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Abstract

Both the American Heart Association and the VA/DoD endorse upper-extremity robot-mediated 

rehabilitation therapy for stroke care. However, we do not know yet how to optimize therapy for a 

particular patient’s needs. Here, we explore whether we must train patients for each functional 

task that they must perform during their activities of daily living or alternatively capacitate 

patients to perform a class of tasks and have therapists assist them later in translating the observed 

gains into activities of daily living. The former implies that motor adaptation is a better model for 

motor recovery. The latter implies that motor learning (which allows for generalization) is a better 

model for motor recovery. We quantified trained and untrained movements performed by 158 

recovering stroke patients via 13 metrics, including movement smoothness and submovements. 

HHS Public Access
Author manuscript
IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2015 December 
22.

Published in final edited form as:
IEEE Trans Neural Syst Rehabil Eng. 2012 January ; 20(1): 48–57. doi:10.1109/TNSRE.2011.2175008.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Improvements were observed both in trained and untrained movements suggesting that 

generalization occurred. Our findings suggest that, as motor recovery progresses, an internal 

representation of the task is rebuilt by the brain in a process that better resembles motor learning 

than motor adaptation. Our findings highlight possible improvements for therapeutic algorithms 

design, suggesting sparse-activity-set training should suffice over exhaustive sets of task specific 

training.

Index Terms

Kinematics; motor adaptation; motor learning; rehabilitation robotics; stroke

I. Introduction

STROKE is a leading cause of permanent disability world-wide. Every year over 785 000 

persons suffer a stroke in the U.S. and about 70% of stroke survivors lose motor skills of the 

arm and hand [1]. First proposed in the 1980s, robot-mediated therapy is increasingly 

becoming part of poststroke rehabilitative care. Our working model behind such therapy is 

best expressed by Hebbian ideas of nervous system plasticity, mainly that neurons that “fire” 

together, “wire” together. The human brain is capable of self-organization, or neuroplasticity 

[2], [3], so that training and rehabilitation offer an opportunity for motor recovery [4], [5]. 

The scientific rationale for rehabilitation robots for the upper extremity is anchored on this 

concept of motor plasticity and on evidence that intensive repetition of movement promotes 

motor recovery following a stroke [6]–[9]. Rehabilitation robots can perform repetitive tasks 

in a highly consistent and controllable manner, and they continuously record patients’ 

movement kinematics and dynamics features. Such features can be used to not only quantify 

therapy outcomes, but also to design a robot control loop which tailors the therapeutic action 

of the robot to the patient’s motor abilities [10], [11].

Several rehabilitation robots for the upper extremity have been proposed. Examples include 

MIT-Manus [5], ARM Guide [12], MIME [13] and the more recently developed PLEMO 

[14], ARMin [15], and MEMOS [16]. Clinical effectiveness greater than sham robot-therapy 

or a matched amount of traditional occupational therapy was reported in several studies [4], 

[13], [17], [18], including the recent Veterans Administration (VA) multicenter, randomized, 

controlled clinical trial reported in the New England Journal of Medicine, which enrolled 

127 patients six months or more after stroke and showed that robot-mediated therapy 

improved outcomes over 36 weeks as compared with usual care [19]. These results led to the 

2010 “Comprehensive Overview of Nursing and Interdisciplinary Rehabilitation Care of the 

Stroke Patient: A Scientific Statement from the American Heart Association (AHA)” [20]. 

This guideline recommended that: “Robot-assisted therapy offers the amount of motor 

practice needed to relearn motor skills with less therapist assistance. Most robots for motor 

rehabilitation not only allow for robot assistance in movement initiation and guidance but 

also provide accurate feedback… Most trials of robot-assisted motor rehabilitation concern 

the upper extremity (UE), with robotics for the lower extremity (LE) still in its infancy… ” 

This AHA report suggested that UE robot-assisted therapy has already achieved Class I, 

Level of Evidence A for stroke care in the outpatient setting and care in chronic care 
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settings. It suggested that UE robot-assisted therapy has achieved Class IIa, Level of 

Evidence A for stroke care in the inpatient setting. To explain, Class I is defined as: “Benefit 

⋙ Risk. Procedure/Treatment SHOULD be performed/administered;” Class IIa is defined 

as: “Benefit ≫ Risk, IT IS REASONABLE to perform procedure/administer treatment;” 

and Level of Evidence A is defined as “Multiple populations evaluated: Data derived from 

multiple randomized clinical trials or meta-analysis.” Similar endorsement came later in 

2010 from the “VA/DoD Clinical Practice Guideline for the Management of Stroke 

Rehabilitation [21].”

