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CancerNet: a database for decoding multilevel molecular
interactions across diverse cancer types
X Meng1, J Wang1,2, C Yuan1, X Li1,2, Y Zhou1, R Hofestädt3 and M Chen1,2

Protein–protein interactions (PPIs) and microRNA (miRNA)–target interactions are important for deciphering the mechanisms of
tumorigenesis. However, current PPI databases do not support cancer-specific analysis. Also, no available databases can be used to
retrieve cancer-associated miRNA–target interactions. As the pathogenesis of human cancers is affected by several miRNAs rather
than a single miRNA, it is needed to uncover miRNA synergism in a systems level. Here for each cancer type, we constructed a
miRNA–miRNA functionally synergistic network based on the functions of miRNA targets and their topological features in that
cancer PPI network. And for the first time, we report the cancer-specific database CancerNet (http://bis.zju.edu.cn/CancerNet),
which contains information about PPIs, miRNA–target interactions and functionally synergistic miRNA–miRNA pairs across
33 human cancer types. In addition, PPI information across 33 main normal tissues and cell types are included. Flexible query
methods are allowed to retrieve cancer molecular interactions. Network viewer can be used to visualize interactions that users are
interested in. Enrichment analysis tool was designed to detect significantly overrepresented Gene Ontology categories of miRNA
targets. Thus, CancerNet serves as a comprehensive platform for assessing the roles of proteins and miRNAs, as well as their
interactions across human cancers.
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INTRODUCTION
Cancer is a complex disease characterized by a large number of
molecular interaction alterations.1 Distinguishing the bona fide
drivers of cancer phenotypes has proven to be a daunting task,
which is further exacerbated by the complexity of elucidating how
such drivers interact synergistically to elicit cancer phenotypes.
Thus, a systems biology approach, the analysis of multilevel
molecular interactions, is required to understand the pathogenesis
of human cancers.2,3

Protein–protein interaction (PPI) networks provide a global
picture of cellular functions and biological processes,4 the
dysfunction of some interactions causes many diseases, including
cancer. Therefore, the use of PPI networks has become one of the
major and powerful approaches to elucidate the molecular
mechanisms underlying the complex diseases on the system
level.5,6 Recently, Barshir et al.7 developed the TissueNet including
tissue-specific and tissue-wide PPIs across 16 human normal
tissues. Veres et al.8 constructed a cellular compartment-specific
database for PPI network analysis. However, these databases do
not provide cancer-related PPIs. Thus, a disease analysis is not
allowed. However, it is valuable to construct a more comprehen-
sive database to store context-specific PPIs across varieties of
cancer and normal tissues. This is especially the case because of
the tremendous increase in human protein interaction data, as
well as expression data in both cancer and normal tissues
produced by large-scale projects, such as The Cancer Genome
Atlas9 and NIH Roadmap Epigenomics Mapping Project.10

MicroRNAs (miRNAs), as master gene regulators, have crucial
roles in disease-associated processes.11,12 A single miRNA is
capable of regulating 4200 mRNAs, and a single mRNA may be

regulated by multiple miRNAs,13 but a substantial fraction of these
interactions may depend on the cell type and/or context14 and
function in specific tissues.15 Therefore, identification of context-
dependent miRNA–target interactions is quite important to study
the pathogenesis of complex diseases.16,17 Mammalian miRNAs
can influence gene expression not only by inhibiting protein
translation but also by decreasing target mRNA levels that causing
a negative correlation between the expression levels of miRNAs
and their target mRNAs.18–20 As a result, the inverse expression
relationship between miRNAs and mRNAs are frequently used to
predict miRNA targets.21–23 MiRNA expression broadly contributes
to tissue specificity of mRNA expression in many human tissues.24

