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Abstract

Background—Human-administered clinical scales are the accepted standard for quantifying 

motor performance of stroke subjects. Though widely accepted, these measurement tools are 

limited by interrater and intrarater reliability and are time consuming to apply. In contrast, robot-

based measures are highly repeatable, have high resolution, and could potentially reduce 

assessment time. Although robotic and other objective metrics have proliferated in the literature, 

they are not as well established as clinical scales and their relationship to clinical scales is mostly 

unknown.

Objective—Test the performance of linear regression models to estimate clinical scores for the 

upper extremity from systematic robot-based metrics.

Methods—Twenty kinematic and kinetic metrics derived from movement data recorded with the 

shoulder-and-elbow InMotion2 robot (Interactive Motion Technologies, Inc), a commercial 

version of the MIT-Manus. Kinematic metrics were aggregated into macro-metrics and 

micrometrics and collected from 111 chronic stroke subjects. Multiple linear regression models 

were developed to calculate Fugl-Meyer Assessment, Motor Status Score, Motor Power, and 

Modified Ashworth Scale from these robot-based metrics.

Results—Best performance–complexity trade-off was achieved by the Motor Status Score model 

with 8 kinematic macro-metrics (R = .71 for training; R = .72 for validation). Models including 

kinematic micro-metrics did not achieve significantly higher performance. Performances of the 

Modified Ashworth Scale models were consistently low (R = .35–.42 for training; R = .08–.17 for 

validation).
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Conclusions—The authors identified a set of kinetic and kinematic macro-metrics that may be 

used for fast outcome evaluations. These metrics represent a first step toward the development of 

unified, automated measures of therapy outcome.
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Introduction

Stroke is the leading cause of permanent disability in the United States.1 Although 

occupational and physical therapy are widely accepted treatments for upper extremity 

dysfunction in stroke patients, they are labor intensive and therefore expensive. Changes in 

the health care system and budgetary constraints have provided pressure to reduce the cost 

of therapy. Until recently, that has been done by shortening inpatient rehabilitation 

hospitalizations, but once the practical limit of abbreviated inpatient stays is reached, further 

efficiencies will be attainable chiefly by addressing clinical practices themselves.

Our research has demonstrated that the efficiency of care among stroke patients could be 

increased by the application of robotics and information technology, and these results have 

been confirmed by others.2–4 Labor-intensive procedures have traditionally been a primary 

field for the application of robotics. Over the past decade, we have shown that labor-

intensive physical therapies for stroke patients can be delivered safely and effectively by 

robotic aids. Such an approach has several major advantages over traditional motor 

therapies. Robots can be used to generate objective measures of patients’ impairment and 

therapy outcome, assist in diagnosis, customize therapies based on patients’ motor abilities, 

and assure compliance with treatment regimens and maintain patients’ records. For the 

upper extremity, the most employed and deployed therapeutic robot is the MIT-Manus.5 

Developed by our group, this robot controls patients’ arm movement in the horizontal plane. 

A number of studies have shown that therapy with the MIT-Manus, and its commercial 

version InMotion2, are safe, tolerated, and clinically effective as measured by traditional 

clinical scales including the Fugl-Meyer Assessment (FMA) and the Motor Status Score 

(MSS).6–15 Metrics extracted from movement data recorded from patients undergoing MIT-

Manus therapy have been used for quantifying patients’ motor abilities and their changes 

during motor recovery and have offered unprecedented insights into the process of motor 

recovery from stroke.16–18 It remains unclear how these robot-based kinematic and kinetic 

metrics relate to traditional human-administered clinical scales for measuring outcome.