However, much remains to be done to afford optimal therapy tailoring treatment to the 

particular patient’s needs. In fact, we anticipate that characterizing the specific effects of 

different interventions, developing methodologies for therapy design, and developing 

models for neuro recovery which would afford personalized treatment represent the main 

thrust of this decade [22], [23]. For example, the extent to which robot-mediated training 

generalizes is rarely assessed, although generalization in new situations beyond the trained 

ones is a key feature that should be tested when developing new rehabilitation interventions 

[24]. Likewise, there are few quantitative models of the process of motor recovery following 

a stroke. Hence most advances occur on a trial-and-error basis.

Motor learning and motor adaptation are two of the potential models for motor recovery 

from stroke that researchers have recently started to encode in the design of robotic 

treatments. Several research groups are exploring performance-based control algorithms 

(see, for example, [10], [25], [26]) that incorporate concepts of motor learning, including 

efforts to monitor continuous and conscious engagement of the patient in the robotic training 

programs. Results are promising as some of these algorithms have been shown to yield 

higher outcomes than robotic training programs designed to mimic conventional 

neurorehabilitation treatments such as strength or sensorimotor training [22]. Others are 

investigating additional aspects of motor learning and the viability of reverse-engineering 

motor adaptation processes so as to design appropriate force fields that eventually result in 

desired after effects [27], [28]. Whether motor recovery following a stroke is better 

characterized as a process similar to motor adaptation or to motor learning is still unclear.

In this study, we explore differences between adaptation and learning to afford better insight 

and better robotic therapies. While there is considerable debate on the differences between 

motor learning and motor adaptation, it is becoming increasingly clear that motor adaptation 

and learning are two different processes [29]. It is generally accepted that motor learning 

allows limited generalization to occur (presumably based on some form of acquired internal 

representation) while motor adaptation does not. For example, we define the initial 

acquisition of the ability to ride a bicycle (which can generalize and facilitate learning to 

ride a motorcycle) as motor learning but define the initial improvement in performance 

observed after several decades without riding a bicycle as adaptation. Improvements 

obtained with motor learning are maintained over time, while after effects resulting from 

adaptation are short-lived [29]. In Huang and Krakauer’s model [29] adaptation is seen as 

part of motor skill learning for a particular task that adjusts for different environmental 

conditions. This explanation is consistent with studies on stroke patients that have shown 

that a tailored adaptation condition can result in improved movement kinematics outside of 
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the robot, but the improvements fade quickly [29], [30]. Whether motor recovery following 

stroke can be modeled as adaptation or learning remains however unclear, but answering 

this question has important implications. The adaptation model implies that we must train an 

exhaustive set of tasks, while the learning model implies that we must understand the 

limitations of generalization and train through a more sparse set of tasks. This study 

investigated whether motor learning or motor adaptation is a more suitable model for motor 

recovery from stroke by analyzing trained and untrained movements of recovering stroke 

patients with kinematic macro-metrics (including smoothness) and micro-metrics 

(submovements).

Smoothness has been used to describe movement of unimpaired [31] and stroke subjects 

[32] and has been quantified with different metrics, including number of speed peaks [33] 

and jerk, the third derivative of position [31]. Changes in smoothness have been observed in 

movements performed by unimpaired subjects learning new tasks and in recovering stroke 

subjects [34]–[38]. Arguably such changes are caused by the blending of discrete 

submovements [35], [37], [39]. While submovement conjecture remains a topic of research, 

submovements appear to account for many movement features [34], [40]–[47].

In this study, we analyzed movements performed by 158 stroke survivors undergoing a 

robot-mediated therapy program. Subjects were trained exclusively on point-to-point 

reaching movements and were tested on both the trained point-to-point movements and 

untrained circle drawing movements at different stages of recovery. Our goal was to 

investigate whether untrained and trained movements were characterized by similar changes 

in smoothness and submovements. A positive result indicated by a high correlation among 

changes of the trained and untrained movements would suggest that recovery shares traits 

with motor learning rather than motor adaptation. Our working hypothesis was that motor 

learning would lead to a positive transfer of improvements to untrained tasks within a 

“region” (possibly small) that “surrounded” the trained tasks.

II. Methods

A. Subjects

One-hundred and fifty-eight individuals, 42 inpatients (sub-acute stroke) and 116 outpatients 

(chronic stroke), were enrolled. Subjects’ demographic data is summarized in Table I.

