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Abstract

Over 50 loci associated with colorectal cancer (CRC) have been uncovered by genome-wide 

association studies (GWAS). Identifying additional loci has the potential to help elucidate aspects 

of the underlying biological processes leading to better understanding of the pathogenesis of the 

disease. We re-evaluated a GWAS by excluding controls that have family history of CRC or 

personal history of CR polyps, as we hypothesized that their inclusion reduces power to detect 

associations. This is supported empirically and through simulations. Two-phase GWAS analysis 

was performed in a total of 16,517 cases and 14,487 controls. We identified rs17094983, a SNP 

associated with risk of CRC (p=2.5×10−10; odds ratio estimated by re-including all controls 

(OR)=0.87, 95% confidence interval (CI): 0.83–0.91; minor allele frequency (MAF)=13%). 

Results were replicated in samples of African descent (1,894 cases and 4,703 controls; p=0.01; 

OR=0.86, 95% CI: 0.77–0.97; MAF=16%). Gene expression data in 195 colon adenocarcinomas 

and 59 normal colon tissues from two different studies revealed that this locus has genotypes that 

are associated with RTN1 (Reticulon 1) expression (p=0.001), a protein-coding gene involved in 

survival and proliferation of cancer cells that is highly expressed in normal colon tissues but has 

significantly reduced expression in tumor cells (p=1.3×10−8).

INTRODUCTION

Genome-wide association studies (GWAS) have been successful at identifying germline 

common variations associated with the risk of developing colorectal cancer (CRC). Success 

of the genome-wide design has been driven mainly by large international collaborative 

efforts to pool resources and samples to produce large datasets of tens of thousands of cases 

and controls, to help identify genetic risk factors that only had moderate associated risks. 

Over 50 genetic risk variants have been identified thus far (Al-Tassan et al. 2015; Broderick 

et al. 2007; Cui et al. 2011; Dunlop et al. 2012; Houlston et al. 2008; Houlston et al. 2010; 

Jaeger et al. 2008; Jia et al. 2013; Peters et al. 2012; Peters et al. 2013; Schmit et al. 2014; 

Schumacher et al. 2015; Tenesa et al. 2008; Tomlinson et al. 2007; Tomlinson et al. 2008; 

Tomlinson et al. 2011; Wang et al. 2014; Whiffin et al. 2014; Zanke et al. 2008; Zhang et 

al. 2014), with odds ratio typically in the range 1.10–1.25 and minor allele frequencies 

typically no less than ~10% (partly by design of genotyping arrays). Once the low hanging 

fruits have been picked, the design becomes more challenging since the discovery of 

additional variants with smaller effect or lower allelic frequency may require increasing the 

sample size by an order of magnitude. Although not as informative from a public health 

perspective, these additional, undiscovered variants still have the potential to help elucidate 

parts of the pathobiology.

The American Cancer Society and the US Multi-Society Task Force on Colorectal Cancer 

recommend early detection testing starting at 40 years of age for those with a family history 

of CRC, given their higher risk of developing tumors (Read and Kodner 1999; Levin et al. 

2008; Lieberman et al. 2012). The lifetime increase in risk in those with a family history of 

CRC is about 2-fold (Slattery et al. 2003), partly due to shared genes and/or shared 

environment with the affected relative (Lichtenstein et al. 2000). Because they share half the 

genome and the genetic risk background of their affected relative, the inclusion of controls 

with a family history of CRC may reduce the power to detect a genetic association with the 

Lemire et al. Page 3

Hum Genet. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disease in a case-control study. By excluding these controls from the study, we show that 

power can be increased even if the sample size is reduced. Moreover, we argue with 

empirical evidence that excluding controls that were diagnosed with colorectal (CR) polyps 

(potential precursors of tumors), when such a diagnostic is available, may also lead to an 

increase in power. This allows for a reevaluation of GWAS without the need to increase the 

sample size or genotype additional samples.