Therefore, by integrating gene expression data across a variety of
cancers into the global miRNA–target regulatory network, cancer-
specific and cancer-wide miRNA–target interactions can be
inferred.
Multiple miRNAs can synergistically regulate one or more

pathways by targeting common or functionally similar targets.25 In
addition, the synergism may change in different diseases. There-
fore, detecting the miRNA synergism across diverse cancer types is
essential for uncovering pathogenesis of human cancers in a
global sense. Several methods have been developed to discover
miRNA synergism. Xu et al.25 constructed a miRNA–miRNA
functionally synergistic network via co-regulating functional
modules while Li et al.26 detected synergistic miRNA regulatory
modules by overlapping neighborhood expansion. These studies
have demonstrated the importance of miRNA synergism.
However, the researchers only focused on several cancer types.
Therefore, a pattern analysis across diverse cancer types is
unavailable. Here we present a novel approach to identify miRNA
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synergism across human cancer types. For each cancer, functional
similarity between miRNAs was estimated by measuring the
similarity of their associated target genes, and the proximity of
target genes in the PPI network was further detected. Our
methods considered both the biological functions of miRNA
targets and their topological structure in the PPI network.
A systematic insight into the nature and scale of the potential
synergistic interactions is essential for the study of complex
diseases.
In this study, we developed a new database CancerNet, which is

a cancer-specific database that provides multilevel molecular
interactions across diverse cancer types. Users can retrieve cancer-
wide or cancer-specific PPIs, miRNA–target interactions and
functionally synergistic miRNAs using multiple query methods.
CancerNet also provides enrichment analysis for miRNA targets
and a network visualization tool. Above all, CancerNet serves as an
important data resource that can help researchers to understand
the regulatory mechanisms or interaction patterns between
different molecules across diverse cancer types.

RESULTS
Overview of CancerNet
CancerNet aims to provide cancer-specific molecular interaction
networks across multiple cancer types. Currently, 33 human
cancer types are included. The interactions contain PPIs, miRNA–
target interactions and miRNA–miRNA synergistic interactions.

Experimentally detected PPIs were assembled from five major PPI
databases and miRNA–target interactions were considered as the
combination of the predicted targets from six algorithms and two
experimentally validated data sets, amounting to 185 589 PPIs
and 3 249 385 miRNA–target interactions, respectively. Synergistic
miRNA pairs were predicted according to the functions of target
genes as well as their proximity in the PPI network. By integrating
expression data in different cancer samples and information from
Gene Ontology (GO) annotations, cancer-wide and cancer-specific
molecular interactions were identified. CancerNet offers a unique
platform for assessing the roles of human proteins and miRNAs,
as well as their interactions across human cancers.

Query and result description
Query. A flexible and user-friendly query method is provided by
CancerNet, users can query it using one molecule to retrieve its
interaction partners per cancer, or using a pair of interacting
molecules to retrieve the cancer types that the interaction appears
in. For each molecule, two types of identifier can be used. In case of
a miRNA, the name or accession number in miRBase can be used,
while in case of a gene, the official symbol or Entrez ID can be used.

Result list. CancerNet output data provide lists of interactions
and detail information about the interactions. Expression levels
and functional similarity score are provided for the PPI and
miRNA–miRNA result list, respectively. And for the miRNA–target

Figure 1. Synergism between miR-1 and miR-133a. (a) Screenshots of the search section. The search engine includes three parts: miRNA–
miRNA; PPI; and miRNA–target, allowing users to query functionally synergistic miRNA pairs, PPIs and miRNA–target interactions, respectively,
across diverse cancer types. As an example, the miR-1 and miR-133a were queried. (b) Result list of miR-1 and miR-133a. Synergism between
miR-1 and miR-133a exists in five types of cancers, shown in green box.
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result list, the Pearson correlation coefficient and P-value are
offered. In addition, users can check the cancer specificity of each
interaction from the last column of the result list. Specifically, for
each functionally similar miRNA pair, users can further explore the
enriched GO terms of their targets.