The goal of this study was to test whether linear regression models can estimate upper 

extremity clinical scores from robot-based metrics. Such models would facilitate objective 

outcome measurement, freeing the therapist to render additional therapy, and, ultimately, 

contribute to improving patients’ care.
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Methods

Persons With Chronic Impairment Due to Stroke

One-hundred and eleven community-dwelling volunteers who had suffered a stroke trained 

for 18 hours with the InMotion2 robot (Interactive Motion Technologies, Inc, Cambridge, 

MA). Table 1 shows these volunteers’ demographics. Subjects were trained in point-to-point 

movements, which evoked significant improvement (as measured by clinical scales) by the 

end of the therapy.11 The protocol included 5 clinical evaluation sessions, 3 before treatment 

and 2 more at mid-point and at discharge. Pretreatment evaluation sessions took place prior 

to admission, with their average serving as the admission score and ensuring the patient’s 

condition was stable (“phase-in” procedure19). Kinematic and kinetic robot-based metrics 

were acquired at admission and at discharge. Therefore, each volunteer contributed 2 data 

points for the regression models. We constructed models for the admission data, for the 

discharge data, and for the combination of admission and discharge data. Because the data 

were not normally distributed, we employed a Wilcoxon signed rank test and determined 

that there were no significant differences between the predicted clinical score employing the 

combined model and the admission-only model or discharge-only models. In this article, we 

report on the combined model.

Inclusion criteria were the following: (a) diagnosis of a single, unilateral stroke at least 6 

months prior to enrollment verified by brain imaging; (b) sufficient cognitive and language 

abilities to understand and follow instructions (Mini-Mental Status Score of 22 and higher or 

interview for aphasic subjects); and (c) stroke-related impairments in muscle strength of the 

affected shoulder and elbow between grades ≥1/5 and ≥3/5 on the Motor Power (MP) 

scale.20,21 Subjects were excluded from the study if they had a fixed contraction deformity 

in the affected limb, and also if they demonstrated improvement over 3 measurements made 

during the 4-week observation period prior to treatment. None of the subjects were engaged 

in conventional occupational or physical therapy programs or received pharmacological 

management of spasticity and tone (ie, Botox) during the experimental trial. The study was 

approved by all test site human research review boards, and all subjects volunteered for the 

study and gave their informed consent.

Clinical Measures for the Upper Extremity

The FMA, MSS, the MP, and the Modified Ashworth Scale (MAS) were used to assess 

patients’ abilities during the evaluation sessions. These scales have established reliability 

and validity as well as significant limitations, as described below.

The FMA has 5 evaluation domains (including sensory function, balance, and joint range of 

motion).22–24 In this study, we only used the upper limb section of the FMA. Based on the 

levels of motor recovery after stroke, as proposed by Twitchell25 and Brunnstrom,26 such 

sections can be used to assess synergistic and voluntary motor abilities in about 30 minutes. 

A 3-point scale is used to measure performance (0 = unable; 1 = partial; 2 = performs fully) 

on 33 test items (total possible score = 66 points). The FMA is able to detect changes in 

persons with severe to moderate motor impairments after stroke, in part because of its 

inclusion of isolated joint movement rather than a sole emphasis on task-related actions. 
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Reported disadvantages of the FMA include a potential ceiling effect for higher-functioning 

patients and its limited number of test items to evaluate distal, fine motor function.24 Our 

protocol included patients in the moderate to severe range so that the ceiling effect would 

not affect our results. The MSS was developed at Burke Rehabilitation Hospital due the 

perceived pitfalls of relying on the upper limb section of the FMA for subacute stroke 

patients.27 The upper limb section of the FMA suffers from a decreased sensitivity because 

return of reflex and synergistic movements (a substantial component of the total score) often 

occur before admission and evaluation at the rehabilitation hospital. Instead, the MSS uses 

an end-of-scale value of 82, with a potential range of 40 points for isolated shoulder and 

elbow movements. Thus, the MSS aims at augmenting the FMA by further specifying the 

quality of voluntary movement in the hemiparetic upper limb.

