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Abstract

To validate a method for predicting the binding affinities of FabI inhibitors, three implicit solvent 

methods, MM-PBSA, MM-GBSA and QM/MM GBSA were carefully compared using sixteen 

benzimidazole inhibitors in complex with F. tularensis FabI. The data suggests that the prediction 

results are sensitive to radii sets, GB methods, QM Hamiltonians, sampling protocols, and 

simulation length, if only one simulation trajectory is used for each ligand. In this case, QM/MM-

GBSA using 6 ns MD simulation trajectories together with GBneck2, PM3, and the mbondi2 radii 

set, generate the closest agreement with experimental values (r2= 0.88). However, if the three 

implicit solvent methods are averaged from six 1 ns MD simulations for each ligand (called 

“multiple independent sampling”), the prediction results are relatively insensitive to all the tested 

parameters. Moreover, MM/GBSA together with GBHCT and mbondi, using 600 frames extracted 

evenly from six 0.25 ns MD simulations, can also provide accurate prediction to experimental 

values (r2 = 0.84). Therefore, the multiple independent sampling method can be more efficient 

than a single, long simulation method. Since future scaffold expansions may significantly change 

the benzimidazole's physiochemical properties (charges, etc.) and possibly binding modes, which 

may affect the sensitivities of various parameters, the relatively insensitive “multiple independent 

sampling method” may avoid the need of an entirely new validation study. Moreover, due to large 

fluctuating entropy values, (QM/)MM-P(G)BSA were limited to inhibitors’ relative affinity 

prediction, but not the absolute affinity. The developed protocol will support an ongoing 

benzimidazole lead optimization program.
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Introduction

Tularemia, a deadly zoonotic infection caused by the Gram-negative pathogen Francisella 

tularensis, is a viable bioweapon due to its ease of cultivation and aerosolization as well as 

its low infectious dose.1 Although treatments for tularemia are available, including 

aminoglycoside antibiotics, streptomycin, ciprofloxacin and tetracycline, a widespread 

outbreak of this disease may still be unmanageable due to their requirement for intravenous 

use (aminoglycosides, streptomycin) or contraindication for use in pregnant women and 

children (ciprofloxacin, tetracyclines).2 There is, therefore, a strong interest within the 

antibacterial research community in the identification and development of novel agents with 

improved physicochemical properties and activity against F. tularensis.

The bacterial fatty acid synthesis (FAS-II) metabolic pathway, which is responsible for the 

synthesis of fatty acid components of bacterial lipid membranes and energy stores, is an 

attractive antibacterial target. Distinct from its mammalian FAS-I counterpart, which 

consists of a single, large, multifunctional enzyme with low similarity, the bacterial FAS-II 

pathway is composed of separate enzyme steps with low similarity to FAS-I. The 

differences between FAS-I and FAS-II allow for the selective targeting of FAS-II enzymes, 

while minimizing disruption to the mammalian FAS-I pathway, a significant advantage in 

antibacterial drug design. The enoyl-[acyl-carrier-protein] reductase enzyme, FabI, catalyzes 

a key, rate-limiting reduction step in bacterial fatty acid synthesis and is considered to be 

one of the more attractive enzyme targets in the FAS-II pathway.

We have previously reported the identification of a series of benzimidazole compounds with 

FabI inhibitory activity as well as F. tularensis antibacterial activity using a novel shape/

electrostatic virtual screening campaign.3 In addition to activity against F. tularensis, the 

benzimidazoles showed strong antibacterial activity against other Gram-positive and Gram-

negative pathogens. Further, structural studies performed in-house revealed that the 

benzimidazole compounds bound to the FabI active site in a conformation that was unique 

from other known FabI inhibitors, including triclosan, a marketed antiseptic (Figure 1).4-6 

This suggested the possibility that the benzimidazole compounds might have utility against 

F. tularensis strains bearing resistance to other FabI targeting antibacterials, including 

triclosan. Additional metabolic and toxicity studies showed that the benzimidazole scaffold 

possessed moderate metabolic stability and low cell toxicity.7 Taken together, the biological, 

microbiological, and pharmacokinetic data collected to date justify the further biochemical 

optimization of the benzimidazole compounds as a lead series for treatment of F. tularensis 

and possibly other bacterial infection.

The goal of the studies presented here was the development of a computational method that 

could predict the FabI binding affinity of benzimidazole compounds that were being 

proposed for synthesis and testing. The rationale was that a reliable computational affinity 

prediction protocol could allow for a more efficient and rapid lead optimization process by 

identifying compounds, prior to costly synthesis and testing, that were predicted to have 

high binding affinity to the FabI target. In previous work, we extensively studied various 

molecular docking and scoring algorithms for use in predicting relative FabI affinity, 

however these methods generally failed to accurately rank benzimidazole compounds by 
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binding affinity in validation trials.3 This was likely due to insufficient conformational 

sampling of a flexible loop near the substrate/ligand binding site as well as inaccuracies in 

the scoring functions utilized. Herein, we report our studies of more advanced computational 

methods for predicting the binding affinity of the benzimidazole compounds to F. tularensis 

FabI, including MM-PBSA, MM-GBSA, and QM/MM-GBSA. Previous work has shown 

that the MM/P(G)BSA methods can accurately predict relative binding free energies of 

similar compounds using enhanced energy sampling from simulations combined with 

solvation energy estimations using implicit methods.8 We chose to explore these implicit 

solvent methods over more advanced explicit solvent methods, such as free energy 

perturbation and thermodynamic integration, as the higher computational expense of the 

latter methods would adversely impact the throughput of our planned lead optimization 

studies.9

Although MM-P(G)BSA methods have been used successfully in both virtual screening10,11 

and lead optimization programs12-17, it has been shown that the results are sensitive to 

atomic charges, simulation length, entropy calculations, and sampling protocols which can 

lead to dramatic differences in affinity predictions using the same study system.18-21 Studies 

have also suggested that prediction results of MM-GBSA methods might be influenced by 

radii settings.22-29 Additionally, a recent study suggested that multiple independent 

simulations in MM-GBSA offered improved statistically converged results over one long 

MD simulation.30 Thus, it was also of interest to see if multiple independent samplings offer 

a better agreement between experimental and calculated binding free energy than a single, 

long MD simulation for the studied system. Lastly, the recently developed hybrid QM/MM-

GBSA method31-34 has yet to be extensively compared with MM-GBSA methods with 

respect to the factors just mentioned.35

Within this context and our ultimate goal of developing the most suitable method to support 

our lead optimization program, we have performed a series of comparative trials using the F. 

tularensis FabI (FtFabI) structure and sixteen benzimidazole compounds with known 

affinity from experimental studies and several experimentally confirmed binding 

conformations. These studies were specifically designed to answer the following questions: 

(1) What is the best combination of radii settings, QM Hamiltonians, implicit solvent 

methods, and simulation length for the studied system? (2) If entropy calculations are 

included, will they improve the prediction results? (3) Can multiple independent samplings 

improve the prediction of binding free energy over the use of one long simulation for the 

methods studied? And ultimately, (4) Which optimized method offers the best predictive 

power in terms of the absolute and relative binding affinity for our study system?