MATERIALS AND METHODS

Sample description and genotyping

The cases and controls included in the present GWAS consist of a subset of samples that 

were collected across multiple study centers, within the Genetics and Epidemiology of 

Colorectal Cancer Consortium/Colon Cancer Family Registries (GECCO/CCFR) (Peters et 

al. 2013). As a result of simulation-based power calculations and empirical observations, we 

attempted to increase the power to detect an association by excluding controls with a 

positive family history and controls that were diagnosed with CR polyps. Status of CR 

polyps was self-reported from answering questions such as “has a doctor ever told you that 

you had polyps in your large bowel or colon or rectum?”. Table 1 describes the sample sizes 

of each study, before and after exclusion of controls and the genotyping platform used in 

each. Replication of initial results from GECCO/CCFR was attempted in samples from 6 

studies from the Colorectal Cancer Transdisciplinary Study (CORECT) (Wang et al. 2014) 

(Table 1). Genome-wide significant results were then analyzed in samples of African 

ancestry (1,894 cases [49.6% females; mean age 67.9] and 4,703 controls [35.2% females; 

mean age 61.6]) and of Japanese ancestry (2,627 cases [42.1% females; mean age 65.3] and 

3,797 controls [45% females; mean age 64.7]) to evaluate trans-ethnic effects of the SNPs. 

These samples were genotyped using Illumina 1M-Duo, 660W-Quad or Omni 2.5M 

depending on the center (see Wang et al. 2014 for details).

Statistical power comparison

To confirm that the exclusion of controls with a positive family history of CRC would not 

lead to a reduction, but rather an increase in power, we performed a simulation study. We 

simulated the segregation of a susceptibility SNP in nuclear families. Sibship size followed a 

Poisson distribution with mean 3.5 sibs. One susceptibility SNP was simulated with varying 

allele frequency and relative risk (with risk alleles acting multiplicatively on the risk). The 

segregation of alleles in the nuclear families and the simulation of the disease state of all 

family members were performed using SLINK (Schäffer et al. 2011). Lifetime risk of the 

simulated disease was fixed at 5% (Siegel et al. 2014). 11,800 cases and 14,300 controls (the 

approximate sample size of all samples in GECCO/CCFR) were randomly selected among 

all affected and unaffected individuals, respectively. Once an individual was selected, all 

other members of the nuclear family became ineligible to enter the case-control sample. 

Having a family history of the simulated disease was defined as having at least one first-

degree affected relative (sib or parent). For each combination of allele frequency and effect 

size, 400 replicates were assessed for association between the simulated SNP and the disease 

status using a simple allelic chi-square test (--assoc command in PLINK; Purcell et al. 
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2007), before and after exclusion of the controls with a positive family history. Power was 

estimated from the proportion of replicates reaching significance p<5×10−8.

Genome-wide association analysis

Imputation to HapMap2 Release 24 was performed using MACH for all studies, with the 

exception of OFCCR, which was imputed to HapMap Release 22 using BEAGLE. Log-

additive models were fit and adjusted for age, sex, center, batch effect (in the ASTERISK 

study), smoking status (in the PHS study), and the first 3 principal components on study 

level (using HapMap-imputed data). Replication was attempted in CORECT for the SNPs 

with meta-analysis p<10−5 in GECCO/CCFR.

RNA expression studies

Two sample sets were used to assess the association between a SNP and expression of genes 

within a 2Mbp window centered at the SNP position. Both studies evaluated gene 

expression in colon adenocarcinomas and normal colon tissues.

The first study (TCGA) consists of data from 155 colon adenocarcinomas and 19 normal 

colon tissues (from a total of 162 distinct donors: 12 matched tumor and normal adjacent 

pairs are included) from The Cancer Genome Atlas (TCGA; downloaded from CG Hub: 

https://cghub.ucsc.edu/). These samples have gene expression data derived from an Agilent 

244K Custom Gene Expression Array and genotypes derived from Affymetrix Genome-

Wide Human SNP 6.0 Array. We used Level 3 expression data, which consists of 

normalized signals and expression calls per gene, per sample. Genotype data were obtained 

under approved access. We compared the genotype calls between tissues of the same donors. 

A patient was excluded if he or she presented discordant homozygous genotype calls at >1% 

of homozygous markers (heterozygous genotypes were ignored because of the potential for 

loss of heterozygosity in tumors). The SNP data was analyzed with the --homozyg command 

in plink to identify regions with loss of heterozygosity (LOH); gene expression values in 

samples displaying LOH in the gene interval were ignored in analyses.

The second study (CCFR) consists of data from 40 tumors and 40 paired adjacent normal 

tissues from 40 participants enrolled in CCFR, with gene expression data derived from the 

Affymetrix GeneChip Human Exon 1.0 ST Array and genotype data derived from 

Affymetrix Genome-Wide Human SNP 6.0 Array. This set of tumor/normal samples has 

been used in an eQTL (expression quantitative trait loci) study of previously published 

GWAS loci for CRC (Loo et al. 2012).

Differential expression was assessed using a non-parametric Wilcoxon rank sum test when 

comparing two factors, or a Kruskal-Wallis rank sum test when comparing 3 factors.

