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Abstract

Two-thirds of all bacterial genomes sequenced to-date possess an organelle for locomotion, 

referred to as flagella, periplasmic flagella or type IV pili. These genomes may also contain a 

chemotaxis-signaling system which governs flagellar rotation, thus leading a coordinated function 

for motility. Motility and chemotaxis are often crucial for infection or disease process caused by 

pathogenic bacteria. Although motility-associated genes are well-characterized in some organisms, 

the highly-orchestrated synthesis, regulation, and assembly of periplasmic flagella in spirochetes 

are just being delineated. Recent advances were fostered by development of unique genetic 

manipulations in spirochetes coupled with cutting-edge imaging techniques. These contemporary 

advances in understanding the role of spirochetal motility and chemotaxis in host persistence and 

disease development are highlighted in this review.

Introduction

Spirochetes are a group of bacteria with distinctive morphology and motility [1–4]. Their 

morphology is so unique that, upon discovery, Antoine von Leeuwenhoek diagramed 

spirochetal bacteria as a separate group (Figure 1) [5]. More than 300 years after the 

discovery of those spirochetes from the human mouth, numerous spirochetal organisms have 

been identified, many of which are medically significant. Borrelia burgdorferi sensu lato are 

the causative agents of Lyme disease (i.e. Lyme borreliosis) [6–8], which is the most 

commonly reported vector-borne disease in the United States and Europe [9;10]. Borrelia 

hermsii and Borrelia miyamotoi species cause tick-borne relapsing fever, while B. 

recurrentis causes louse-borne relapsing fever. Many Leptospira species cause leptospirosis, 

which is a serious health concern for >65% of the world population, particularly in China, 
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India and Brazil [11–15]. Treponema pallidum subspecies pallidum causes syphilis, which is 

sexually transmitted and is a major public health problem worldwide [16]. Other closely-

related treponemes cause yaws, bejel, and pinta. Some Treponema spp. are also associated 

with digital dermatitis in cattle. Treponema denticola and other oral treponemes are 

associated with periodontal disease. Brachyspira hyodysenteriae causes swine dysentery, 

and Brachyspira pilosicoli and Brachyspira aalborgi are associated with human intestinal 

infections in developing countries. Together, the spirochetes constitute a major global 

disease burden and there are tremendous interests in identifying better therapeutic targets for 

these unique bacterial pathogens.

Notably, recent global signature-tagged mutagenesis studies, as well as infection studies 

assessing directed mutants, suggested that many genes related to motility and chemotaxis 

functions are crucial for persistent infection by all pathogenic spirochetes tested to-date 

[2;17–22]. While there are several excellent review articles on these topics [2;23–26], the 

focus of this review is to summarize the most recent research findings and describe how they 

contribute to the current paradigms on the role of spirochetal motility (and chemotaxis) 

products in the natural enzootic cycle of these bacteria.

Spirochete morphology and motility

Spirochetes are characterized as motile bacteria with distinctive helical or planar flat-wave 

morphology [2;24;27]. The outer membrane of most spirochetes is a lipid bilayer that lacks 

the lipopolysaccharide molecules present in most gram-negative bacteria; the Leptospira 

spp. are the only known exceptions [28]. The inner membrane is typical for prokaryotic cells 

and is surrounded by a thin peptidoglycan layer that provides strength while being 

sufficiently flexible for spirochetal motility. Spirochetes flagella are attached at both ends of 

the cells, but are not located externally as in most gram-negative bacteria, but rather reside 

in the periplasmic space i.e., between the peptidoglycan layer and outer membrane (Figures 

2 and 3) [2]. Each periplasmic flagellum is attached at one pole of the cell, then extends 

toward the opposite pole of the cell. The flagella from both poles may overlap in the middle 

of the cell. Spirochete species vary with respect to the size and number of periplasmic 

flagella they possess. For example, Cristispira spp. are 0.5–3 μm wide, 30–180 μm long, and 

have over 100 periplasmic flagella attached at each pole. In contrast, the Leptospiraceae 

(which include Leptospira and Leptonema spp.) are approximately 0.1 μm in diameter, 10–

20 μm long, and have only one periplasmic flagellum at each end (total of 2 flagella per cell) 

[2;24;27;29;30].