The MSS elbow and shoulder section consists of a sum of scores (0–2) given to 10 isolated 

shoulder movements and 4 elbow/forearm movements. The MSS wrist and fingers section 

consists of a sum of grades for 3 isolated wrist movements and 12 hand movements.27 To be 

an effective augmentation of the FMA, the MSS must preserve a linear relationship with the 

FMA. Results of a study with 56 subacute patients evaluated by the same “blinded” therapist 

showed that indeed the relationship between FMA and MSS was linear and that the MSS 

had good interrater as well as intrarater reliability.27

The Medical Research Council test of MP was used to assess strength. The MP measures 

strength in isolated muscle groups of the involved shoulder and elbow on an ordinal scale 

(scale range: 0 = no muscle contraction; 5 = normal strength).20,21

The MAS was used to measure hypertonia, and it rates the resistance to passive stretch in 14 

different muscle groups of the upper limb.28 It is an ordinal scale ([0, 1, 1+, 2, 3, 4] or [0, 1, 

2, 3, 4, 5]). Evaluations are conducted by moving a limb about a joint at different speeds and 

by noting the muscular response throughout that limb range of motion (ie, both speed and 

position dependent).

Kinematic Measures for the Upper Extremity

In this article, we will report on metrics obtained from 3 distinct sets of measurements: 

unconstrained reaching movement, unconstrained circle drawing, and shoulder strength.

The unconstrained reaching movement required the patient to perform unconstrained 

movement toward targets presented in 8 positions equally spaced around a 14-cm radius 

circle and back to the center. Targets were presented in clockwise order similar to a robot-

assisted therapy session. If the patient was unable to hit a target, the therapist cued the robot 

to stop recording, and the patient’s hand was moved to the target where recording of 

patient’s movement proceeded. A total of 80 movements were performed for each 

evaluation session. The following macro-metrics were extracted from the data: the deviation 

from the straight line connecting the targets, aiming, movement mean and peak speed, 

movement smoothness (ratio of mean to peak speed), and movement duration. Movement 

speed profiles were decomposed into support-bounded lognormal submovements as 

described in Rohrer et al.17 The following micro-metrics were derived from submovement 

decompositions: number of submovements, submovement duration, overlap, peak, interpeak 

Bosecker et al. Page 4

Neurorehabil Neural Repair. Author manuscript; available in PMC 2015 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interval, and shape metrics µ (skewness or asymmetry) and σ (kurtosis or “fatness”). The 

rationale for these micro-metrics was based on a century-old conjecture that human arm 

movement is controlled discretely, by combining elementary units of movements or 

submovements.16

During the unconstrained circle drawing, the patient’s hand was initially positioned at 3 

o’clock and at 9 o’clock (right or left to the workspace center). Patients were asked to draw 

clockwise and counterclockwise circles starting and ending at the same point. This task, 

which was not trained during therapy, required the coordination of shoulder and elbow joint 

movements. A total of 20 movements were performed for each evaluation session. The 

following macro-metrics were extracted from the data as described in Dipietro et al18: the 

axes ratio (ratio of the minor to major axes of the best-fitting ellipse) and the joint angle 

correlation (degree of independence of the shoulder and elbow movements).

Kinetic Measures for the Upper Extremity

Shoulder extension/flexion and abduction/adduction measurements take advantage of the 

fact that the MIT-Manus is a SCARA-type device (selective compliance assembly robot 

arm), which is highly compliant in the horizontal plane and has very low compliance on the 

vertical plane (almost infinite impedance). This affords the unique potential of easily testing 

the shoulder during flexion/extension and abduction/adduction. The patient’s arm was 

prepositioned at 90° of shoulder flexion/extension in the sagittal plane with elbow fully 

extended. The hand was supported in a plastic trough at the robot’s tip with no support 

provided at the elbow. Once the patient was secured in the trough, the therapist manually 

stabilized the robot’s arm in the required testing position. The patient was then instructed to 

attempt to lift and push-down his/her arm 5 consecutive times. During abduction/adduction 

testing, the patient was rotated in the chair 90° to left or right depending on the side of 

impairment, and his/her arm was prepositioned in 90° abduction. The elbow position and 

support procedure was the same as during flexion/extension. Once the arm was secured, the 

patient was instructed to lift and push-down the arm 5 times. A total of 20 attempts to lift or 

push-down the arm were completed for each evaluation session. Mean shoulder strength (Z 

force) for flexion, extension, abduction, and adduction were calculated from the data.29

Statistical Analysis

Least squares error multiple linear regression models were constructed in an attempt to 

estimate the FMA, the MSS, the MAS, and the MP from robot kinematic and kinetic 

metrics. Model performance was measured by the correlation between the therapist assigned 

and model calculated scores. Five types of models were investigated.