RESULTS

Controls with a family history or CR polyps potentially reduce power to detect association

As a proof-of-concept that power may be reduced when including controls with a positive 

family history of CRC in a case-control study, we evaluated a genetic risk score in GECCO 

by counting the number of risk alleles that individual possessed across 36 SNPs identified 
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by GWAS, after pruning those in LD (Al-Tassan et al. 2015; Broderick et al. 2007; Cui et 

al. 2011; Dunlop et al. 2012; Houlston et al. 2008; Houlston et al. 2010; Jaeger et al. 2008; 

Jia et al. 2013; Peters et al. 2012; Peters et al. 2013; Schumacher et al. 2015; Tenesa et al. 

2008; Tomlinson et al. 2007; Tomlinson et al. 2008; Tomlinson et al. 2011; Wang et al. 

2014; Whiffin et al. 2014; Zanke et al. 2008; Zhang et al. 2014). The distribution of this 

genetic risk score was stratified by disease status and family history. Figure 1 shows that 

controls with a family history of CRC have genetic risk scores that are intermediate between 

that of cases and family-history-negative controls, indicating that controls with a family 

history share some genetic risk with their affected first-degree relatives.

Simulation-based power calculations support the strategy of excluding controls with a 

family history of CRC: across a wide spectrum of allele frequencies and relative risks, 

Supplementary Table S2 indicates a gain in statistical power even though the number of 

controls is reduced by over 20%. This motivated exclusion of controls with a positive family 

history.

Family history is a feature that can easily be simulated, through specification of penetrances 

(including phenocopies), segregation of alleles or shared environmental variables, and 

ascertainment. For other traits or features – such as diagnosis of CR polyps in controls, it 

can be hypothesized that power may be reduced from inclusion of samples that display 

them. However, these traits may not be straightforward to incorporate in an assessment of 

power; interpretation would only be as good as the underlying model linking the trait (say, 

presence of CR polyps) to the likelihood of developing the disease. For these traits, 

stratifying the risk score, as was done for family history, can provide insights. Similar to 

family history-based stratification, Supplementary Figure S1 shows that controls that were 

previously diagnosed with CR polyps have a genetic risk score intermediate to that of cases 

and other controls. Because the diagnosis of CR polyps is correlated with family history of 

CRC, Supplementary Figure S1 only focuses on samples without a family history. Based on 

this empirical evidence and the results from simulations described above, we excluded from 

this analysis controls that have a family history and/or controls diagnosed with CR polyps.

Genome-wide association study and replication

Samples in the discovery phase of this study, which were collected across multiple study 

centers within GECCO/CCFR, were analyzed after exclusion of controls with a family 

history of CRC or diagnosis of CR polyps. Of note, among the centers that sampled both 

sexes, female controls were more likely to have reported a family history of CRC than males 

(fixed effect model: OR=1.31; p=0.0006) and less likely to have reported CR polyps than 

males (OR=0.65; p=2×10−8). Control individuals who reported family history were slightly 

older than those who did not (mean of 64.06 years compared to 63.49; p=0.011, adjusted for 

center). In contrast, control individuals who reported polyps were substantially older than 

those who did not (mean of 65.9 years compared to 63.3; p<10−8).

Associations results between genetic variants and risk of developing CRC in the resulting 

samples are graphically summarized in the Manhattan plot depicted in Figure 2. The 

inflation factor (λ=1.019) is comparable to the one calculated when no controls are excluded 

(λ=1.021; Figure 2b–c).
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Replication was attempted in samples from CORECT for SNPs that reached significance at 

p<10−5 in the discovery phase. Supplementary Table S3 shows results for these SNPs in 

both phases of the study after pruning for linkage disequilibrium (LD) (reporting the most 

significant SNP among SNPs with r2>0.5)

One SNP, rs17094983, reached genome-wide significance level in the meta-analysis of all 

studies combined (p=2.5×10−10) with no evidence of heterogeneity across centers 

(phet=0.97) (Supplementary Figure S2). The minor allele of the SNP has a frequency of 13% 

and is inversely associated with risk; the odds ratio (estimated by re-including the controls 

with FH or CR polyps, to eliminate the effect of the selection bias) is OR=0.87 (95% 

confidence interval: 0.83–0.91; p=4.7×10−9) compared to OR=0.85 when these controls are 

excluded (Supplementary Figure S2). To evaluate trans-ethnic associations for that SNP, we 

first note that rs17094983 is monomorphic in populations of Asian ancestry according to the 

1000 Genomes project, and it has thus not been observed in the samples of Japanese 

descent; this also has been reported elsewhere (Peters et al. 2013). In samples of African 

descent, the SNP replicated (p=0.01) with a minor allele frequency of 16% and a consistent 

effect size (OR=0.86, 95% confidence interval: 0.77–0.97).