Methods

Complex Preparation

The binding conformation of FtFabI-benzimidazole complexes were taken from co-crystal 

structures solved in-house (PDB codes: 3UIC, 4J3F, 4J4T).4,6 RESP atomic partial charges 

were assigned to benzimidazole ligands and the cofactor, NADH, with geometry 

optimization and the electrostatic potential calculations performed using HF/6-31G* and 

Gaussian 0936 in the R.E.D. server.37-39 The AMBER FF12SB force field and the general 
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AMBER force field (GAFF)40 parameters were assigned to the protein and the ligand using 

antechamber in AMBER v12.41 A 10Å TIP3P water molecule octahedron box was set to 

solvate the complex system along with Na+ and Cl− counter-ions to neutralize the system.

Experimental Enzymatic Activity

The FabI enzyme reduces butenyl-CoA to butyryl-CoA utilizing the cofactor NADH. 

Enzyme activity was monitored by following the rate of decrease in fluorescence of NADH 

at 450 nm (excitation wavelength 340 nm). Detailed methods for the determination of the 

IC50 and Ki values of the benzimidazole compounds against FtFabI have been previously 

described.3,4,6 The compounds used in this study are shown in Supplementary Table 1, 

along withexperimental inhibition data. The experimental free energies of binding (ΔGbind) 

were calculated from Ki using Equation 1, where R is the ideal gas constant (1.9872×10−3 

kcal K−1 mol−1) and T is the room temperature (300K).

(1)

Molecular Dynamics (MD) Simulations

The systems were first minimized using 5000 steps of steepest descent minimization using 

the Particle Mesh Ewald (PME) potential function. After minimization, the systems were 

heated from 0K to 300K over 50 picoseconds (ps) using the NVT ensemble with a 10 kcal/

mol-Å weak restraint on the enzyme, cofactor and ligands. Following this, the systems were 

equilibrated over 50 ps at constant pressure (1 bar) and temperature (300K) using NPT 

equilibration. Next, a 6 nanosecond (ns) NPT production run was performed at 300 K and 1 

bar. The following settings were activated in all of the equilibration and production run MD 

simulations: Langevin dynamics for temperature scaling, 2 ps as the pressure relaxation 

time, 8 Å electrostatic interactions cut off, the SHAKE bond length constraints of hydrogen 

atoms, and 1 fs time step. In the production runs, the MD simulation trajectories were saved 

every 2.5 ps for subsequent (QM/)MM-P(G)BSA analyses. The pmemd.MPI program in 

AMBER12 was used for all of the above minimizations and simulations.

MM-PBSA

The MM-PBSA calculations were performed using MMPBSA.py in AMBERTools13.42 

When the PARSE, bondi, mbondi, and mbondi2 sets were applied, the MM-PBSA surface 

tension (α) and the non-polar free energy correction term (β) were set to 0.00542 kcal/mol-

Å2 and 0.92, respectively, following the recommendation of the original PARSE radii 

study43 and the AMBER user manuals.41 An exterior dielectric constant of 80 and solute 

dielectric constant of 1 were used. 2,400 snapshots were taken evenly from the MD 

simulations trajectory from 0 to 6 ns in the MM-PBSA calculations.

MM-GBSA and QM/MM-GBSA

The (QM)/MM-GBSA calculations were performed using MMPBSA.py in AMBERTools13. 

We investigated several GB models in this study, including the pairwise model developed 

by Hawkins et al. (GBHCT),23 the model developed by Onufriev et al. (GBOBC),24 the 

optimized version of GBOBC (GBOBC2),25 the model developed by Mogan et al. to solve the 
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so-called “bottle-neck” issue (GBNeck ),26 and the optimized version of GBNeck 

(GBNeck2).27 Additional details are provided in Supplementary Table 2. The bondi, 

mbondi, and mbondi2 radii sets were prepared using the antechamber program in 

AMBER12. In AMBERTools13, the default setting of MM-GBSA surface tension (α = 

0.0072 kcal / mol Å2) and the non-polar free energy correction term (β = 0) were applied. In 

the QM/MM-GBSA, the benzimidazole ligand was treated as the QM region using the AM1, 

PM3 and PM6 semi-empirical Hamiltonian theories. The QM charge of the ligand was set to 

zero because none of the ligands in this study are expected to carry a formal charge at 

physiological pH. The remaining QM/MM-GBSA settings are identical to the above MM-

GBSA section.

Entropy

The entropy calculations were performed using Normal Mode Analysis (NMA) in the 

MMPBSA.py program in AMBERTools13.44 The following were the settings for the entropy 

calculations: The distance-dependent dielectric constant was set to 1.0, and the energy 

gradient of minimization was 0.001 with 10,000 minimization cycles per snapshot. Due to 

limited computational resources, we used only 48 frames, which were evenly extracted from 

0 to 6 ns of the MD trajectories for entropy calculations.

Multiple Independent MD Simulations

The multiple independent MD simulations were prepared using the same settings and 

starting structures described above, with the exception that the random starting velocities 

were applied by turning on the pseudo-random starting velocity generator (the “ig” flag in 

AMBER12). In order to compare the differences between these and single 6 ns MD 

simulations, the MD simulations were separated into six, 1 ns components. For the MM-

PBSA and (QM/)MM-GBSA, 400 snapshots were taken evenly from each of the six, 1-ns 

MD simulation trajectories from 0 to 1 ns. Other settings for the MM-PBSA, MM-GBSA, 

and QM/MM-GBSA calculations for multiple MD simulations were as described above.

Results and Discussion

The Effect of MD Simulation Length on MM-PBSA

The coefficient of determination between experimental and predicted binding free energies 

using different MD trajectory lengths and radii settings in MM-PBSA calculations are 

summarized in Table 1. The MM-PBSA calculations based on the 0.25 to 2.00 ns MD 

trajectories were satisfactory (r2>0.70) in all bondi, mbondi, mbondi2, and PARSE radii 

sets. However, using data from MD trajectories equal to or longer than 2 ns for the MM-

PBSA calculations seemed to lower the accuracy of prediction in all four radii settings. To 

further analyze the nature of the decrease in predictive power with longer MD simulation 

times, we first checked the MM-PBSA energy terms plot of FtFabI- GRL-0056 (Figure 2) 
and the rest of fifteen ligands (Supplementary Figure 1). The yellow line was the 

instantaneous enthalpy of binding (ΔGbind) and it can be readily seen that all the ΔGbind in 

the sixteen ligands using all the radii settings were readily converged. Therefore, it is likely 

that the decrease in predictive power along the MD simulation time frames is due to an 
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amplification of force field errors along the MD simulation time frames, instead of non-

converged energy in the system, as reported in the previous study.21

The Effect of Radii Sets on MM-PBSA

The impact of four different radii sets (bondi, mbondi, mbondi2, and PARSE) are also 

summarized in Table 1. It can be clearly seen that bondi and mbondi2 gave almost identical 

predictive power since bondi and mbondi2 were optimized via similar theoretical frame 

works.27 Interestingly, the difference in predictive power between mbondi versus bondi and 

mbondi2 was also quite small. Considering the potential errors of the experimental binding 

free energy, these differences show little significance. Among the four radii sets, the PARSE 

radii offered the poorest correlation with experimental values using MD trajectories shorter 

than 2 ns (r2= 0.62 - 0.77). A possible explanation is that the GB radii sets (bondi, mbondi, 

and mbondi2) are more extensively parameterized in various atom types for each chemical 

element while the PARSE radii set has only one atom type for each chemical element, as 

discussed in previous studies. 21, 43 Finally, in Supplementary Table 3, one can clearly see 

that the three Born radii sets always generated smaller solvation energy terms (ΔGsolvation) 

and correspondingly more negative binding enthalpy values (ΔHbind) than the PARSE radii 

sets. A similar effect was noted in a previous study.21 A possible reason is that the three 