Inclusion criteria for inpatients were: 1) first single focal unilateral lesion with diagnosis 

verified by brain imaging to the cortical and subcortical territories (excluding thalamic 

lesions); 2) 2 ± 2 weeks after stroke onset at the start of the study; 3) cognitive function 

sufficient to understand the experiments and follow instructions; and 4) upper limb 

hemiparesis as measured by standard instruments (specifically, Fugl–Meyer Assessment 

(FM) below 38 out of 66 [48]).

Inclusion criteria for outpatients were: 1) diagnosis of a single, unilateral stroke at least six 

months prior to enrollment verified by brain imaging to the cortical and subcortical 

territories; 2) sufficient cognitive and language abilities to understand and follow 

instructions (Mini-Mental Status Score of 22 and higher or interview for aphasic subjects); 
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and 3) stroke-related impairments in muscle strength of the affected shoulder and elbow 

between 7 and 38 on the FM scale (neither hemiplegic nor fully recovered motor function in 

the muscles of the shoulder and elbow). Outpatients were excluded from the study if they 

had a fixed contraction deformity in the affected limb.

All subjects volunteered for the study and gave their informed consent. The experimental 

protocol was approved by the Committee on the Use of Human Experimental Subjects of the 

Massachusetts Institute of Technology, and the Institutional Review Boards at Burke 

Rehabilitation Hospital, Spaulding Rehabilitation Hospital, and University of Maryland 

(Baltimore VAMC).

B. Experimental Apparatus

MIT-Manus and its commercial version InMotion2 (Interactive Motion Technologies, Inc., 

Watertown, MA) were used in this study. MIT Manus is a robot intended for promoting 

neurological recovery and designed at the Massachusetts Institute of Technology. Five 

robots were used in this study, all with similar mechanical (inertia, friction, and bandwidth) 

characteristics [5], [49], [50].

C. Protocol

Subjects went through an 18-session robotic treatment. During each therapy session, they 

were directed to make 1024 point-to-point reaching movements, ending as near as possible 

to the target location, while sitting in a chair. A center target and eight targets equally spaced 

around a circle were displayed on a monitor, and visual feedback regarding the current 

position of the robot endpoint (subjects’ hand position) was provided. The center of the 

workspace was located in front of the subject at the body midline with the shoulder elevation 

at 45° and the elbow slightly flexed. Subjects moved from the center to each target, stopped, 

then returned to the center, starting at “12 o’clock“ and proceeding clockwise. Each target 

was 14 cm from the center. During these sessions the robot was powered. If the subject was 

unable to move or hit the target, the robot guided her/his hand toward the targets as needed, 

described elsewhere [5], [10], [22]. Each therapy session lasted for 1 h. Inpatients received 

standard inpatient rehabilitation care in addition to robot-mediated therapy. None of the 

outpatients were engaged in conventional occupational or physical therapy programs or 

received pharmacological management of spasticity and tone (i.e., Botox) during the 

experimental trial. The FM Test of Upper Extremity Function ([48] upper limb, max 66) was 

used for the assessment of motor impairment. Outpatients started the robotic treatment after 

the clinical scales showed that motor impairments were stable across three evaluation 

sessions spaced two weeks apart (this gradual engagement into the trial and determination 

that the patient is actually stable is critical to reduce variability, and the approach was coined 

as “phase-in” phase [51]). Outpatients that demonstrated significant changes during these 

measurements were excluded from the study. Subjects went through robot-based evaluations 

at admission, mid-point (ninth session), and end of the treatment protocol. During these 

evaluation sessions, the robot was unpowered, namely it provided no assistance and acted as 

a low friction passive measurement device that restricted subjects’ hand motion to a 

horizontal plane. During each session, while sitting in a chair as described above, they were 

directed to make 80 point-to-point reaching movements similar to the training protocol (40 
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outbound and 40 return movements). They were also asked to perform twenty individual 

attempts to complete a circle-drawing task. This task, which was not trained, was performed 

in the same workspace as the trained movements and it required the continuous coordination 

of the shoulder and elbow movements. After being shown a circular disk of 14 cm radius, 

the subject was asked to draw a similar shape by moving the end-effector of the robot in a 

horizontal plane in a terminated motion [5]. The starting point and movement direction were 

instructed. Specifically, subjects were asked to draw five circles clockwise and five circles 

counter-clockwise starting at 9 o’clock, five circles clockwise and five circles counter-

clockwise starting at 3 o’clock.

All participants completed the robotic treatment and went through the evaluation sessions, 

except three inpatients and four outpatients that missed the interim robot-mediated 

evaluation sessions (for these patients only the initial and final evaluation sessions data were 

included).