Genes and transcripts in the region surrounding rs17094983 are illustrated in Figure 3.

Study of expression quantitative trait loci

In the 2Mbp window centered on rs17094983, The Cancer Genome Atlas (TCGA) includes 

expression data on 11 transcripts: ACTR10, ARID4A, JKAMP (C14orf100), C14orf37, 

DAAM1, DACT1, GPR135, KIAA0586, PSMA3, RTN1 and TIMM9. Figure 4 and 

Supplementary Figures S3–S12 show expression values of these genes in normal colon 

tissues and tumors as well as expression values in tumors stratified by genotypes at 3 SNPs 

in high LD with rs17094983 (which is not part of the Affymetrix 6.0 array available from 

TCGA): rs17094971 (r2=0.81 with rs17094983, calculated from the EUR samples of the 

1000 Genomes Project), rs1432096 (r2=0.80) and rs710005 (r2=0.54). RTN1 (Figure 4) 

displays lower expression in tumors than in normal tissue and is the transcript that shows the 

most differential expression in the region (p=1.3×10−8; based on a non-parametric Wilcoxon 

test). Notably, of the transcripts targeted by the expression array, RTN1 is among the genes 

with the highest average expression across normal colon tissues: only 13% of transcripts in 

the genome have expression values higher than that of RTN1. In tumors, eQTL analyses 

reveal that RTN1 shows differential expression between genotypes of both rs1432096 

(p=0.022; based on a non-parametric Kruskal-Wallis test) and rs710005 (p=0.0013), the 

latter being statistically significant even after accounting for the 33 eQTL combinations 

(SNP-transcript expression) that we tested (false discovery rate [FDR]=4.2% for rs710005). 

It is however the SNP with the weakest LD with rs17094983. Expression values for the 

heterozygous genotypes are elevated compared to values for the common homozygous 

genotypes (homozygous for the apparent “risk” allele); this direction of association is 

consistent with the minor allele being inversely associated with risk, as normal tissue shows 

higher expression of RTN1. The number of normal tissues (n=15) is too small to draw 

meaningful conclusions from eQTL analyses. No other transcript is associated (after 

accounting for multiple testing) with any of these SNPs (Supplementary Figures S3–S12).
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We sought to replicate RTN1 expression association results from TCGA using data from 40 

normal colon tissues and 40 matched tumors from CCFR. Consistent with the TCGA data, 

RTN1 shows significantly lower expression in tumors compared to normal tissues 

(p=1.1×10−8) (Figure 5a). When stratified on genotypes, RTN1 expression levels shows 

patterns of associations that are in the same direction as seen in the TCGA data, in both 

normal colon tissues (p=0.041 for rs1432096 [r2=0.80 with rs17094983]; Figure 5) and 

tumors (p=0.041 for rs1432096; Supplemental Figure S13), suggesting that heterozygous 

individuals tend to show higher expression of RTN1 than common homozygous individuals, 

irrespective of whether the colon cells are normal or malignant.

DISCUSSION

We describe a strategy to re-evaluate GWAS data that may facilitate identification of 

additional genetic risk variants at genome-wide significance levels without necessitating an 

increase in sample size. By excluding controls with a family history of the disease from a 

case-control study (or other features that may potentially make controls more likely to 

possess genetic risk factors for the disease under study – such as diagnosis of CR polyps, 

potential precursors of tumors of the colon) power can be increased. This also has 

implications for study design.

We report an association between SNPs at 14q23.1 and the risk of developing CRC. 

rs17094983 was mentioned in a published GWAS (Peters et al. 2013) for CRC but did not 

reach genome-wide significance (reported p<3×10−6). The present study confirms the 

association at genome-wide significance levels. We show that genotypes of SNPs in high 

LD with it are significantly associated with expression of RTN1 (Reticulon 1), a protein-

coding gene highly expressed in normal colon cells whose expression is substantially 

reduced in colon tumor cells.