B. burgdorferi is the best-studied organism among the spirochetes, and will constitute the 

major focus of this review. B. burgdorferi cells are 5–20 μm long, ~0.3 μm in diameter, and 

possess 7–11 periplasmic flagella (endoflagella) attached to each pole [3;31–33]. During 

swimming, these flagella located at the poles of the cell must coordinate in order to run, 

reverse, or flex/tumble. B. burgdorferi asymmetrically rotate their flagella during these 

swimming patterns [24;34]. Prototypical gram-negative bacterial flagella and periplasmic 

flagella share substantial amino acid sequence and functional homology, but do possess 

some unique characteristics. For example, periplasmic flagella bear collar proteins that are 

unique to the spirochetes (Figure 2) [35;36]. Another unique aspect is that, while external 
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flagella only provide motility for most bacteria, endoflagellar activity (i.e. motor rotation) 

also produces the spirochetal morphology that is characteristic for these bacteria [30;37;38].

The periplasmic flagellum can be subdivided into three main portions: basal body, hook, and 

filament (Figure 2) [2;32;39–41]. The basal body is comprised primarily of the export 

apparatus (EXP), MS ring, C-ring switch complex, collar structure, FliL, and stator (MotA, 

MotB) (Figure 2) [36;41;42]. The hook, which assembles on rod proteins, is primarily 

comprised of FlgE. The filament is composed of the minor protein FlaA and major protein 

FlaB (Figure 2) [43–45]. B. burgdorferi genome sequence analysis suggests that there are 

more than 50 genes annotated as motility- and chemotaxis-related [2;40]. Recently, four 

additional genes encoding cyclic-di-GMP metabolizing proteins have also been discovered 

to be involved in modulating motility/chemotaxis in B. burgdorferi [2;46–49]. Interestingly, 

the motility and chemotaxis genes are largely controlled by the σ70 subunit of RNA 

polymerase in B. burgdorferi, whereas those genes in most gram-negative bacteria are 

regulated in a hierarchical manner [2;50;51].

B. burgdorferi is a parasite that primarily resides in tick and mammalian hosts. Thus, any 

regulation of motility and chemotaxis should become apparent within those host 

environments at a particular stage of the bacterial life cycle. Moreover, some flagellar genes 

(e.g. FlaB) are regulated by the carbon storage regulator CsrA at the post-transcriptional 

level in B. burgdorferi [52–54]. We will discuss the spatiotemporal regulation of motility 

during the enzootic life cycle of B. burgdorferi in the following sections.

Motor rotation is essential for the characteristic spirochetal wave-like 

morphology

For B. burgdorferi strains, 7–11 flagellar motors are inserted in an ordered fashion at each 

cell pole (Figure 3) [2;32;33;39;41;52;55]. As the flagella wrap around the protoplasmic cell 

cylinder, they form an ordered ribbon-like structure which is believed to be important for 

maintaining the characteristic flat-wave morphology of the spirochetes (Figure 3) [27;55]. 

To support this, mutant cells that only lack the FlaB filaments display a rod-shaped 

morphology in vitro and are non-motile [30;37]. To address whether possession of 

endoflagella alone is sufficient for the flat-wave morphology, Sultan et al assessed a motB-

deficient (ΔmotB) mutant that possess periplasmic flagella, but lacked the stator protein that 

is responsible for producing the torque needed to drive flagellar rotation, i.e. should be 

paralyzed. When assessed in vitro, these cells displayed a normal flat-wave morphology at 

their poles, but appeared to be more rod-like in the center [38]. When directly visualized in 

the intact skin of infected mice, the ΔmotB cells displayed no characteristic spirochetal 

morphology and were non-motile [38]. Cryo-electron tomography analyses of these mutants 

showed that the endoflagella displayed an ordered flat-ribbon conformation at the poles 

demonstrating the characteristic spirochetal morphology, but possessed a disordered 

flagellar ribbon conformation in the center region that lacked the flat-wave morphology 

[38]. Thus, possession of both endoflagella and flagellar rotation are required together with 

the activities of the cell cylinder to produce spirochetal morphology, regardless if they are 

actively motile or stationary [27;37;38;55]. It is important to note that the cell cylinders and 

flagella are proposed to be elastic materials [27;55]. Thus, applied forces cause these 
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structures to deform and subsequently revert back to their original shape when the force is 

removed. Several studies have demonstrated that the B. burgdorferi cell cylinder is rod-

shaped in the absence of periplasmic flagella, whereas purified periplasmic flagella are 

shown to be helical [2;25;27]. Thus, the interaction between the cell cylinder and flagella 

produces the distinct spirochetal flat-wave morphology, which has previously been 

mathematically modeled [27]. Based on these findings, we predict that the flagellar ribbon 

interacts with the cell cylinder, and this physical interaction is enhanced by forces provided 

by flagellar rotation to produce the ordered ribbon structure, which in turn produce the flat-

wave morphology [38]. Conversely, spirochete cells that are deficient in any chemotaxis-

related genes should also display flat-wave morphology (e.g., ΔcheA2, ΔcheY3, ΔfliG1, 

ΔcheX mutant cells) [34;56–58].