D. Kinematic Macro-Metrics Analysis

Following Rohrer et al. [39] and Bosecker et al. [11], the following metrics were extracted 

from speed profiles of center-out point-to-point movements (trained movements), which 

were calculated as summed squares of the first order difference of the X and Y trajectory 

components smoothed with a 0–4 Hz bandwidth FIR filter: 1) movement mean speed; 2) 

movement peak speed; and 3) movement duration. Three smoothness metrics were also 

computed: 1) speed shape, which was calculated as mean speed divided by peak speed; 2) 

number of peaks, which was calculated as the negative of the number of peaks in the speed 

profile; and 3) jerk metric, which was calculated by dividing the negative mean jerk 

magnitude by the peak speed. The first two are dimensionless and increase monotonically 

with movement smoothness. Note that the negative sign in the number of peaks metrics was 

introduced for convenience so that an increase in this metric corresponds to an increase in 

movement smoothness and is consistent with the speed shape metric. Early in recovery 

subjects’ movements speed profiles are very fragmented and display a series of peaks with 

deep valleys in between, i.e., mean speed is much less then peak speed. At this stage, the 

speed metric tends to be relatively low, especially if gaps between fragments or 

submovements (see below) are long. As subjects recover, their movements are less 

fragmented and display shallower and shorter valleys between submovements: thus speed 

metric is higher. The third metric has units of (1/duration)2. Although a dimensionless jerk 

metric can be defined as a metric which changes monotonically with movement smoothness 

[52], our jerk metric displays a characteristic nonmonotonic change. Rohrer et al. [39] 

showed via simulation that the jerk metric changes as a function of the distance between 

submovements onsets (T), i.e., it increases with increasing blending over the interval 0.12 s 

< T < 0.26 s and decreases with increasing blending for T > 0.26 s. Note that this 

nonmonotonic behavior depends on the form of the jerk metric chosen. The metrics 

described above were also extracted from the kinematic data collected during circle drawing 

movements (untrained movements). We defined the axes ratio metric calculated as the ratio 

of the minor and major axes of the ellipse best-fitting the data [53]. This metric is a number 

between 0 and 1 and can be regarded as a measure of coordination between shoulder and 

elbow movements. Values closer to 1 indicate that the fitting ellipse tends to better 
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approximate a circle, i.e., improved coordination of shoulder and elbow movements. A 

movement was considered to begin when the speed first became greater than 2% of the peak 

speed and was considered to end when the speed first decreased to and remained below the 

2% threshold again.

E. Kinematic Micro-Metrics (Submovement) Analysis

We used the method described in Rohrer et al. [54] to extract submovements from 

movement speed profiles. Briefly, the extracted submovement functions were support-

bounded log-normal (LGNB) curves, defined as

where D is the displacement resulting from the movement, T0 is the movement start time, T1 

is the end time, μ controls the skewness (asymmetry), and σ determines the kurtosis 

(“fatness”) of the curve. The five independent parameters that define LGNB submovements 

allow them to take on a wide range of submovement- like shapes [55]. In this study, 

submovements were allowed to take on a duration between 167 and 1500 ms. To reduce the 

problem of long “tails” often associated with markedly asymmetric submovements, we 

calculated submovement duration as the time interval between T0n and T1n, where T0n and 

T1n were defined as the time when the submovement went, respectively, above and below 

5% of its peak value [56]. Submovements were optimized simultaneously [54]. An 

increasing number of submovements were fit to each movement until the “fit error” ε fell 

below a predetermined threshold, where ε = ∫|F(t) − G(t)|dt/ ∫ |G(t)|dt| with G(t) the 

movement speed profile, and F(t) the extracted speed profile. In this study ε was set to 2%.

F. Statistical Analysis

To analyze overall change trends, data obtained by averaging the trials for each subject at 

admission and discharge were compared using two-tailed t-tests. A significance level of p ≤ 

0.05 was used for all tests. To study to what extent changes in the kinematics of trained 

movements generalized to untrained movements, we correlated the corresponding kinematic 

variables extracted from trained and untrained movements. To protect for type I errors, 

which could arise from lack of independence of the 13 metrics, we also performed 

multivariate canonical correlation analysis [57] using the method described in [58]. First we 

tested the hypothesis that all population canonical correlations were zero; then using Bartlett 

test we tested a series of null hypotheses that the first k canonical correlations were nonzero 

and the remaining (13-k) were zero.

III. Results

A. FM Scores

From admission to discharge, the average FM score increased from 10.02 (1.14) to 22.70 

(2.28) for inpatients and from 20.47 (standard error 1.15) to 24.35 (standard error 1.27) for 
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outpatients. Hence the changes we observed in the kinematics occurred as patients were 

recovering, as measured by the FM scale.