The RTN1 gene produces three transcripts, which encode for the RTN1-A, RTN1-B, and 

RTN1–C proteins. The expression values that we presented were derived from probes that 

are targeting exons present in all three transcripts; there were no probes specific to a single 

transcript. These proteins are members of highly conserved reticulons, which are localized 

in the endoplasmic reticulum (ER). Reticulons show pro-apoptotic activity via the induction 

of ER stress (Kuang et al. 2005; Di Sano et al. 2007). The mechanisms by which RTN1 

exerts its effects are not well understood. RTN1-A has been recently described as a mediator 

of chronic kidney disease progression that promotes renal injury through ER stress (Fan 

2015). In kidney epithelial cells, RTN1-A but not RTN1-C, interacts with PERK, an ER 

stress molecule that activates apoptotic pathway. RTN1C is regulated by acetylation and its 

DNA-binding activity is required for its role as an inhibitor of histone deacetylases (HDAC) 

activity (Fazi et al. 2009). Inhibition of HDACs can result in hyperacetylation of proteins, 

which, in turn, induces apoptosis of tumor cells and sensitizes tumors to cell-death processes 

and to other drugs (Heerboth et al. 2014). RTN1-C overexpression sensitizes cancer cells to 

chemotherapeutic-induced apoptosis through p53-independent pathways (Di Sano et al. 

2003). In androgen-dependent LNCaP prostate cancer cells, knock down using siRNA 

targeting all RTN1 transcript isoforms enabled androgen independent growth of these cells 

(Levina 2015). Gastrointestinal stromal tumors (GISTs) with mutations in KIT or PDGFRA 
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show frequent alterations of the 14q23.1 region, which includes the RTN1 gene (Astolfi et 

al. 2010). Moreover, the knockdown of RTN1 results in increased proliferation of mutation-

harboring GIST cells. These studies indicate that decreased expression of RTN1 is related to 

survival and proliferation of cancer cells. In the present study, reduced expression of RTN1 

in tumors, and a further decrease in patients with risk-associated alleles are consistent with 

the abovementioned roles of RTN1 in cancer.

The strengths of this study are the large sample size and the increase in power to detect a 

genetic association, caused by the removal of controls with family history of CRC or 

personal history of CR polyps. By excluding controls that may share the genetic risk 

background of their affected relatives, we have increased the differences between cases and 

the remaining controls. However, the OR estimated from samples that underwent this 

selection bias does not readily generalize to the whole population; we thus provided an OR 

estimated from the complete sample set thereby making a distinction between the discovery 

aspects of the study and the estimation of the effect size. In the present study, genome-wide 

significance was observed with or without the excluded controls, due to the large sample 

size at hand. Excluding these controls, the p-value was more than one order of magnitude 

smaller, consistent with higher power; for smaller studies, an order of magnitude difference 

might be all that is needed for additional discoveries at genome-wide significance levels.
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Figure 1. Count of risk alleles
Boxplot representation for the total count of risk alleles in cases and controls, stratified 

based on family history (FH).
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Figure 2. Association results
(a) Manhattan plot of results in GECCO/CCFR. Controls with family history and/or polyps 

are excluded from the analysis. Each dot represents a SNP plotted on the x-axis relative to 

its position in the genome, whose level of significance is represented on the y-axis. Green 

dots represent SNPs in LD with SNPs identified in published GWAS for CRC. Replication 

in CORECT was attempted for SNPs with p<10−5 (blue horizontal line). The red horizontal 

line indicates p=5×10−8; (b) quantile-quantile plot of p-values in (a), on the negative log 

scale. λ is the inflation factor (the ratio of observed to expected median); (c) quantile-

quantile plot of p-values when no controls are excluded from the analysis.
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Figure 3. UCSC browser representation of the 14q23.1 locus
Window is centered at rs17094983 +/− 2Mbp. Top track indicates position of SNPs in LD 

with rs17094983 (r2>0.05) along with r2 values.

Lemire et al. Page 18

Hum Genet. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Expression of RTN1 in TCGA
(a) Boxplot representation of the expression of RTN1 in normal colon tissues and tumors. 

Significance calculated from Wilcoxon test. (b–d) Boxplot representations of the expression 

of RTN1 in tumors as a function of (b) rs17094971; (c) rs1432096; (d) rs710005. 

Significance calculated from Kruskal-Wallis tests.
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Figure 5. Expression of RTN1 in CCFR
(a) Boxplot representation of the expression of RTN1 in normal colon tissues and tumors. 

Significance calculated from Wilcoxon test. (b–d) Boxplot representations of the expression 

of RTN1 in normal tissues as a function of (b) rs17094971; (c) rs1432096; (d) rs710005. 

Significance calculated from Kruskal-Wallis tests.
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