions. Therefore, while our first set of data served for model learning, a larger set of
patients’ data would be required to validate the performance of the model, and to confirm that
CA administration had no substantial impact on texture parameters values in an additional
group of patients accepting the repeated pre- and post-contrast T2-W acquisitions in the same
imaging session.

Further tests in machine learning should be carried out since other types of classifiers than
those tested in this study can be implemented, with a potential impact on the structure and per-
formance of the model [39]. Several methods of texture analysis (2D or 3D) exist from which
numerous texture parameters can be derived [8,11,17,26,40,41]. None of these approaches is
superior to the other since their effectiveness basically relies on the visual properties of the images
to which they are applied and on the task performed. Combining various texture parameters may
improve the characterization of MS lesions as demonstrated by our data. However, increasing
the number of parameters involves the use of variable reduction techniques prior to classification
and the use of sophisticated machine learning classifiers, as well as larger training datasets. All
these requirements may delay the routine clinical applicability of the processing.

Finally, although the ADC parameter was not useful in identifying enhanced lesions, other
diffusion measurements such as fractional anisotropy, which has been reported to be signifi-
cantly lowered in active lesions [42], could demonstrate relevance here.

In conclusion, this study provides additional evidence that texture analysis of T2-WMR
images may be relevant in the identification of brain inflammatory activity in MS patients.
These results are promising enough to trigger further investigation. Additional recruitment
and tests are being performed to validate the structure and performance of the model. Such a
fully automated post-processing method implemented using a computer-aided diagnosis
(CAD) system for clinical use could be used for the innocuous and non-invasive detection of
subtle changes in texture properties within white matter during relapses and the monitoring of
the overall MS disease process.
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