B. Changes in Trained Movements

Figs. 1 and 2 report the changes from admission to discharge for the kinematic metrics and 

submovement parameters extracted from the trained point-to-point movements. Figs. 1 and 2 

also summarize the values of the kinematic metrics and submovement parameters at 

different stages of recovery (i.e., inpatient or outpatient).

Overall for the trained point-to-point movements performed by inpatients, as recovery 

progressed, movement duration decreased while mean speed and peak speed increased 

(subjects became able to move faster). The first two smoothness metrics increased but, as in 

Rohrer et al. [39], the jerk metric decreased. Concurrently submovements became fewer, 

taller (i.e., submovement amplitude increased), longer (i.e., submovement duration 

increased), and more blended (i.e., submovement interpeak distance decreased and overlap 

increased), indicating an improved ability of patients to generate bigger “chunks” of 

movements and concatenate them (Fig. 3). As indicated by submovement skeweness μ and 

kurtosis σ, over the course of recovery submovements maintained the same amount of 

asymmetry (μ did not significantly change from admission to discharge) but became “fatter” 

(σ increased).

The outpatient group displayed changes similar to the inpatient group, but smaller 

(corresponding to smaller changes in the FM from admission to discharge). For example, the 

number of peaks metric increased in average from −24 to −10.5 in inpatients and from −16.2 

to −9.1 in outpatients. The direction of change is only distinct for the jerk metric that 

increased from admission to discharge, consistently with the results of the study by Rohrer 

et al. [39].

C. Changes in Untrained Movements

Figs. 4 and 5 report the changes from admission to discharge for the kinematic metrics and 

submovement parameters extracted from the untrained circle drawing movements. Figs. 4 

and 5 also summarize the values of the kinematic metrics and submovement parameters at 

different stages of recovery (i.e., inpatient or outpatient).

For the untrained circle drawing movements, the axes ratio increased over recovery. This 

indicated that subjects became progressively better able to draw circles and better coordinate 

shoulder and elbow movements. In addition, the kinematic macro-metrics (movement 

duration, mean and peak speed and the three smoothness measures) and micro-metrics 

(submovement parameters) of these untrained movements exhibited changes similar to those 

of the corresponding variables extracted from the trained point-to-point movements.

D. Correlation Between Kinematic Changes in Trained and Untrained Movements

Table II reports the values of the correlation among corresponding variables extracted from 

point-to-point and circle drawing movements. Correlations were significant for 9 out of 13 

metrics, with values ranging from 0.83 to 0.93, suggesting that the changes we observed 
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during recovery in trained and untrained movements resulted from the same underlying 

neural process. Similar results were obtained when correlating patient- by-patient values, 

with all correlations being significant (p < 0.01). Canonical correlation analysis confirmed 

that 1) association existed between improvements in trained and untrained tasks (the 

hypothesis that all population canonical correlations was zero was rejected); and 2) the 

hypothesis of multiple dimension of association between the two sets of measurements was 

tenable (k = 9 and k = 10 out of 13 for averaged and patient-by-patient data respectively, 

being k the smallest number of “important” canonical correlations and associated pairs of 

canonical variables [58]).

IV. Discussion

A. Mechanisms and Models of Motor Recovery From Stroke

Mechanisms underlying human motor recovery from stroke are poorly understood, arguably 

due to the lack of descriptive, quantitative data on the recovery process. Robots can be easily 

equipped with sensors to record position, velocity and force exerted by the patient, thereby 

allowing researchers to collect unprecedented amounts of quantitative data on the recovery 

process. This offers a unique opportunity to gain insights into mechanisms underlying 

recovery and to develop models of recovery, which can in turn be used to design more 

effective treatments and more efficient training schedules.

We found that trained and untrained movements displayed similar kinematic changes at a 

macro-level (macro-metrics) and at a micro-level (submovements) level of detail and that 

such changes were highly correlated. Our results have several implications.

First, they provide support for our working model that submovements blend as a mechanism 

of motor recovery from stroke. Recovery proceeds by progressively regaining the ability to 

combine submovements, both in the sub-acute and chronic phase of recovery. Clear changes 

were found in submovement number (which decreased), peak and duration (which 

increased) and overlap (which increased), suggesting that over the course of recovery the 

nervous system became better able to generate “bigger chunks” of movements and combine 

them. At a macro-level of kinematic detail such improved ability to combine submovements 

translated into improved movement smoothness, a metric commonly used to quantify 

movement quality. More importantly, we found that such ability to generate “bigger chunks” 

of movements and recombine them to produce better quality movements was transferred to 

contexts different from the ones used for acquiring the ability. During recovery 

submovements extracted from trained or untrained movements tended to maintain the same 

shape (no significant changes in skewness and small changes in kurtosis) although small, 

significant shape changes were observed between trained and untrained movements, 

supporting the view that submovements are “building blocks” or primitives of movement, 

whose shape might be optimized for each motor task.