Visualization. One molecule may interact with multiple
molecules in the same context. Therefore, these interactions form
a complex regulatory network. To visualize these networks, a
graphical network viewer based on the Cytoscape Web program27

was developed. Edges (interactions) are colored distinctly
according to their associated cancer types. In addition, users can
use a special toolkit of ‘My PPI/miRNA-Target/miRNA-miRNA
Network’, which contains previously stored interactions of interest.
Consequently, this toolkit supports users in discovering specific

biological network formed by molecular interactions that involved
in regulation of the interrelated processes.

Enrichment analysis. Functional enrichment analysis of miRNA
target genes are widely used to detect the miRNA functions. A ‘GO
Enrichment Analysis’ module has been developed for miRNA–
target list based on GO annotation. The χ2-test and Fisher’s exact
test were used to evaluate the significance of enrichment for GO
terms. This module facilitates users to explore the biological
functions of target gene set that they are interested in.

Biological applications
Multilevel molecular interactions are involved in tumorigenesis.
Therefore, deciphering these interactions is essential for cancer
research. CancerNet enables researchers to comprehensively view

Figure 2. Functionally synergistic miRNA pairs formed by miR-1. (a) Screenshots of the search page. (b) Result list of miR-1. MiR-1 and
miR-133a share the highest functional similarity score, shown in the green box. (c) Functionally synergistic miRNA–miRNA network (top 10 are
displayed). (d) Results of functional enrichment analysis.
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the interactions formed by the molecules of interest across diverse
cancer types. Combination treatment with these interactions has
an important role in cancer research.28 In this section, we will
show how to use CancerNet to find useful information.
MiR-1 and miR-133a have been frequently found to be co-

downregulated in several types of cancer.29–34 Furthermore,
overexpression of both of them inhibited cancer cell proliferation
and induced cancer cell apoptosis.32,35,36 Therefore, there must be
a functional link between miR-1 and miR-133a. Next, this miRNA
pair will be further discussed using our system.
First, we are curious about in which cancer types this miRNA pair

exists, so miR-1 and miR-133a were queried simultaneously in
CancerNet (Figure 1). From the result page, we could find that miR-1
and miR-133a are functionally synergistic in five cancer types:
sarcoma; stomach adenocarcinoma; pheochromocytoma–paragan-
glioma; prostate adenocarcinoma; and uveal melanoma. Among
them, it has been revealed that both miR-1 and miR-133a are related
to sarcoma,30 stomach adenocarcinoma37,38 and prostate
adenocarcinoma.39 MiR-133b, which is from the miR-133 family
(miR-133a and miR-133b), potentially regulates pathways related to

pheochromocytoma–paraganglioma.40 In addition, expression level
of both miR-1 and miR-133a altered in uveal melanoma.41

Accordingly, the synergism between miR-1 and miR-133a revealed
by CancerNet is consistent with previous studies.
Second, we would like to further detect all the miRNAs that are

functionally synergistic with miR-1 or miR-133a in a certain cancer
type such as prostate adenocarcinoma. This can be easily achieved
by our system. Here we only show the results of miR-1 (Figure 2).
Of all the pairs formed by miR-1 in prostate adenocarcinoma,
miR-133a and miR-1 share the highest functional similarity score
that means their functions are closely linked. Besides, their targets
are proximate in the PPI network. Then we want to find out the
pathways that their targets are associated with. To realize this, a
functional enrichment analysis tool has been embedded in the
result page that allows users to discover the significant GO terms
for the targets of each miRNA pair. The targets of miR-1 and
miR-133a are enriched in cancer-related GO biological processes
such as mitotic cell cycle (P= 1.13E-08), cell division (P= 2.54E-08)
and mitotic nuclear division (P= 9.74E-08). Our system also
provides a graphic viewer to visualize interactions that users are