Regulation of motility/chemotaxis genes and their in vivo activities

B. burgdorferi are highly mobile and invasive organisms that disseminate widely throughout 

their arthropod and vertebrate hosts [59–61]. When an infected tick begins feeding on a host, 

the spirochetes in the tick midgut actively traverse the hemocoel into the salivary glands and 

are subsequently deposited in the skin, where they proliferate and can persist within the 

dermal tissues for years. Shortly after deposition into the skin, some of the spirochetes 

disseminate through the extracellular matrices and/or via the bloodstream, can cross the 

vasculature, and ultimately colonize many distant mammalian tissues (e.g. tibiotarsal joints, 

heart, and the brain), which can elicit various acute and chronic clinical manifestations 

[60;62–65]. Because of the integral nature of these transmigrations to the natural enzootic 

cycle, it would appear that motility and chemotaxis are critical for multiple stages of 

infection, though little is known regarding the particular motility characteristics that are 

important for these different migratory stages. Sze et al have demonstrated that chemotaxis 

mediated by a histidine kinase CheA2 is important for transmission of spirochetes, as well as 

persistence in mice [66]. In studies using intravital microscopy, Chaconas and colleagues 

observed that B. burgdorferi within the bloodstream can attach to the vascular endothelium 

and actively migrate between these cells to disseminate into other tissues. Their studies 

using different adhesin mutants indicate that wild-type B. burgdorferi cells likely use back-

and-forth motility patterns together with binding certain host tissues to allow this endothelial 

transmigration. Notably, adhesins involved in tethering, dragging and stationary events were 

observed in greatly reduced numbers in an avirulent B. burgdorferi strain, suggesting that 

motility alone is insufficient for these activities [64;67–69]. At this time, no non-motile B. 

burgdorferi clone (e.g. ΔflaB or ΔmotB mutants) has ever been investigated in these assays, 

but it is highly unlikely such cells could escape from the vasculature since all non-motile 

strains tested so far are cleared from the murine host within 24–48 hours of intradermal 

inoculation. This is also supported by the recent observation that paralyzed ΔmotB cells 

were unable to migrate from their injection site within mouse ear skin [37;38]. Interestingly, 

long-term intravital microscopy studies assessing B. burgdorferi numbers and motility 

within skin demonstrate that all persisting wild-type bacteria continuously exhibit back-and-

forth motility patterns for ≥720 days post-infection in immunocompetent mice (R. Mark 

Wooten and M. Motaleb, unpublished data) [70]. This constant motility is in agreement with 

the findings that flagellar genes are transcribed by constitutive σ70 promoters in B. 
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burgdorferi. These motility characteristics suggest that nutrition is sufficient within a 

competent vertebrate host to allow B. burgdorferi to constitutively synthesize, as well as 

rotate the macromolecular flagellar motor structures without regulation, and that constant 

motility is important for immune evasion. However, the scenario in the tick vector is 

different (see below).

Motility in the tick vector and transmission between the arthropod and 

vertebrate host

Unlike in the vertebrate host, constant motility is not observed for spirochetes persisting 

within the invertebrate tick vector. During tick-feeding, B. burgdorferi are acquired from the 

vertebrate host, replicate exponentially, and colonize the tick midgut epithelium, where they 

remain throughout the molt [60;62]. During the subsequent tick blood-meal, replicating 

spirochetes traverse the midgut, penetrate the salivary glands and are conveyed via the saliva 

into the dermis of the mammalian host. Dunham et al observed that dissemination of wild-

type spirochetes within feeding ticks proceeds in two distinct phases. Initially, non-motile 

replicating spirochetes appear to be passively transported from the midgut towards the 

basement membrane by forming confluent networks that surround and/or attach to the 

differentiating epithelial cells, a process designated as ‘adherence-mediated migration.’ In 

the second phase, the non-motile B. burgdorferi positioned at or near the basolateral poles of 

epithelial cells convert into motile organisms that actively traverse the midgut, invade the 

salivary glands, and subsequently transit into a new vertebrate host [62]. These findings 

indicate that motility is highly-regulated within the tick host, is likely regulated by factors 

released from host tissues, and that motility is necessary for efficient transmission to a 

vertebrate host [71]. It will be interesting to directly test this in the future using B. 

burgdorferi motility mutants (e.g. ΔflaB or ΔmotB).

