Skip to main content
. 2015 Dec 22;10(12):e0145497. doi: 10.1371/journal.pone.0145497

Table 3. Performance of individual parameters in differentiating between enhanced and unenhanced MS lesions assessed by non-parametric receiver operating characteristic (ROC) curves.

The significant p-values observed show that individual texture parameters are able to differentiate between the two types of MS lesions. Eight texture parameters displayed a level of individual performance that was at least ‘good’. None of these eight parameters was found to be significantly better performing than the other.

  AUC Se (%) Sp (%) Cut-off p-value 1
Energy * 0.805 65.9 91.9 22.5 <0.0001
Entropy * 0.800 59.1 97.3 211 <0.0001
Contrast 0.798 70.5 81.1 5.28 <0.0001
Homogeneity * 0.809 61.4 97.3 119 <0.0001
Correlation 0.789 61.4 91.9 44.3 <0.0001
Inv. Diff. Moment * 0.806 59.1 97.3 122 <0.0001
Sum average 0.763 61.4 86.5 143 <0.0001
Sum variance 0.638 63.6 63.2 67.6 0.0264
Difference variance 0.736 54.5 91.9 98.2 <0.0001
ADC 0.583 51.2 78.4 937 0.2061
SRE 0.770 61.4 86.5 0.0038 <0.0001
LRE 0.761 68.2 78.4 259 <0.0001
GLN 0.754 63.6 81.1 40.9 <0.0001
RLN * 0.835 75.0 83.8 14.2 <0.0001
RP * 0.800 63.6 94.6 0.723 <0.0001
LGRE 0.764 56.8 94.6 0.80 <0.0001
HGRE * 0.805 65.9 91.9 2.63 <0.0001
SRLGE 0.738 79.5 64.9 0.004 <0.0001
SRHGE * 0.800 56.8 97.3 0.008 <0.0001
LRLGE 0.778 68.2 78.4 189 <0.0001
LRHGE 0.526 22.7 94.6 492 0.6845

1 Parameters performing significantly better than a random classifier (p (AUC > 0.5) < 0.0167).

* Parameters with AUC ≥ 0.8 considered for a pair-wise comparison of performance.