Born radii sets contain larger radii and larger corresponding dielectric boundaries than the 

PARSE radii set and therefore result in higher solvation energy terms when applying the 

three bondi radii sets. 21,23-26,43,45

The Effect of MD Simulation Length on MM-GBSA

The coefficient of determination of experimental and predicted binding free energies for 

different MD trajectory lengths and radii sets in MM-GBSA calculations are summarized in 

Table 2. The predictive power of the MM-GBSA method with longer simulations decreased 

in a manner similar to the MM-PBSA predictions. For all three radii sets, the MM-GBSA 

predictions based on MD trajectories less than or equal to 1 ns were in the satisfactory range 

(R2 > 0.7), while the predictive power dropped significantly when using MD trajectories 

larger than 1 ns. As above, the decrease in predictive power may be due to the amplification 

of force field errors. 21

Interestingly, although the predictive power of GBNeck2 also decreased with longer MD 

simulations, the extent of the decrease was less than for the other four GB methods (R2 = 0.6 

at 1 ns and R2 = 0.51 at 6 ns). This might suggest that GBNeck2 provided better agreement to 

the experimental values in terms of solvation energy and therefore offset the degree of 

predictive power diminishment. This will be discussed in more detail below in the QM/MM-

GBSA section.

The Effect of Radii Sets on MM-GBSA

It is known that MM-GBSA is more sensitive to various radii sets than MM-PBSA, and 

earlier studies have suggested the optimal radii set (s) for each GB method (summarized in 

Supplementary Table 2).23-26,45 The mbondi radii set was a non-recommended radii 

setting for GBOBC. However, as shown in Table 2, in our studies the three different radii 

sets in GBOBC resulted in only minor differences. Thus, for this system, considering the 
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potential errors in experimental free energy of binding, the differences between the 

predictive powers of the three radii sets for the GBOBC method can be safely ignored. In 

GBOBC, GBOBC2, GBNeck and GBNeck2, it is not surprising that the suggested radii sets, 

bondi and mbondi2, yielded nearly identical prediction results because mbondi2 is a 

modification of and very similar to bondi (Table 2).45 We did not include the mbondi set in 

the GBNeck and GBNeck2 calculations, since earlier studies did not recommend the mbondi 

setting in the GBNeck and GBNeck2 methods, and MMPBSA.py in the AMBERTools13 suite 

did not allow the mbondi radii set in the default GBNeck and GBNeck2 methods. 

Additionally, in GBOBC2, our data in Table 2 did suggest that the predicted binding free 

energy calculated by bondi and mbondi2 radii sets correlated better with the experimental 

binding free energy than the unfavorable mbondi settings.

The three radii sets and their corresponding effects on the solvation energy terms are 

summarized in Supplementary Figure 2 & Supplementary Table 4. When MM-GBSA 

calculations were performed under similar conditions (inhibitor, number of MD frames, GB 

method, and charges) using the different radii sets, the only energy terms showing 

significant changes are the polar energy term (ΔGGB), the total solvation energy term 

(ΔGsolvation), and the total free energy of binding, ΔGbind (the red, blue, yellow lines on top 

of each figure in Supplementary Figure 2 respectively and Equation 2). This is due to the 

fact that radii settings only affect ΔGGB and ΔGsolvation. From the ΔGGB energy curves in 

Supplementary Figure 2, bondi and mbondi2 result in nearly identical solvation energy 

values while mbondi consistently offered more positive ΔGGB values than bondi and 

mbondi2. These clear differences allow us to visualize the reason why bondi and mbondi2 

suggested highly similar prediction results in all five GB methods.

(2)

Comparison of Generalized Born Methods

From Table 2, we can clearly see that GBHCT offered the best agreement with the 

experimental binding free energies (higher coefficient of determination) amongst the five 

GB methods using MD simulation trajectory data from 0.25 ns to 2 ns (R2 = 0.85 ~ 0.65). 

However, if we used data from MD simulation trajectories longer than 2 ns, GBHCT showed 

similar predictive performance compared to GBOBC, GBOBC2, and GBNeck2. Moreover, 

because GBOBC and GBOBC2 have a similar computational foundations, with only subtle 

differences in parameter settings, it is not surprising that GBOBC and GBOBC2 resulted in 

similar predictive power for the FtFabI-benzimidazole system. With respect to the difference 

between GBNeck and GBNeck2, GBNeck2 outperformed GBNeck as would be expected since 

GBNeck2 is an optimized version of GBNeck, and includes a higher number of parameters and 

a broader range of scaling factors.26

On the other hand, GBNeck2 behaved differently compared to all of the other four GB 

methods, as summarized in Figure 3 and Supplementary Figure 2. Even though the ΔGGB 

and ΔGbind terms calculated by GBHCT converged throughout the 6 ns trajectories (2,400 

frames) and GBNeck2 converged after 500 ps (200 frames), the ΔGGB (the red line in Figure 
3a & 3b) and ΔGbind (the yellow line in Figure 3a & 3b) terms in GBNeck2 had consistently 
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greater fluctuation than with GBHCT and the other GB methods (Supplementary Figure 2). 
This was seen with all sixteen benzimidazole ligands (data not shown). Figures 3c and 3d 
show the Q-Q plots for ΔGGB using compound FabI 91, 6,000 ps (2,400 frames) using 

GBHCT and GBneck2 methods, respectively. Compared to the nearly straight line in Figure 
3c (GBHCT ), the two slightly rising tails in Figure 3d (GBNeck2) suggest that the ΔGGB 

population calculated by GBNeck2 may be skewed, which might bias the average ΔGGB in 

GBNeck2. A similar effect can be observed in the Q-Q plot for ΔGbind calculated by GBHCT 

and GBneck2: the straighter line in Figure 3e (GBHCT ) suggests that ΔGbind calculated by 

GBHCT has a more normal distribution than that calculated using GBNeck2 (Figure 3e). 

Again, this may indicate that in calculations using GBNeck2, ΔGGB, ΔGsolvation, and ΔGbind 

might be slightly biased by the extreme values (outliers) and therefore provide less accurate 

prediction than the remaining four GB methods, at least using MD trajectories less than 3 ns.

Additionally, another reason why GBHCT, GBOBC, and GBOBC2 offered better agreement 

with experimental binding free energies than GBNeck1 and GBNeck2, at least for this FtFabI-

benzimidazole system, is that the recently released GBNeck and GBNeck2 methods have thus 

far only been optimized using peptide-protein systems, not protein-small molecule 

systems.27 Future optimization of “neck region correction” GB methods covering non-

peptide/non-protein systems will likely change this situation. As it stands, GBNeck1 and 

GBNeck2 are likely better suited than the GBHCT GBOBC, and GBOBC2 methods in 

predicting protein-protein binding free energies.