Canonical correlation analysis demonstrated association between improvements in trained 

and untrained tasks; furthermore Pearson’s correlation coefficients between improvements 

in trained and untrained tasks were significant in 9 out of 13 measures, with values ranging 
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between 0.83 and 0.93, suggesting that the changes we observed in trained and untrained 

movements resulted from the same underlying neural process underlying motor recovery.

Second, our results suggest that motor recovery from stroke can be better modeled as motor 

learning than as motor adaptation. This conclusion is consistent with the different time 

scales that underlie motor adaptation and motor learning: performance changes induced by a 

learning process are relatively permanent, while those due to adaptation are relatively short-

lived and tend to persist only as long as a perturbation is present. The performance 

improvements we observed were maintained over time, i.e., patients progressively improved 

over the course of the 18 h training, i.e., 18 × 1024 movements and we know from our 

previous studies that improvements are retained up to three-years follow-up [59]. This time 

scale suggests that patients underwent a motor learning as opposed to a motor adaptation 

process which are easily forgotten: improvements obtained with error-induced after effects 

resulting from adaptation approaches are short lived, lasting for 30–60 movements (2–4 

min) after 600 training movements (40 min) [30]. Our conclusion is also consistent with 

Huang and Krakauer’s hierarchical model [29], where adaptation is a mean used by the CNS 

to compensate changes in the operating conditions of a motor skill, i.e., at a lower level of 

control than skill mastering. According to their model, adaptation may evoke improvements 

apparently similar to those evoked by learning but these will be short-lived; to truly be able 

to use a skill the learner must acquire the top level control for that skill, which may require 

more extensive training.

B. Consistency With Previous Studies

In a previous study, Rohrer et al. [39], analyzed movements performed by 31 stroke 

survivors (12 inpatients and 19 outpatients) undergoing robot-mediated therapy with MIT-

Manus. Subjects were trained and tested on the same type (point-to-point) of movements. It 

was reported that movements performed by recovering subjects displayed progressively 

higher speed, smaller duration, and higher smoothness as measured by the speed shape and 

the number of peaks metrics. Furthermore, the jerk metric increased in chronic but decreased 

in sub-acute patients. These changes, including the non-monotonic behavior of the jerk 

metric, could be accounted for by changes in submovements. Consistent with results 

reported by Krebs et al. [35], submovements in the sub-acute phase of recovery appeared 

isolated and had a rather stereotyped shape which, given a task, remained relatively constant 

during recovery. As recovery progressed submovements became fewer, longer, and taller 

and progressively blended together [39], [54]. The results presented in this paper for 158 

stroke patients are consistent with the results of Rohrer et al. [39] on trained (point-to-point) 

movements. They extend Rohrer’s findings by showing that changes in movement 

smoothness and submovement parameters also occur in untrained movements, i.e., there is 

generalization of training within the same workspace.

Our results are consistent with the view that stroke recovery and motor learning have similar 

traits [22], [24], [60]. In unimpaired subjects motor learning generalizes at the level of the 

same workspace and limb segments [61], [62] and occurs via changes in movement 

smoothness and submovements [36], [37]. We found that similar results hold for subjects 

recovering from stroke and showed that generalization of training in stroke recovery occurs 
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in the same workspace and limb segments: subjects became better able to draw circles (an 

untrained task) by discharge time as they became better on point-to-point movements (the 

trained task).

Our results confirm and extend the results of our previous studies on chronic stroke [53], 

[63]. Dipietro et al. [53] analyzed data from 117 chronic stroke patients and showed that 

subjects trained on point-to-point movements became better able to draw circles although 

they had not been trained on this task, i.e., subjects’ movements showed an increase in the 

axes ratio metric. A subsequent analysis on 47 chronic stroke patients [63] showed that 

circle drawing movements became progressively smoother during recovery although 

subjects had not been trained on circle drawing. The results reported in this study were 

derived from a data set of 158 subjects, which included 42 sub-acute patients. Differing 

from [53], [63], this study reported a detailed kinematic analysis of both trained (point-to-

point) and untrained (circle drawing) movements at a macro-and micro-level of kinematic 

detail, and it analyzed correlation among the kinematic variables extracted from trained and 

untrained data.