Until recently, there was no consensus on whether feeding ticks acquire B. burgdorferi 

passively from adjacent vascular or other tissues of an infected host, or whether the bacteria 

sense the feeding tick and actively migrate towards the blood-pit. Bockenstedt et al recently 

performed studies using two-photon intravital microscopy to actively track GFP-expressing 

B. burgdorferi migration from an infected mouse to the feeding ticks [65]. These mice had 

been injected two weeks previously and a persistent disseminated infection had developed 

within the skin tissues. When naïve ticks were allowed to feed on these mice, a subset of the 

skin-resident spirochetes demonstrated a directed migration towards the feeding tick within 

6 hour of attachment. Since these migrating bacteria were not initially within the vasculature 

or the subsequently developing feeding pit, the transmission event does not appear to be a 

passive diffusion event, but rather an active event where the spirochetes migrate through the 

skin to the bite site. Although the signals perceived by the skin-resident bacteria that elicit 

this directed migration are currently unknown, it is plausible that components of tick saliva 

may be foremost in governing such movement, and that the B. burgdorferi chemotactic 

machinery would be essential for this directed migration. This is supported by in vitro 

analyses demonstrating that tick saliva, as well as other components that may be associated 

with tick biology, can elicit directed motility using capillary assays [72;73]. The 

advancement of intravital microscopy techniques to assess spirochetal motility activities 
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within intact mouse tissues may allow visual studies to directly identify the 

chemoattractant(s) and the chemotactic pathways that elicit such directed motility by skin-

resident B. burgdorferi.

Events that are important for the spatiotemporal regulation of motility (or chemotaxis) 

during the life cycle of B. burgdorferi is currently not well-understood. The contributions of 

the two two-component systems, Hk1-Rrp1 and Hk2-Rrp2, during the mammalian- and tick-

phase of the spirochetes life cycle is well-documented [60;61;74;75]. One could speculate 

that motility and the requirement for motor rotation may not be vital for B. burgdorferi 

survival within the unfed tick, where nutrients are depleted and B. burgdorferi could only 

acquire the energy for diminished motility [37;38]. Although not studied, some known (e.g. 

CsrA) or unknown negative regulator(s) may inhibit flagellin (FlaB) synthesis or 

periplasmic flagellar motor rotation at this stage in order to inhibit motility [52–54]. 

However, studies do suggest that diffusible components are released from the midgut of 

feeding ticks that promote the non-motile state demonstrated by B. burgdorferi during the 

early stages of transmission from the tick to the new vertebrate host [60;62;71]. Regardless, 

the current literature indicates that B. burgdorferi must migrate from the tick midgut in a 

directed fashion into a new vertebrate host, and subsequently disseminate from the site of a 

tick-bite to the distant colonization sites (e.g. heart, joint, brain), causing disease. 

Furthermore, during a tick blood-meal or within the mammalian dermis after the tick-bite, 

motility must be activated (by releasing the inhibitory effect of CsrA or by unknown 

regulators), enabling B. burgdorferi to transmit from the tick to the mammalian host and 

establish infection [37;38;65].

Spirochetal motility does appear to be critical for the long-term survival of B. burgdorferi in 

the tick. Sultan et al reported that flagellated but paralyzed ΔmotB cells failed to effectively 

survive in ticks for ≥7 days after the blood meal; the mutant cells were significantly less 

viable in ticks. This defect could be related to the in vivo growth defect demonstrated by the 

non-motile B. burgdorferi mutants. However, even if the ΔmotB burden per tick was 

significantly lower due to an in vivo growth defect, the rate/percentage of the spirochete-

positive ticks would be expected to remain unchanged after the blood meal; that did not 

occur. Instead, the percentage of ΔmotB-infected ticks dropped sharply from 100% to 9% 

after feeding, while the rate remained unchanged in nymphs colonized with wild-type 

spirochetes [38]. This clearance of non-motile ΔmotB mutants suggest that spirochetal 

motility promotes an intimate bacterial interaction in the tick midgut (e.g. B. burgdorferi 

outer surface protein OspA with tick midgut protein TROSPA) [76], and this interaction 

protects the organism from potential harm from the blood-induced factors or tick immune 

responses [63;77] (Figure 4). These conclusions are supported by studies where spirochetes 

that exhibit even limited modes of motility, including running in one direction (ΔcheA2) or 

only flex-type of motility (ΔcheX), are able to survive normally in fed ticks [66]; our 

unpublished results). Thus, the most likely explanation for the reduced persistence in ticks is 

ΔmotB cells being unable to replicate at the same rate as the motile strains, and/or the non-

motile organisms were subsequently cleared more efficiently from the fed-tick midgut by 

some combination of host blood-components, blood-induced tick factors present in the 

midgut, or the tick immune system [77–79]. Future studies using directed mutants for 
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different chemotaxis-related genes may help delineate the specific interactions that promote 