The Performance of QM/MM-GBSA

The Effect of Semi-Empirical QM Theory Levels on QM/MM-GBSA—The effects 

of three commonly used semi-empirical QM theory levels, Parameterized Model number 3 

(PM3),46,47 Austin Model 1 (AM1),48 and Parameterized Model number 6 (PM6)49 on 

QM/MM-GBSA are summarized in Tables 3 - 5. The PM3 Hamiltonian and QM-MM/

GBSA together give the best agreement between experimental and predicted binding 

affinities, regardless of radii settings and GB methods (Table 3). The AM1 Hamiltonian and 

QM-MM/GBSA together resulted in a slightly worse accuracy than the PM3 Hamiltonian 

for all conditions (Table 4). Since the PM3 Hamiltonian is known to predict the 

intermolecular hydrogen bonds more accurately than the AM1 Hamiltonian,50 the PM3 

Hamiltonian would be a better choice than the AM1 Hamiltonian for the benzimidazole 

inhibitors, which forms key intermolecular hydrogen bonds with FtFabI Tyr156 and the 

ribose on the nicotinamide ring of the cofactor NADH (Figure 4).4,6

The PM6 Hamiltonian is the recent advanced semi-empirical QM theory and it is believed to 

correct multiple defects in the AM1 and PM3 Hamiltonians.49,51 However, use of the PM6 

Hamiltonian in QM-MM/GBSA resulted in the worst binding affinity prediction of the three 

semi-empirical QM theory levels here (Table 5). The PM6 Hamiltonian in QM-MM/GBSA 

using GBHCT, GBOBC, GBOBC2, and GBNeck radii sets resulted in no observed correlation 

between the predicted and experimental binding affinities (Table 5). The PM6 Hamiltonian 

in QM-MM/GBSA using GBNeck2 was the only case where a moderate accuracy was 

observed. The ΔGbind, ΔGGB, and the QM/MM-GBSA electrostatic term (Self Consistent 

Energy, ΔGscf) using the PM3 Hamiltonian are all converged (Supplementary Figure 3), 
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similar to the AM1 and PM6 Hamiltonians (data not shown). A possible reason that the PM6 

Hamiltonian performed poorly here is because in AMBER, the parameters of the PM6 

Hamiltonian describing electrostatic interactions between QM and MM regions haven't been 

optimized and are borrowed from the PM3 Hamiltonian.41 However, since the PM6 

Hamiltonian is more advanced and covers broader cases than the PM3 Hamiltonian, the 

PM3 parameters might not be exclusive enough for the PM6 Hamiltonian. The missing 

parameters of the PM6 Hamiltonian are estimated, as detailed in the AMBER manual.41 

Therefore, the PM6 Hamiltonian requires more extensive tests, as pointed out in a previous 

study34 and the AMBER user manual.41 The future optimized PM6 parameters for 

electrostatic interactions between QM and MM regions are likely to significantly improve 

the PM6 Hamiltonian accuracy in the QM-MM/GBSA method within AMBER. Thus, since 

the PM3 Hamiltonian outperformed the AM1 and PM6 Hamiltonians in all conditions (MD 

simulation length, radii sets, etc.), only the PM3 Hamiltonian is considered in the following 

sections.

The Effect of MD Simulation Length on QM/MM-GBSA—The coefficient of 

determination between experimental and predicted binding free energies for different 

lengths of MD trajectories, various radii sets and semi-empirical QM methods in QM/MM-

GBSA calculations, are summarized in Tables 3 - 5. It can be clearly seen that QM/MM-

GBSA produced decreasing agreement with experimental binding free energies when longer 

MD trajectories were used with GBHCT, GBOBC1, GBOBC2, and GBNeck1 in all the tested 

semi-empirical methods. However, the extent of decreasing predictive power with 

simulation time was significantly less in QM/MM-GBSA than that observed in MM-GBSA 

when using GBHCT, GBOBC, GBOBC2, and GBNeck with PM3 and AM1 semi-empirical 

methods (Tables 2 - 4). This suggests that the extra QM and QM/MM terms in QM/MM-

GBSA (Equation 3 & 4) may offset the amplification of “force field errors” and improve 

the predictive agreement with experimental binding free energies. With respect to GBNeck2 

in QM/MM-GBSA using all the tested semi-empirical methods, surprisingly, the predictive 

power actually increased as the MD simulation lengths grew. The reason for this reversed 

trend compared to the other four GB methods can be traced back to the GBNeck2 results in 

MM-GBSA (Table 2). Although the predictive power of GBNeck2 was seen to decrease with 

longer MD simulations, the extent of decrease was smaller than the other four GB methods. 

Moreover, the differences in behavior of GBNeck2 between MM-GBSA and QM/MM-GBSA 

can be further visualized in Figures 3 & 5. The Q-Q plot for ΔGGB using GBneck2 suggests 

that ΔGGB in MM-GBSA (Figure 3d) has more outliers than ΔGGB in QM/MM-GBSA 

using the PM3 Hamiltonian (Figure 5d), which may bias the population mean and 

deteriorate the predictive results of the former. Similar results can be observed in the Q-Q 

plots of ΔGbind using GBneck2 (Figure 3f & 5f). It seems that the GBNeck2 and extra QM 

energy terms in QM/MM-GBSA together provide a better description to ΔGGB and ΔGbind 

compared with the MM-GBSA results, and therefore offset the force field errors which 

could diminish the predictive power along the MD trajectory length.

(3)
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(4)

The Effect of Radii Sets on QM/MM-GBSA—It has been previously noted by both 

AMBER and CHARMM developers that optimized radii specifically for QM Hamiltonians 

will advance the predictive power of QM/MM-GBSA methods.35,52 With an understanding 

of their potential limitations, we investigated the optimized MM-GBSA radii sets (bondi, 

mbondi, and mbondi2) with QM/MM-GBSA methods in these studies. Interestingly, all 

three radii sets were able to provide satisfactory agreements with experimental data 

(R2>0.70) using the five GB methods, various MD trajectory lengths, and the PM3 

Hamiltonian, as discussed above and summarized in Table 3. Further, it can be clearly seen 

that the different radii settings yielded very similar results in both MM-GBSA (Table 2) and 

QM/MM-GBSA using the PM3 Hamiltonian (Table 3). The reason behind these similarities 

is that MM-GBSA and QM/MM-GBSA are analogous. Also, even though QM/MM-GBSA 

includes extra QM and QM/MM energy terms, some of these energy terms such as 

ΔGpolar<QM> and ΔGpolar<QM/MM> (Equation 3) require radii sets as part of their ΔGpolar 

mathematical functions. Therefore, QM/MM-GBSA showed a predictive sensitivity similar 

to MM-GBSA in several specific situations. First, the mbondi radii set yielded similar 

coefficient of determination to bondi and mbondi2 when using GBHCT. Second, the 

predictive power of bondi was always similar to mbondi2 in GBOBC, GBOBC2, GBNeck, and 