C. Quantitative Characterization of Motor Recovery From Stroke

While most descriptions of the process of stroke recovery are highly qualitative, only a few 

studies reported quantitative, sensor-based data on upper extremity motor performance [33], 

[64]–[69] and even fewer contained kinematic-based descriptions [11], [39], [53], [54], [70].

This paper reports a kinematic characterization of the process of motor recovery from stroke 

for 158 subjects at different stages of recovery. A partial analysis of this data set is reported 

in [39], [53], [63], [71]. We characterized changes in subjects’ movement kinematics using 

two types of metrics, i.e., macro-metrics (including smoothness, duration, speed, and axes 

ratio) and micro-metrics (submovement parameters). While the former describe coarse 

features of movement kinematics, the latter allow for a description at a much finer level of 

detail, potentially providing insight into the mechanisms underlying motor recovery. In both 

trained and untrained movements, most metrics displayed similar patterns, with sub-acute 

phase (inpatient) changes greater than chronic-phase (outpatient) changes. For example, the 

number of peaks metric increased in average from −24 to −10.5 in inpatients and from −16.2 

to −9.1 in outpatients. The same patterns were displayed by the FM scale (on average, 

inpatients FM values increased from 10.02 to 22.70 and outpatients FM values from 20.47 to 

24.35), suggesting that the metrics used in this paper could be used as a basis to develop 

sensor-based evaluation scales [11].

Because they are highly repeatable and can be administered automatically, robot-based 

scales can potentially overcome the disadvantages of traditional clinical assessment scales 

which have high inter-rater variability and require time-consuming administration sessions 

[72], [73]. We are currently using robot-based metrics to develop models to predict clinical 

scales and characterize the effect of different robot-mediated therapies. Bosecker et al. [11] 

analyzed data from 111 chronic stroke subjects and found that a linear regression model 

with a set of eight macro-metrics including mean speed, peak speed, speed shape and axes 

ratio could predict the Motor Status Score (R = 0.71 for training and R = 0.72 for validation). 

Krebs et al. [74] showed that chronic stroke subjects who participated in a robot-mediated 
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therapy program for training movement speed became the speediest performers, indicated by 

the largest reduction in movement duration and number of submovements, and subjects who 

were trained on strength improved the most in shoulder strength but the least in shoulder-

elbow coordination, indicated by the smallest increase in the axes ratio. Taken together with 

the results of the Bosecker et al. [11] and Krebs et al. [74] studies, our results suggest that 

our kinematic macro-and micro-metrics can be used to develop motor recovery “calibration 

curves” for quantifying, predicting, and comparing the effect of different types of 

neurorehabilitation therapies.

D. Implications for Neurorehabilitation

Our results have several clinical implications. First, they extend knowledge of the effects of 

robot-mediated therapy. As pointed out by Krakauer [24], two critical questions should 

always be asked when assessing a rehabilitation technique: 1) whether gains persist for a 

significant period after training, and 2) whether gains generalize to untrained tasks. 

Previously we answered the first question and showed that clinical benefits induced by 

robot-mediated therapy are sustained even three years after end of treatment [17], [59], [75]. 

These results were confirmed in the recent Veterans Administration (VA) multicenter, 

randomized, controlled clinical trial reported in the New England Journal of Medicine which 

demonstrated that, on average, stroke patients retained (or further improved) gains six 

months after completion of training [19]. Here we answered the second question and 

demonstrated that the kinematic changes induced by robot-mediated therapy generalize to 

untrained tasks in the same workspace. One must take these results with the appropriate 

caveats: our results are valid for movements involving shoulder and elbow in the horizontal 

plane, and whether they extend beyond that needs to be verified. Our results challenge the 

traditional view held by many neurorehabilitation practitioners, i.e., that motor recovery in 

persons after stroke is always specific to the trained task. In both coarse and fine measures, 

subjects improved at circle drawing although they received no training for it.

Our results complement other results from our previous studies. First, we investigated the 

potential to increase the effectiveness of robot-mediated neurorehabilitation by developing 

new whole-arm, functionally-based robot therapy approaches [76]. Two approaches were 

investigated: 1) to train functional tasks with the robot (“top-down” approach), or 

alternatively 2) to train by aiming at impairment reduction at the capacity level with 

different robotic modules, breaking these functional tasks into subcomponents, and relying 

on the therapist to facilitate the carryover of observed impairment gains from robotic 

training into functional activities (“bottom-up” approach). The former approach was in line 

with current therapy views, while the latter was based on our previous research. Our 

hypothesis was that a robotic treatment protocol, properly targeted to emphasize a sequence 

and timing of sensory and motor stimuli similar to those naturally occurring in daily life 

tasks, could facilitate carryover of the observed gains in functional motor abilities (first 

approach). Our study suggested that at least for severe to moderate stroke patients the 

bottom-up approach is more effective, consistent with the results of others [32]. In fact, 

Pomeroy in the UK has been a proponent that robot-mediated therapy for severe to moderate 

stroke patients should focus on impairment rather than function (personal communication, 

Campus Biomedico, Rome, 2004). She recommends that as patients’ impairments are 
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reduced, therapists would then assist in translating these impairment gains into function for 

this population.