Figure 3. Targets of miR-1 in prostate adenocarcinoma. (a) Screenshots of the search page. (b) Result list of miR-1 targets. Most miRNA–target
interactions (12/16) have been experimentally validated, shown in green box. (c) Results of functional enrichment analysis.
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interest in. In addition, the targets of miR-1 or miR-133a in prostate
adenocarcinoma could be further queried (Figure 3). For miR-1,
most miRNA–target interactions are experimentally validated
(12/16). Similarly, we can select the targets of interest and
perform a functional enrichment analysis.
Finally, CancerNet provides a way to study functionally

synergistic miRNAs on the system level. For example, the common
partners that are synergistic with miR-1 and miR-133a in prostate
adenocarcinoma can be visualized by using ‘My miRNA-miRNA
Network’ module (Figure 4). The six common partners (miR-19b,
miR-30b, miR-30c, miR-96, miR-133b and miR-141) are all related
with prostate cancer. MiR-19b promotes prostate cell proliferation
with regulation of PTEN and its downstream signals.42 Over-
expression of miR-30 in prostate cancer cells suppresses epithelial-
mesenchymal transition (EMT) phenotypes and inhibits cell
migration and invasion.43 Upregulation of miR-96 enhances
cellular proliferation of prostate cancer cells through FOXO1.44

Overexpression of miR-133b in LNCaP cells boosts cell prolifera-
tion and cell cycle progression, but inhibits apoptosis.45 MiR-141
modulates androgen receptor transcriptional activity in human
prostate cancer cells through targeting the small heterodimer
partner protein.46 Together with miR-1 and miR-133a, these
miRNAs form a functionally synergistic clique in prostate cancer
and jointly function in tumorigenesis. Therefore, a combinatorial
study of these synergistic miRNAs is important for understanding
the mechanisms of tumorigenesis and finding bona fide
biomarkers for cancer diagnosis and prognosis.
From our system, we could find out that co-expression of

miR-1 and miR-133a is meaningful. They synergistically regulate

functionally related genes or pathways in several cancer types.
Understanding the synergism between them is quite useful to
elucidate the roles they have in tumorgenesis.

DISCUSSION
Knowledge of molecular interactions is quite useful for discover-
ing the functions of molecules and the processes they are
involved in. However, there is little systematic insight into the
nature and scale of the potential interactions in human cancers.
Although human PPIs are accessible through several public
databases, these databases do not specify the human cancer
types in which these PPIs take place. In addition, there are no
databases can be used to retrieve cancer-specific miRNA–target
interactions as well as functionally synergistic miRNA pairs.
However, by integrating high-throughput sequencing data, we
can discover these interactions across diverse cancer types. To
discover the miRNA synergism, we measured the functional
similarity of targets in the miRNA–target network and the target
proximity in the PPI network in each cancer type. These results
could help researchers to elucidate the roles miRNAs have in
tumorigenesis from a system-level perspective.
In summary, CancerNet provides a unique data resource for the

analysis of PPI networks, miRNA–target regulatory networks and
functionally synergistic miRNA–miRNA networks across diverse
cancer types. Studying these cancer-specific interactions will help
researchers to detect the interaction patterns across human
cancers, discover the true cancer-related regulatory modules
and understand the mechanisms of tumorigenesis. In addition,

a

b

c
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Figure 4. Network visualization of the common partners that are synergistic with miR-1 and miR-133a in prostate adenocarcinoma. (a) Result
list of miR-1 partners. Top 10 items are added to ‘My miRNA-miRNA Network’. (b) Result list of miR-133a partners. Top 10 items are added to
‘My miRNA-miRNA Network’. (c) ‘My miRNA-miRNA Network’.
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it allows researchers to quickly identify poorly annotated miRNAs
or protein-coding genes interacted with molecules, which
have already been well studied. Therefore, our system provides
guidance on studying the functions of these molecules, especially
their roles in human cancers, and has significant implications for
miRNA combination therapy of human cancers.