GB Neck2 since bondi and mbondi2 are alike in nature (discussed above). The only 

difference between MM-GBSA and QM/MM-GBSA in terms of radii sets can be seen in 

Table 3. In both GBOBC1 and GBOBC2 methods, the mbondi radii set showed similar 

predictive power to bondi and mbondi2 radii sets with QM/MM-GBSA, whereas mbondi 

results were always inferior to bondi and mbondi2 with MM-GBSA. The reason for these 

different behaviors of GBOBC and GBOBC2 in MM-GBSA and QM/MM-GBSA can be 

clearly visualized in Supplementary Figure 2 & Supplementary Table 4 (MM-GBSA) 

and Supplementary Figure 3 & Supplementary Table 5 (QM/MM-GBSA). While there is 

only one ΔGpolar term (MM ΔGpolar term) in MM-GBSA, QM/MM-GBSA includes extra 

QM and QM/MM ΔGpolar terms (Equation 3). Therefore, QM and QM/MM ΔGpolar terms 

together seemed to minimize the differences of the ΔGpolar term in the three tested radii sets, 

and the corresponding ΔGsolvation. On the other hand, while the MM-GBSA electrostatic 

term in AMBER is radii independent, the QM/MM-GBSA electrostatic term (Self 

Consistent Energy, ΔGscf in Figure 5a,b) is radii sensitive, as noted by Walker and Case.35 

Therefore, the QM/MM-GBSA electrostatic terms varied slightly among the three tested 

radii sets (Figure 5 & Supplementary Table 5), while the MM-GBSA electrostatic terms 

were identical in the three tested radii sets. This also suggests that if one optimized radii sets 

for QM Hamiltonians, the QM/MM-GBSA should offer better descriptions, not only of 

ΔGsolvation, but also of ΔGelectrostatic.

Comparison of Generalized Born Methods on QM/MM-GBSA—With QM/MM-

GBSA using the PM3 Hamiltonian (Table 3), it can be seen that the GBOBC method offered 

similar predictive power to GBOBC2. This is likely because both GB methods share similar 

underlying principles with respect to their scaling functions to treat the radii sets.24,25 
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Likewise, while GBHCT offered coefficient of determination similar to those of GBOBC and 

GBOBC2 in all the MD simulation time frames, GBHCT behaved differently to GBOBC and 

GBOBC2 in MM-GBSA. This was quite surprising at first glance since the method to treat 

radii sets in GBHCT is different from that of GBOBC and GBOBC2. One possible explanation 

for this behavior is that the extra QM and QM/MM ΔGpolar terms in QM/MM-GBSA are 

able to offset and minimize the differences between GBHCT, GBOBC and GBOBC2 in 

QM/MM-GBSA.35 On the other hand, in QM/MM-GBSA using the PM3 Hamiltonian 

(Table 3), the predictive power differences between the “neck correction” GB methods 

(GBNeck1 and GBNeck2) and “non-neck correction” methods (GBHCT, GBOBC1 and 

GBOBC2) were significant. It is likely that the underlying theories behind the “neck 

correction” GB methods and “non-neck correction” methods are dissimilar to the extent that 

the extra QM and QM/MM ΔGpolar terms in QM/MM-GBSA were unable to offset the 

differences between “neck correction” GB methods and “non-neck correction” methods. 

Finally, in both MM-GBSA and QM/MM-GBSA using the PM3 Hamiltonian, GBNeck2 still 

outperformed GBNeck, as GBNeck2 is the optimized version of the “neck correction” GB 

method.27

The Effect of Conformational Entropy

The effect of conformational entropy (48 frames) on MM-PBSA (2,400 frames) is 

summarized in Table 6 and on MM-GBSA and QM/MM-GBSA (2,400 frames) in Table 7. 

The numerical values for conformational entropy and the corresponding absolute binding 

free energy of MM-PBSA, MM-GBSA and QM/MM-GBSA are summarized in 

Supplementary Table 3, 4, & 5, respectively. It can be seen that after including entropy, 

the predictive power (coefficient of determination) of MM/PBS and MM-GBSA decreased 

significantly, regardless of radii sets or GB methods (Table 6 & 7). Interestingly, while the 

inclusion of entropy considerably reduced the predictive power of QM/MM-GBSA with 

GBNeck and GBNeck2, the negative effect of entropy inclusion on the predictive power of 

QM/MM-GBSA with GBHCT, GBOBC and GBOBC2 was less substantial (Table 7). It 
appears that the conformational entropy compromised the predictive power in the FtFabI-

benzimidazole system due to large fluctuations.

Further analysis of the effect of conformational entropy on absolute binding free energy is 

summarized in Figure 6. Figure 6a shows that, although the cumulative average of 

conformational entropy (upper dashed red line) converged in the 48 frames entropy 

calculation, the instantaneous conformational entropy (upper solid black line) fluctuated 

greatly (± 10 kcal/mol) compared to the cumulative average. Such huge fluctuations suggest 

that a higher number of frames in entropy calculation are needed to improve the quality of 

entropy predictions and therefore yield more accurate absolute binding free energy, as 

suggested in a previous study.21 Unfortunately, the high computational cost of entropy 

calculations prevented our further pursuit. For example, each FtFabI-benzimizadole entropy 

calculation in 48 frames took 120-140 hours on TACC Lonestar's 48 large memory nodes, 

which is equivalent to 23,000-26,000 XSEDE Service Units per FtFabI- benzimizadole set.

Because accurate absolute binding free energy calculations rely on simultaneous error 

cancellation between the entropy and enthalpy terms, enthalpy calculated from 2,400 frames 
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together with entropy calculated from 48 frames may not offer good quality absolute binding 

free energy predictions (Table 6, column 3 & Table 7, column 4 & 10). To investigate this, 

we calculated the absolute binding free energy using 48 frames MM-PBSA and (QM/)MM-

GBSA enthalpy and 48 frames entropy. The corresponding calculated absolute binding free 

energy was then correlated with the experimental binding free energy, as summarized in 

Table 6, column 5 & Table 7, column 6 & 12. The results showed that the enthalpy from 

48 frames (Table 6, column 4 & Table 7, column 5 & 11) did not correlate well with the 

experimental data. This is most likely because the sample size of 48 frames was insufficient. 

The 48-frame enthalpy from MM-GBSA, the bondi radii setting and GBHCT shown in the 

black histogram in Figure 6b, deviates significantly from the normal distribution seen for 

the 2,400-frame enthalpy histogram in Figure 6c. This suggests that the small sample size of 

48 frames might offer a biased population mean. When the 48-frame enthalpy value was 

used with the 48-frame entropy value to calculate absolute binding free energy, the resulting 

value gave even worse agreement with the experimental binding free energy values (Table 
6, column 5 & Table 7, column 6 & 12). This suggests that errors in entropy calculation 

using normal mode analysis here cannot be adequately cancelled using the enthalpy values 

from MM-PBSA and (QM/)MM-GBSA, even using the same MD frame samples for both 

calculations. Again, Figure 6a visualized the scenario here: Even though the instantaneous 

enthalpy from MM-GBSA (lower solid black line) was relatively stable, the “wild” 

instantaneous entropy (upper solid black line) still resulted in largely swinging and biased 

absolute free energy (blue dash line in Figure 6a) The histogram in Figure 6b visualized the 

distribution of 48 frames enthalpy from MM-GBSA (black), 48 frames entropy from normal 

mode analysis (red), and absolute free energy calculated from enthalpy minus entropy 

(blue). One can clearly see that entropy values in 48 frames distributed in a highly skewed 

shape with long double tails, which suggests the existence of extreme values. The extreme 

entropy values in some frames thus resulted in a skewed distribution with long double tails 

in absolute free binding energy (blue in Figure 6b). Thus, we will not include entropy 

calculation in future large scale benzimidazole prediction due to its high computational costs 

and relative inaccuracy.