Second, we investigated the potential to increase the effectiveness of robot-mediated 

neurorehabilitation by training spatial movements for severe to moderate stroke patients 

[77]. Two approaches were investigated: 1) to train reaching in a gravity-compensated 

movement and against gravity on distinct days, or alternatively 2) to train both movements 

during the same session (spatial movement). The second approach was in line with current 

therapy views while the first was based on observations that suggest different motor 

controllers for reaching movements in a gravity-compensated environment and against 

gravity [78]. Our data showed that the latter approach was less effective than the former, 

probably due to another motor learning trait, namely “interference.”

Our results are consistent with those of these two studies, which suggest respectively that 

training simpler, nonfunctional movements may be more effective than training more 

complex, functional movements (at least for the very severe to moderate patients enrolled 

into our studies), and that motor recovery from stroke is similar to motor learning. In 

hindsight, one might speculate that if a model of motor learning and not motor adaptation 

characterizes motor recovery, then robot-mediated therapy should aim at training not 

necessarily functional tasks but rather a sequence of multiple, simpler tasks and rely on 

generalization of training within the workspace to further enhance beneficial therapeutic 

effects.
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Fig. 1. 
Mean and standard error of kinematic outcome metrics for trained point-to-point movements 

for initial (init), mid-way or interim (int), and discharge (dc) evaluations. Table shows 

changes from admission to discharge for inpatients and outpatients (second and third 

column) and difference between changes in inpatients and outpatients (fourth column). P-

values are reported in brackets. * indicates significance (p < 0.05).
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Fig. 2. 
Similar to Fig. 1. Results of submovement analysis for trained point-to-point movements.

Dipietro et al. Page 20

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2015 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Representative submovement changes from admission to discharge. Lighter and darker lines 

represent speed profiles and decomposing submovements. Submovement number decreased 

from 11 to 2, duration increased from 0.20 to 0.23 ms, overlap increased from 0.16 to 0.21 s, 

amplitude increased from 0.11 to 0.41 m/s, and interpeak distance decreased from 0.48 to 

0.41 s. Symmetry changed from 0.11 and 2 × 10−4 and kurtosis changed from 0.57 to 0.69.
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Fig. 4. 
Similar to Fig. 1 for untrained circle drawing movements.
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Fig. 5. 
Similar to Fig. 1. Results of submovement analysis for untrained circle drawing movements.
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TABLE I

Summary Demographics of Each Group. Values Represent the Percentage (%) or the Mean (Standard Error)

Characteristic Inpatients
(n=42)

Outpatients
(n=116)

Gender, male 57% 63%

Age (years) 61.3 (1.8) 58.8 (1.2)

Lesion side, right 77% 54.7%

Time since stroke (days) 19.1 (1.2) 1150 (90)

Fugl-Meyer Admission (66) 10.02 (1.14) 20.47 (1.15)

Fugl-Meyer Discharge (66) 22.70 (2.28) 24.35 (1.27)
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TABLE II

Pearson’s Correlation Between Mean Values of the Variables Extracted From Trained Point-to-Point and 

Untrained Circle Drawing Movements. For Each Variable, Mean Values for Admission, Interim and 

Discharge for Trained Point-to-Point Movements for Inpatients and Outpatients Were Arranged in a Vector 

and Correlated With the Corresponding Mean Values for Untrained Circle Movements

Variable Correlation

Mean speed (m/s) 0.90* (0.01)

Peak speed (m/s) 0.83* (0.04)

Duration (s) 0.72 (0.10)

Speed shape 0.93* (0.007)

Number of peaks 0.85* (0.03)

Jerk (1/s2) 0.75 (0.08)

Submovement number 0.93* (0.005)

Submovement peak (m/s) 0.88* (0.02)

Submovement duration (s) 0.85* (0.03)

Submovement overlap (s) 0.83* (0.04)

Submovement interpeak distance (s) 0.56 (0.24)

Submovement Mu (Skewness) −0.22 (0.67)

Submovement Sigma (Kurtosis) 0.92* (0.008)

*
indicates statistically significant correlations. P values are reported in brackets
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