MATERIALS AND METHODS
Expression data sources and processing
Level 3 miRNA-Seq and RNA-Seq data were obtained from the The Cancer
Genome Atlas data portal (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.
jsp), including 33 cancer types, 8296 tumor samples in all. Reads per million
miRNA mapped values were used to represent miRNA expression levels.
For RNA-Seq data, upper quartile normalized gene counts were calculated
using the RSEM algorithm,47 RSEM’s gene level expression estimates were
multiplied by 1 000 000 to obtain transcript per million (TPM) estimates for
each gene, and TPM estimates were transformed to log-space by taking
log2(TPM+1). Normal tissue and cell line RNA-Seq data were downloaded
from Illumina Body Map 2.048 and NIH Roadmap Epigenomics Mapping
Project.10 Raw reads were mapped to hg19 using TopHat 2.0.1149 and gene
expression levels were quantified by Cufflinks 2.2.0.50

Protein–protein interactions
We compiled experimentally identified PPIs from BioGRID,51 DIP,52 HPRD,53

IntAct54 and MINT.55 Only physical interactions were retained and these data
are amounted to 185 589 PPIs between 16 278 human proteins. For each
cancer type, genes were considered expressed if their transformed
expression level was equal to or above 2 (in log2(TPM+1) scale) in at least
80% samples. Whereas, for each normal tissue or cell type, mean expression
values were calculated and genes with at least two FPKM (fragments per
kilobase of exon per million fragments mapped) were considered expressed.
Then, a PPI was associated with a cancer or normal tissue if the two pair
mates were both found to be expressed in that cancer or normal tissue.

MiRNA–target interactions
MiRNA sequences were extracted from the miRBase database
(release 21).56 MiRNA target genes were acquired from six common
miRNA target-predicting programs, including DIANA-microT,57 miRDB,58

PITA,59 RNAhybrid,60 TargetScan61 and miRanda.62 In order to improve the
reliability of the predicted target genes, only targets predicted by at least
two of these programs were retained and further incorporated with two
experimentally validated data sets from miRecords63 and miRTarBase.64

Next, the miRNA–target interactions existing in a cancer type were
produced according to the inverse expression relationships between
miRNAs and their target mRNAs. Thus, the Pearson correlation coefficients
were calculated for each miRNA–target pair, whose threshold was set to
o − 0.4 and corresponding P-value was set to o0.01.

MiRNA–miRNA synergism
To identify functionally synergistic miRNA pairs in a specific type of cancer,
the functional similarity of targets was first calculated. Then, the proximity
of targets in that cancer PPI network was measured.
The functional similarity scores were calculated for each miRNA pair using

FastSemSim (http://sourceforge.net/p/fastsemsim) based on the GO biolo-
gical process terms,65 and the threshold was set to45. We used information
content to evaluate semantic similarity of GO terms, as defined by Resnik.66

Here for each miRNA in a certain cancer type, only the targets existing in the
miRNA–target interaction network from that cancer were used.
For each pair of miRNAs, if their targets tend to be proximate in the PPI

network, we considered that these two miRNAs share common functions as
closely linked nodes tend to form a function module in the PPI network.67 We
presented a method to measure the proximity of targets in a network, which
considered the proximity between two target sets as well as the local
proximity of all the targets. Therefore, the proximity between one target and
one target set has to be defined. Here we let ‘t’ represents one target and let
‘TS’ represents one target set. Then we define the proximity between t and
TS, p(t,TS), as the sum of shortest path length from t to each member of TS,
for example, TS= {ts1, ts2, …tsk}. It is calculated as follows:

p t; TSð Þ ¼
Xm

i¼1

shortestpathlenðt; tsiÞ ð1Þ

Next, if target set A contains m genes and target set B contains n genes, then
the proximity between A and B is defined as

P A; Bð Þ ¼
Pm

i¼1 p tsAi; TSBð Þ
m ´ n

ð2Þ

And the local proximity formed by A and B is defined as

P ABð Þ ¼
1
2

Pm
i¼1 p tsAi ; TSAð Þ þPm

i¼1 p tsAi ; TSBð Þ þ 1
2

Pn
j¼1 p tsBj; TSB

� �

mþ nð Þ mþ n - 1ð Þ
ð3Þ

which measures the local connectivity among all the genes from A and B.
Then we set the threshold for P(A,B) and P(AB) to o1.5 and o0.7,
respectively, to determine whether two miRNAs have a synergistic
relationship.
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