Single MD Simulation Efficiency and Accuracy

MM-PBSA is about 60 times more computationally expensive (about 1 real world hour per 

100 frames on TACC Lonestar using 48 CPU processors) than MM-GBSA and QM/MM-

GBSA (about 1 real world minute per 100 frames on TACC Lonestar using 48 CPU 

processors). Therefore, MM-PBSA, together with bondi or mbondi2 settings using one 

0.75-1 ns MD simulation trajectory (300-400 frames) can offer satisfactory predictive power 

(R2= 0.82-0.83) with 3-4 hours of computation. Alternatively, MM-GBSA using bondi/

mbondi2 settings with a 0.5-0.75 ns MD simulation trajectory (200-300 frames) is able to 

achieve R2=0.85-0.88 with only 3-4 minutes of computation. Similarly, QM/MM-GBSA 

using GBHCT and bondi/mbondi2 settings with 0.5 ns MD simulation trajectory (200 

frames) can achieve R2=0.81 with only 2 minutes of computation. This suggests that using 

one long MD simulation for large scale FtFabI-benzimidazole predictions, MM-GBSA and 

QM/MM-GBSA will be more economical choices than MM-PBSA.

Su et al. Page 12

J Comput Chem. Author manuscript; available in PMC 2016 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Multiple MD Simulation Efficiency and Accuracy

The MM-PBSA and (QM/)MM-GBSA results based on multiple independent trajectories 

together with various radii settings are summarized in Table 8-10 accordingly. Table 8-10 
show that the differences between the length of MD simulations and different radii settings 

were not significant in all MM-PBSA and (QM/)MM-GBSA runs. Using multiple 

independent samplings, the differences between various GB methods in (QM-)MM-GBSA 

were also trivial. However, compared to one long MD simulation trajectory (Tables 1-5), 
the predictive power using several short MD trajectories didn't decrease as it did when using 

longer MD simulation time frames (Tables 8-10), suggesting that multiple independent 

samplings can offset force field errors.

Unlike using one long MD simulation, the predictive performance from multiple 

independent samplings was insensitive to various radii settings in all MM-PBSA and 

(QM/)MM-GBSA methods (Table 8-10). In MM-PBSA (Table 8), the three Born radii sets 

offered satisfactory predictive power (R2 > 0.7) while the PARSE radii setting was slightly 

worse (R2 in the 0.6 range). Using multiple independent samplings, the differences between 

(QM/)MM-GBSA were minimal. In (QM/)MM-GBSA together with multiple independent 

samplings (Table 9 & 10), the three “non-neck” correction GB methods (GBHCT, GBOBC, 

GBOBC2) behaved similarly but showed slight differences compared to the two neck 

correction GB methods (GBNeck and GBNeck2), which were similar to each other.

In terms of predictive power between the single, long MD simulation (Table 1-5) and 

multiple independent MD simulation (Table 8-10) methods, both provided similar 

predictive power using lower numbers of frames (600 and 1,200 frames). However, when 

larger numbers of frames were used, the predictive power decrease was negligible with the 

multiple independent simulation method but not with the single simulation. Taken together, 

these results suggest that methodology differences and errors may be minimized and 

averaged out using multiple independent samplings. With respect to computational 

efficiency, MM-PBSA is about 60-fold more computationally expensive than (QM/)MM-

GBSA. Therefore, MM-GBSA together with GBHCT using six 0.25 ns multiple independent 

MD simulations (600 frames) can offer very good agreement, r2= 0.84 (Figure 7b), with 

experimental data after just 6 real world minutes of computation. Therefore, MM-GBSA and 

QM/MM-GBSA offer a better balance in terms of predictive power and computational 

efficiency than MM-PBSA with multiple independent samplings.

Conclusions

In this study, we have extensively compared three implicit solvent methods: MM-PBSA, 

MM-GBSA, and QM/MM-GBSA and the effects of radii sets, entropy, GB methods, QM 

Hamiltonians, sampling and simulation lengths using sixteen carefully chosen 

benzimidazole inhibitors of F. tularensis FabI. In the first part of the this study using one 

long MD simulation for each ligand (the traditional method), the various GB methods, QM 

Hamiltonians, and simulation lengths resulted in significantly different predictive power in 

MM-PBSA and (QM/)MM-GBSA results, while the effect of radii sets on prediction power 

is relatively milder. The QM/MM-GBSA method using GBNeck2, mbondi2, and the PM3 

Hamiltonian setting with 2,400 frames extracted evenly from single 6 ns MD simulations 
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offered the best agreement between predicted and experimental binding free energy (R2 = 

0.88, Figure 7a).

The inclusion of conformational entropy compromised the agreement between predicted 

absolute binding free energy and experimental binding free energy due to large fluctuations 

in the calculated entropy values. Theoretically, using a larger number of frames in the 

entropy calculations might increase its accuracy, but the associated high computational costs 

might not be easily affordable. Therefore, the implicit solvent free energy methods in this 

study (MM-PBSA and (QM/)MM-GBSA) were limited to comparing relative binding free 

energies of similar ligands due to the absence of accurate entropies. However, for the 

purposes of developing a rapid tool for energy predictions for a lead optimization program 

focusing on highly similar compounds, conformational entropy may be safely ignored as the 

implicit solvent methods used in this study can still be powerful tools in compound 

prioritization.

In the second part of the study, the prediction is based on the average of six 1 ns MD 

simulations for each FtFabI-benzimidazole system. We called this type of sampling, 

“multiple independent sampling” or “Monte Carlo like MD sampling”. In general, implicit 

solvent methods based on multiple independent samplings are less sensitive on radii sets, 

MD simulation length, and GB methods. This feature might minimize the future need of an 

entirely new validation study, when (1) a new scaffold of the same therapeutic target is 

pursued and (2) the same scaffold with additional moieties, which result in distinct 

physiochemical properties (charges, etc.) and binding modes from the previous validation 

sets, bring in different sensitivities on various parameters.

Because the predictive power of the multiple sampling method showed little decrease with 

MD simulation time, it can offer the same or better predictive power compared with the use 

of a single, long simulation with lower number of MD frames. For example, MM/GBSA 

together with GBHCT and either bondi, mbondi or mbondi2, using 600 frames extracted 

evenly from six 0.25 ns MD simulations, can achieve a comparable agreement between 

predicted and experimental binding free energy (r2 = 0.84, Figure 7b) to QM/MM-GBSA 

using GBNeck2, mbondi2, and the PM3 Hamiltonian setting with 2,400 frames extracted 

evenly from 6 ns MD simulation (r2 = 0.88, Figure 7a). Therefore, the multiple independent 

sampling method can be more computationally efficient than a single, long simulation 

method.

Different implicit solvents methods bring varied accuracy. In this study, MM-GBSA and 

QM/MM-GBSA brings better accuracy and higher efficiency than MM-PBSA, in either the 

multiple independent sampling method, or the tradition single, long simulation method 

(Table 11a).