The first model calculated the FMA, MSS, MAS, and MP from all the kinematic and kinetic 

metrics. For the second model, prior to performing multiple regressions, a principal 

component analysis (PCA) was conducted on all kinematic and kinetic metrics in an attempt 

to reduce the total number of metrics. Fewer metrics would reduce the model complexity 

and perhaps the number of tasks performed by the patient, thereby reducing the overall time 

required for patient evaluation. Because the metrics had different units, the PCA was applied 
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to normalized kinematic and kinetic metrics. Normalization scaled the data so that each 

metric had 0 mean and standard deviation of 1.

Three additional models containing different combinations of the robot metrics were 

constructed: kinematic macrometrics and kinematic macro-metrics and micro-metrics 

(submovements) for the FMA, MSS, and MAS, and force metrics for the MP.

All models were developed by randomly separating 75% of the data to train the model with 

the remaining 25% set aside for model validation. A Mann–Whitney test on the clinical 

scores confirmed that the training and validation data sets were not significantly different. 

To verify that this result was not due to a type II error, the data set was randomly separated 

into 4 groups, and Mann–Whitney cross-validation verified that there was no significant 

difference (α = .05) between any combination of these groups into training and validation 

sets.

Correlations among the clinical scales were also investigated to identify dependent scales. A 

strong correlation between 2 or more clinical scales would indicate measurement 

redundancy, meaning it may be possible to eliminate one, thus reducing the amount of time 

required for patient evaluation.

Results

Correlation Among Clinical Scales

Table 2 shows the correlation among clinical scales.

Correlation between FMA and MSS was strong, suggesting redundancy for this population 

of chronic stroke patients. This was not entirely surprising because the MSS was designed to 

be a finer grading scale of the upper extremity impairment than the FMA for subacute 

patients. This result is consistent with and extends the results of previous studies for 

subacute stroke (Ferraro et al27: 12 patients, R = .981, P < .0001; Krebs et al29: 56 patients, 

R = .981, P < .0001).

The correlation between the ability to move isolated joint movement (FMA and MSS) and 

strength (MP) was moderate, suggesting a common trait. In contrast, the correlation between 

MAS and the other scales was very low. If we assume that recovery can be characterized by 

improvement in the ability to move isolated joints and increased joint strength, then the 

observed low correlation suggests that tone might not be an important marker of recovery 

for this chronic stroke population.

Estimating FMA, MSS, MP, and MAS From Kinematic and Kinetic Metrics

Training and validation results of the kinematic and kinetic model to estimate the FMA, 

MSS, MP, and MAS are shown in Table 3. We employed all the kinematic and kinetic 

metrics to build such models. All correlations except for the MAS validation group (P = .

266) were significant at P < .005. The residual plots did not have any significant correlations 

or patterns, indicating no underlying trends missed in the data and the appropriateness of our 

linear model.
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The PCA only reduced the original 20 metrics marginally to 17 variables for the FMA and 

16 variables for the MSS, MP, and MAS. The residual plots did not have any significant 

correlations or patterns.

Calculating FMA, MSS, and MAS From Kinematic Metrics

The FMA and MSS evaluate motor impairment including isolated and synergistic 

movements. Therefore, the kinematic macro-metrics extracted from the unconstrained 

reaching movements (point-to-point) and the circle drawing task (independent joint 

movement) were selected to develop a model. In addition, the benefits from including 

micro-metrics based on submovements in the model were explored.