B. burgdorferi persistence within tick hosts.

Concluding remarks

Spirochetes are unique in many aspects, including how the cell shape is determined, how the 

periplasmic flagellum is assembled, how the periplasmic flagella at two poles of the bacteria 

coordinate during swimming, possession of unique flagellar components in the motor, and 

the absolute requirement of motility and chemotaxis during the enzootic life cycle of B. 

burgdorferi. Since the development of genetic manipulation tools within the last 15 years, 

the roles of several B. burgdorferi motility and chemotaxis genes have been reported, 

allowing certain trends in spirochete pathogenesis to begin coming into focus. However, 

many important questions remain to be investigated regarding periplasmic flagellar 

assembly, regulation, motility behavior, and spatial regulation of motility and chemotaxis 

during the colonization of different hosts.
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Highlights

1. . While B. burgdorferi organisms were found to be constantly moving within 

mouse skin tissues, this does not likely occur in the tick vector, especially in the 

nutritionally-depleted midgut (i.e. during unfed/molting condition). How and 

when is motility activated?

2. . Non-motile spirochete mutants demonstrated a decreased ability to survive in 

the fed-ticks. What is the factor(s) responsible for the diminished viability in the 

midgut?

3. . Sultan et al proposed that wild-type motility enables the spirochete to 

intimately interact with the midgut whereas non-motile mutants are unable due 

to their lack of motility. What are these interactions that occur in the tick 

midgut?

4. . While the shape of most bacterial cells are determined by their peptidoglycan 

layer, periplasmic flagella and subsequent motor rotation generates the 

characteristic flat-wave morphology in B. burgdorferi. Does motor rotation 

guide periplasmic flagella to interact with the cell cylinder to produce the 

characteristic wave-like morphology?

5. . In most other motile bacteria, flagellar/chemotaxis genes are regulated in a 

hierarchical manner. However, this does not appear to occur in B. burgdorferi, 

where almost all flagellar/chemotaxis-related genes are regulated by σ70. If so, 

how does the organism sequentially assemble their periplasmic flagella?
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Figure 1. 
Antonie Van Leeuwenhoek’s illustrations of various bacteria isolated from a human mouth 

that was published in September 1683, which he referred to as “animalcules.” Bacteria 

shown are (A) a rod-shaped bacterium, (B) a motile bacterium moving from points (C) to 

(D), (E) micrococci, (F) fusiform bacteria and (G) a spirochete illustrating characteristic 

wave-like shape. Adapted from [5].
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Figure 2. 
General morphology and periplasmic flagellar structures in spirochetes. (A) Schematic 

model of a spirochete cell showing the periplasmic flagellar filaments located between the 

outer membrane (OM) and the inner membrane (IM), causing the characteristic flat-wave 

morphology. (B) Schematic model of the periplasmic flagellar motor illustrating various 

flagellar motor components. PG, peptidoglycan layer; EXP, export apparatus.
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Figure 3. 
Cellular structures of B. burgdorferi. A B. burgdorferi cell (A) was imaged by cryo-electron 

tomography microscopy near a cell tip/pole (B) and the middle of the cell body (C). 

Periplasmic flagellar motors are observed to be attached in an ordered fashion at each 

cellular pole (B), and regions exhibiting characteristic spirochetal morphology present 

endoflagella in an ordered flagellar ribbon-like structure. Motor structures are outlined with 

yellow broken lines. Adapted from [38].
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Figure 4. 
Model for the roles of B. burgdorferi motility in bacterial persistence and dissemination 

within and between hosts. During tick feeding, wild-type (WT) bacteria replicate and use 

spirochetal back-and-forth motility to cross the tight junction of the midgut basement 

membrane, and subsequently traverse through the salivary glands into the skin of the 

mammalian host (left diagram). Dissemination from the host skin tissues to the distant 

colonization sites also requires bacterial motility. During tick feeding, WT motility likely 

enables the bacteria to intimately bind to the midgut (e.g. OspA-TROSPA), which is 

believed to be important for bacterial viability in the tick. WT B. burgdorferi then undergoes 

a “biphasic mode of dissemination” during tick feeding [62], which we intentionally omitted 

in this model as we are comparing WT with our genetically modified non-motile mutants, 

and it has not been investigated if the paralyzed cells also undergo a similar biphasic mode. 

Red curves and rod-shapes represent WT and non-motile B. burgdorferi, respectively. Half-

moon yellow shapes ( ) represent tick or host blood-borne noxious factors that clear non-

motile spirochetes from the tick midgut. BM, basement membrane.
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