The effect of GB methods on accuracy (Table 11b) is more evident in the traditional one 

long simulation method. Unlike four other GB methods, GBNeck2 can offer the best accuracy 

in the 6 ns time frame, without a decrease in accuracy along the MD simulation length in 

both MM-GBSA and QM/MM-GBSA. GBHTC could offer slightly better performance than 

GBOBC and GBOBC2. GBOBC and GBOBC2 offer the comparable results, since they share 
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highly similar methodologies. Therefore, if the GB methods are applied on one MD 

trajectory for each ligand, the accuracy is GBNeck2 > GBHTC >= GBOBC = GBOBC2 > 

GBNeck. However, the differences between GB methods are largely minimized in the 

multiple independent sampling.

The effect of radii sets on small molecule binding free energy prediction is relatively mild in 

the traditional long MD method, comparing to other parameters (Table 11c). In MM-PBSA, 

the performance is bondi = mbondi2 ≈ mbondi > PARSE. In MM/GBSA together with 

GBHCT,GBOBC, GBNeck, and GBNeck2, the differences between radii sets are negligible. In 

MM/GBSA and GBOBC2, the non-recommended mbondi setting shows inferior performance 

than recommended bondi and mbondi2 settings. Moreover, the effect of radii sets on 

QM/MM-GBSA is highly similar to MM-GBSA, besides in GBOBC2, mbondi settings 

showed similar predictive power to bondi and mbondi2 with QM/MM-GBSA. On the other 

hand, the differences between radii sets are neutralized in the multiple sampling method.

QM Hamiltonians have a strong impact on QM/MM-GBSA results (Table 11d). In general, 

the performance is PM3 > AM1 > PM6. However, future optimized PM6 parameters may 

enhance the performance of the PM6 Hamiltonian in QM/MM-GBSA in AMBER.

To summarize, it is important, when optimizing computational protocols to predict binding 

free energy, to carefully investigate the optimal radii sets, entropy, sampling methods, GB 

methods, and QM Hamiltonians in (QM/)MM-P(G)BSA. Our results suggest that small 

deviations from optimized settings can have a significant impact on energy prediction 

results, not only for our FtFabI-benzimidazole systems, but potentially other similar systems 

amenable to such lead optimization methods. Lastly, because MM/GBSA together with 

GBHCT, mbondi, and 600 frames extracted evenly from six 0.25 ns MD simulations, 

provided accurate predictions efficiently, with less sensitivity on various parameters, this 

method will be applied to future large-scale lead optimizations of benzimidazole FabI 

inhibitors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AM1 Austin Model 1

MD Molecular Dynamics
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MM-PBSA Molecular Mechanics - Poisson-Boltzmann Surface Area

MM-GBSA Molecular Mechanics - Generalized Born Surface Area

QM/MM-GBSA Quantum Mechanics / Molecular Mechanics - Generalized Born 

Surface Area

FAS Fatty Acid Synthesis

FtFabI Francisella tularensis FabI

GAFF general AMBER force field

PME Particle Mesh Ewald

PM3 Parameterized Model number 3

PM6 Parameterized Model number 6

NMA Normal Mode Analysis

RMSD root-mean-square deviation

ΔGbind binding free energy

ΔHbind binding enthalpy

ΔGsolvation solvation free energy

ΔGGB Generalized Born polar free energy

ΔGPB Poisson-Boltzmann polar free energy
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Figure 1. 
Representative Benzimidazole FabI Inhibitors and Triclosan. 4-6
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Figure 2. 
FtFabI: GRL-0056 energy components using MM-PBSA and the bondi radii setting. Black, 

red, blue, green, cyan and yellow lines indicate the ΔGvdw, ΔGGB, ΔGsolvation, ΔGelectrostatic, 

ΔGnonpolar and ΔGbind terms respectively. The x axis is the frame number. Each frame is 2.5 

ps. The total frame number is 2,400 frames, equal to 6 ns MD simulations.
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Figure 3. 
A. FtFabI: FabI 91 energy components using MM-GBSA, bondi radii and GBHCT. Black, 

red, blue, green, cyan and yellow lines indicate the ΔGvdw, ΔGGB, ΔGsolvation, ΔGelectrostatic, 

ΔGnonpolar and ΔGbind terms respectively. The x axis is the frame number. Each frame is 2.5 

ps. The total frame number is 2,400 frames, equal to 6 ns MD simulations.

B. FtFabI: FabI 91 energy components using MM-GBSA, bondi radii and GBNeck2.

C. The quantile-quantile plot (Q-Q plot) of the ΔGGB term in GBHCT.

D. The Q-Q plot of the ΔGGB term in GBNeck2.

E. The Q-Q plot of the ΔGbind term in GBHCT.

F. The Q-Q plot of the ΔGbind term in GBNeck2.
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Figure 4. 
The FabI 138 inhibitor (pdb code: 3UIC) and other benzimidazole inhibitors (pdb codes: 

4J1N, 4J3F, 4J4T) form key intermolecular hydrogen bonds with the FtFabI Tyr156 and the 

ribose on the nicotinamide ring of the cofactor NADH
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Figure 5. 
A. FtFabI: FabI 91 energy components using QM/MM-GBSA, bondi radii and GBHCT. 

Black, red, blue, green, cyan and yellow lines indicate the ΔGvdw, ΔGGB, ΔGsolvation, ΔGSCF 

(Self Consistent Energy), ΔGnonpolar and ΔGbind terms respectively. The x axis is the frame 
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number. Each frame is 2.5 ps. The total frame number is 2,400 frames, equal to 6 ns MD 

simulations.

B. FtFabI: FabI 91 energy components using QM/MM-GBSA, bondi radii and GBNeck2. 

One can see from the ΔGGB term (the red line) and the ΔGbind term (the yellow line) in 

GBNeck2 fluctuates wilder than the one in GBHCT (Figure 5a).
C. The quantile-quantile plot (Q-Q plot) of the ΔGGB term in GBHCT.

D. The Q-Q plot of the ΔGGB term in GBNeck2.

E. The Q-Q plot of the ΔGbind term in GBHCT.

F. The Q-Q plot of the ΔGbind term in GBNeck2.
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Figure 6. 
A. The enthalpy, entropy and binding free energy components (48 frames) in the 6 ns MD 

simulation of FtFabI: FabI-135 using MM/GBSA, the bondi radii setting and GBHCT. The 

upper solid black and dash red line represents instanenous and cumulative average entropy 

respectively and the lower solid black and dash red line represents instanenous and 

cumulative average enthalpy. The blue line represents binding free energy.

B. The histogram view of the enthalpy, entropy and binding free energy (48 frames) in the 6 

ns MD simulation of FtFabI: FabI-135 using MM/GBSA, the bondi radii setting and 

GBHCT.

C. The histogram view of the enthalpy (2,400 frames) in the 6 ns MD simulation of FtFabI: 

FabI-135 using MM/GBSA, the bondi radii setting and GBHCT.
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Figure 7. 
A. The correlation plot between experimental and predicited binding free energy using QM-

MM/GBSA, GBNeck2, mbondi2 & 2,400 frames evenly extracted from 6 ns long MD 

simulation trajectories (R2 = 0.88).