Table 4 shows the training and validation results for the model. As with the previous 

models, no significant correlations or patterns were found in the residual plots, and all 

correlations except for the MAS validation groups (P = .306 and .373, respectively) were 

significant after Bonferroni correction for multiple measurements at P < .007. For the 

breakdown of the 8 kinematic macro-metrics and 7 kinematic micro-metrics 

(submovements), the training data performed better, namely, the macro-metrics and micro-

metrics model yielded to the highest R values. But for the validation data, the opposite was 

true—the model based on the kinematic macrometrics alone had larger R, indicating that this 

model generalized better to the data. In fact, it outperformed the model that included all the 

20 robot-based metrics for the validation data (both kinematic and kinetic, see Table 3). The 

FMA showed the highest R values for the training data but only moderate R values for the 

validation data. The MSS performance remained remarkably consistent between training and 

validation data (small difference among the correlation values). Neither the macro-metric 

model nor the micro-metric model was able to produce more than a weak correlation for the 

MAS score.

For all 3 scales, including the micro-metrics based on submovements into the model (see 

validation data) produced no additional benefit.

Because this model was the most concise and outperformed the others, the macro-metric 

model is reported for the FMA and MSS:
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Because the robot metrics are not independent of each other, these regression models have a 

high degree of multicollinearity. Multicollinearity does not affect the models’ ability to 

estimate the clinical scores, but it does not afford any interpretation of the magnitude of the 

coefficients or any suggestion that a large coefficient indicates higher impact.

To determine the magnitude of the association of each metric to the model and eliminate 

multicollinearity, backwards regression analyses were conducted for the FMA and MSS 

models.30 The model started with all 8 macro-metrics, each was removed separately, and the 

R value for the actual and predicted scores were calculated. The metric that resulted in the 

smallest reduction in model performance was removed, and the process was repeated for the 

remaining 7 metrics and so on until only 1 metric remained. The resulting group of metrics 

that achieved a balance between reducing model complexity without reducing the R value of 

the model by more than 5% included peak speed, smoothness, duration, and joint 

independence. The reduced FMA model had an R value of .731 and .580 for training and 

validation, respectively, and the reduced MSS model had an R value of .704 and .696 for 

training and validation, respectively. The residual plots did not have any significant 

correlations or patterns. The resulting reduced models are presented below, and the 95% 

confidence intervals of the metrics are listed in Table 5:

For the FMA model, smoothness provides the largest contribution, and for the MSS model, 

the upper range of the peak speed coefficient overlaps with the lower range of the 

smoothness coefficient. This is not surprising because we also constructed models 

employing a single robotic variable. The model employing smoothness was the best 

performer with an R value of .616 and .400 for training and validation, respectively, for 

FMA, and .557 and .589 for training and validation, respectively, for MSS. Duration has the 

smallest contribution for both reduced models, but removing it causes the models’ 

performance to decrease by more than 5%.

Calculating MP From Kinetic Metrics

As the MP evaluates strength at each joint, the Z-force metrics were selected to develop a 

model. In contrast to the models for FMA, MSS, and MAS described above, this model was 

applied to logarithmic data. The logarithmic scale was introduced to account for Weber’s 

law, which explains how actual forces (the Z-force measured by the robot force transducer) 

are perceived by humans (the MP score recorded by the therapist). According to Weber’s 

law, the smallest perceivable difference in weight, p (the least difference that the test person 

can still perceive as a difference), is proportional to the starting value of the weight:
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where S is the stimulus weight, S0 is the stimulus threshold, and k is a proportionality 

constant. This model was similar to the model proposed by Krebs et al29 for calculating MP 

from shoulder strength in subacute stroke patients. Our model yielded R = .564 for training 

(P < .0001) and R = .525 for validation (P < .0001). The residual plots did not have any 

significant correlations or patterns. As with the kinematic models, these 4 kinetic metrics are 

not independent of each other and the relative impact of each metric cannot be determined, 

but the models remain highly significant.

The MP force metrics model is

Or in log10 basis

Discussion

First proposed over a decade ago, devices for robot-aided neurorehabilitation are 

increasingly being incorporated into stroke patients’ care programs. In addition to delivering 

high-intensity, reproducible sensorimotor therapy, these devices are precise and reliable 

“measuring” tools that can be expanded with multiple sensors to record simultaneously 

kinematic and force data. These measurements are objective and repeatable and can be used 

to provide patients and therapists with immediate measures of motor performance. Reducing 

the time to evaluate improvement or deterioration may offer new opportunities for designing 

therapeutic programs and ultimately for increasing the efficiency of patients’ care.

Across multiple regression models, we demonstrate that the FMA always performed the best 

in training, but the validation performance decreased. Correlations were higher than those 

reported in the study of Colombo et al,31 which used simple regression models to calculate 

the FMA (R = .53–.55). The MSS performed the most consistently between training and 

validation, with training correlations similar to the FMA. The strong correlation between the 

MSS and the FMA suggests that the estimation of the MSS would allow for estimation of 

the FMA as well. In contrast to the positive results for the FMA and MSS, the MAS 

produced only weak nonsignificant correlations between the actual and calculated MAS 

scores and with the other scales. Tone and the variability of tone suggest that different 

clinical metrics should be developed to calculate this scale, a result supported by other 

clinical work.32,33

The extent to which micro-metrics based on submovements improved models’ performance 

was also investigated. Submovement extraction can be a tedious, slow, computer-intensive 

task. In the past we employed 2 different strategies to extract submovements from patients’ 

movement data: a global34 or a local minimization scheme.5 The efficiency of a global 

algorithm such as branch-and-bound is O(NM), where M is the number of submovements. A 

greedy algorithm such as ISRBF (irregular sampling radial basis function)5 is far more 
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efficient under this definition, O (MN), but contrary to the branch-and-bound algorithm, 

ending close to a global minimum is not guaranteed. In this study, we found that the models 

that included submovement metrics performed only slightly better than those that did not 

(eg, compare performance of the macro-metric models with those of the macro-metric and 

micro-metric models). Because the impact of submovements was found to be low, the 

greedy-type algorithm may be employed for extracting submovements. Although limited by 

local minima, it would reduce the computation from hours to seconds and allow online 

computation. The low impact may also allow for the submovement metrics to be eliminated 

entirely from the model.

The MP force metrics model yielded relatively low correlation values, with R = .564 and R 

= .525 for training and validation, respectively. Using a similar model, Krebs et al29 found a 

correlation of .853 between the MP score and the log10 of the Z-force metric. In contrast to 

our study that investigated chronic stroke subjects evaluated by 3 different evaluators, the 

study by Krebs et al investigated subjects in the subacute phase of recovery evaluated by the 

same therapist, which may account for the differences in results. Although our model 

achieved only a moderate correlation, it should be pointed out that the slope of the curves 

obtained in both models (the model used by Krebs et al and our model) are quite similar, 

giving additional credence to the proposed model to estimate the MP.

Of all the models investigated in this study, the kinematic macro-metric model for MSS 

appeared to offer the best trade-off between performance and complexity and strong, similar 

correlation values for training (R = .711) and validation (R = .721). The smoothness metric 

had the best individual performance when calculating both the FMA (.731 and .580 for 

training and validation, respectively) and MSS (.704 and .696 for training and validation, 

respectively) scores, and the combination of smoothness, peak speed, duration, and joint 

independence balance the compromise of model complexity and model performance (FMA .

616 and .400, and MSS .557 and .589 for training and validation, respectively).

Robot measurements can potentially outperform human-administered clinical scales and are 

only limited by the performance of the robot sensors. For example, MIT-Manus can measure 

positions with a resolution of 0.1 mm. The reliability of human-administered clinical scales 

has often been questioned; for example, Sanford et al35 reported an interrater variability of ± 

18 points on a 95% confidence interval for the total FMA scale, pointing out that small 

patient improvements will not be able to be identified by the score. Krebs et al29 found up to 

a 15% discrepancy between therapists when evaluating the same patient for the upper 

extremity FMA scale. Gregson et al20 estimated an interrater agreement of 59% for the 