B. The correlation plot between experimental and predicited binding free energy using MM/

GBSA, GBHCT, mbondi & 600 frames evenly extracted from six 0.25 ns long MD 

simulation trajectories (R2 = 0.84).
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Table 1

The coefficient of determination of Experimental and Predicted Binding Free Energies of Different MD 

Trajectory Lengths and Radii Sets in MM/PBSA Calculations.
a

Radii Sets R2
0.25ns R2

0.5ns R2
0.75ns R2

1ns R2
2ns R2

3ns R2
4ns R2

5ns R2
6ns

bondi 0.78 0.82 0.83 0.82 0.74 0.61 0.49 0.4 0.36

mbondi 0.71 0.75 0.76 0.77 0.72 0.62 0.54 0.48 0.45

mbondi2 0.79 0.82 0.83 0.82 0.74 0.61 0.49 0.43 0.37

PARSE 0.62 0.67 0.72 0.75 0.77 0.68 0.61 0.53 0.48

a
R2n: “R2” stands for coefficient of determination in the MM/PBSA calculation. Here 100, 400, 1200, 2400 MD simulation frames were evenly 

extracted from one 0.25, 1, 3, 6 ns MD simulation trajectories, respectively.
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Table 6

Summary of the Impact of Entropy on Predicted Binding Free Energies of MD Trajectories of Different 

Lengths and Radii Sets in MM/PBSA Calculations.

1 2 3 4 5

Radii Sets R2
6ns

a,b
R2

6ns
c

R2
6ns

d
R2

6ns
e

bondi 0.36 0.06 0.21 0

mbondi 0.45 0.12 0.29 0

mbondi2 0.37 0.06 0.22 0

PARSE 0.48 0.15 0.27 0.01

a
R2n: “R2” stands for coefficient of determination in the MM/PBSA calculation. Here 2,400 MD simulation frames were evenly extracted from 6 

ns MD simulation trajectories.

b
2,400 frames calculated enthalpy & no calculated entropy

c
2,400 frames calculated enthalpy & 48 frames calculated entropy

d
48 frames calculated enthalpy & no calculated entropy

e
48 frames calculated enthalpy & 48 frames calculated entropy
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Table 8

The coefficient of determination of Experimental and Predicted Binding Free Energies of Different Multiple 

MD Trajectory Lengths and Radii Sets in MM/PBSA Calculations.

Radii Sets R2
0.25n R2

0.5ns R2
0.75 R2

1ns

bondi 0.77 0.73 0.73 0.75

mbondi 0.76 0.74 0.74 0.76

mbondi2 0.77 0.73 0.73 0.76

PARSE 0.6 0.59 0.61 0.65

a R2n: “R2” stands for coefficient of determination in the MM/PBSA calculation. Here 600, 1200, 1800, 2400 MD simulation frames were evenly 

extracted from six 0.25, 0.5, 0.75, 1 ns MD simulation trajectories, respectively.
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Table 9

The coefficient of determination of Experimental and Predicted Binding Free Energies of Different Multiple 

MD Trajectory Lengths and Radii Sets in MM/GBSA Calculations.
a

Radii Sets GB R2
0.25ns

a R2
0.5ns R2

0.75ns R2
1ns

bondi GBHCT 0.84 0.83 0.82 0.82

mbondi GBHCT 0.84 0.84 0.83 0.82

mbondi2 GBHCT 0.84 0.83 0.82 0.82

bondi GBOBC 0.81 0.8 0.8 0.8

mbondi GBOBC 0.81 0.8 0.8 0.8

mbondi2 GBOBC 0.81 0.8 0.8 0.8

bondi GBOBC2 0.81 0.79 0.79 0.79

mbondi GBOBC2 0.78 0.77 0.76 0.76

mbondi2 GBOBC2 0.8 0.78 0.79 0.78

bondi GBNeck 0.73 0.7 0.71 0.71

mbondi2 GBNeck 0.72 0.69 0.7 0.7

bondi GBNeck2 0.72 0.68 0.68 0.66

mbondi2 GBNeck2 0.72 0.69 0.68 0.66

a
R2n: “R2” stands for coefficient of determination in the MM/GBSA calculation. Here 600, 1200, 1800, 2400 MD simulation frames were evenly 

extracted from six 0.25, 0.5, 0.75, 1 ns MD simulation trajectories, respectively.
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Table 10

The coefficient of determination of Experimental and Predicted Binding Free Energies of Multiple MD of 

Different Trajectory Lengths and Radii Sets in QM-MM/GBSA Calculations.
a

Radii GB R2
0.25ns

a R2
0.5ns R2

0.75ns R2
1ns

bondi GBHCT 0.76 0.75 0.75 0.75

mbondi GBHCT 0.76 0.75 0.76 0.75

mbondi2 GBHCT 0.76 0.75 0.75 0.75

bondi GBOBC 0.73 0.72 0.72 0.72

mbondi GBOBC 0.73 0.73 0.73 0.72

mbondi2 GBOBC 0.73 0.72 0.72 0.72

bondi GBOBC2 0.73 0.72 0.72 0.72

mbondi GBOBC2 0.73 0.73 0.73 0.72

mbondi2 GBOBC2 0.73 0.72 0.72 0.71

bondi GBNeck 0.68 0.67 0.67 0.67

mbondi2 GBNeck 0.68 0.67 0.67 0.66

bondi GBNeck2 0.71 0.69 0.7 0.69

mbondi2 GBNeck2 0.71 0.7 0.71 0.7

a
R2n: “R2” stands for coefficient of determination in the QM-MM/GBSA calculation. Here 600, 1200, 1800, 2400 MD simulation frames were 

evenly extracted from six 0.25, 0.5, 0.75, 1 ns MD simulation trajectories, respectively.
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Table 11

Summary of the Effect of Parameters on Predictive Power

Traditional method Multiple Independent Sampling

a. Accuracy of Implicit Solvent Methods QM/MM-GBSA > MM-GBSA > MM-PBSA QM/MM-GBSA ≈ MM-GBSA > MM-PBSA

MM-GBSA & QM/MM-GBSA

Traditional method Multiple Independent Sampling

b. Accuracy of GB Methods GBNeck2 > GBHTC >= GBOBC = GBOBC2 > 
GBNeck

Differences are minimized

MM-PBSA

Traditional method Multiple Independent Sampling

c. Accuracy of Radii Settings bondi = mbondi2 ≈ mbondi > PARSE Differences are minimized

MM-GBSA & QM/MM-GBSA

GB Method Names AMBER igb flag Traditional method Multiple Independent Sampling

GBHCT 1 bondi = mbondi2 ≈ mbondia Differences are minimized

GBOBC 2 bondia = mbondi2a ≈ mbondi Differences are minimized

GBOBC2 5
bondia = mbondi2a >≈

b
 mbondi

Differences are minimized

GBNeck 7
mbondi2

a,c
 ≈ bondi

Differences are minimized

GBNeck2 8
mbondi2

a,d
 ≈ bondi

Differences are minimized

QM/MM-GBSA

d. Accuracy of PM Hamiltonians PM3 > AM1 > PM6

a
AMBER user manual recommended radii sets for the GB methods.

b
In MM-GBSA and GBOBC2: bondia = mbondi2a > mbondi. In QM/MM-GBSA and GBOBC2: bondia = mbondi2a ≈ mbondi

c
bondi might also work, but it might cause instability in the native peptide REMD type of simulation.

d
mbondi3 is recommended in the MD/REMD type of simulation.
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