MAS. The MAS is considered a reliable clinical scale by some20 but totally unreliable by 

others.36 Besides having questionable reliability, human-administered clinical scales are also 

time consuming. In contrast, robot measurements can potentially provide therapists and 

patients with immediate feedback. Real-time scoring can not only greatly reduce the amount 

of time required for evaluations of patients’ motor improvements, but it is also becoming a 

key need for the new robot-aided neurorehabilitation scenarios. These include systems that 

continuously adapt the amount and type of delivered therapy based on patient’s motor 

abilities.37,38
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Despite their potential advantages, robot-mediated therapy is presently not well established 

as human-administered modality of therapy, and robot-mediated measurements have even 

smaller dissemination as compared with clinical scales, which are still the “gold standard” 

for measuring outcomes. In addition, this study was limited to chronic stroke a population 

and hence it is unclear if the present correlations extrapolate to other phases of stroke 

recovery. Future studies must include the acute and subacute stroke population. 

Furthermore, some of these clinical scales have been used to evaluate other populations and 

hence these populations must be included in future correlation studies.39 Finally, we were 

not successful in establishing any meaningful correlation between kinematic or kinetic 

metrics with the MAS. To address this limitation, we are developing robot-mediated 

measurement techniques to estimate stiffness, both passive and global stiffness, and will test 

the correlation between these metrics in our next cohort of patients.40,41 Nevertheless, this 

study is one of the very few studies that attempted to unify different sets of metrics for 

outcome measurement, potentially establishing a basic taxonomy between very distinct 

practices. We demonstrated the feasibility of developing models to calculate the well-

established clinical scales FMA, MSS, and MP from the robot-derived metrics. The ideal 

model would have as few, easy-to-calculate metrics as possible (to reduce the evaluation 

time) while maintaining good training and validation model performance.
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Table 1

Subject Characteristics

Number of Subjects 111

Male/Female 70/41

Age (years; average ± standard deviation) 59.9 ± 12.6

Days since stroke (average ± standard deviation) 1150.8 ± 944.3

Left-sided/right-sided lesion 52/59

Left hand/right hand dominant 16/95
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Table 2

Correlation of Clinical Scores for Chronic Stroke Patients (R Values)

FMA MSS MP MAS

FMA 1

MSS .948 1

MP .785 .774 1

MAS −.23 −.213 −.013 1

Abbreviations: FMA, Fugl-Meyer Assessment; MSS, Motor Status Score; MP, Motor Power scale; MAS, Modified Ashworth Scale.
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Table 3

R Values for Linear Fit Between Measured and Scores Calculated With All (Kinematic and Kinetic) Metrics

Training Validation

FMA .802a .427a

MSS .788a .696a

MP .797a .449a

MAS .428a .171

Abbreviations: FMA, Fugl-Meyer Assessment; MSS, Motor Status Score; MP, Motor Power scale; MAS, Modified Ashworth Scale.

a
P < .005.

Neurorehabil Neural Repair. Author manuscript; available in PMC 2015 December 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bosecker et al. Page 17

Table 4

R Values for Linear Fit Between Measured Scores and Scores Calculated With Kinematic Metrics

Training Validation

Macro-
Metrics

Macro- and
Micro-Metrics

Macro-
Metrics

Macro- and
Micro-Metrics

FMA .740a .779b .425a .410a

MSS .711a .772a .721a .688a

MAS .357a .399a .158 .137

Abbreviations: FMA, Fugl-Meyer Assessment; MSS, Motor Status Score; MAS, Modified Ashworth Scale.

a
P < .0001.

b
P < .007.
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Table 5

95% Confidence Intervals for the Backwards Regression Model for Both FMA and MSS

FMA MSS

Min Max Min Max

Constant −42.26 −2.53 −56.58 −4.63

Peak speed 11.67 76.42 37.02 113.99

Smoothness 80.20 145.68 98.83 183.52

Duration 1.21 3.09 1.83 4.51

Joint independence −30.22 −9.79 −40.11 −15.56

Abbreviations: FMA, Fugl-Meyer Assessment; MSS, Motor Status Score.
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