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Poor sleep quality due to sleep disorders and sleep loss is highly prevalent in the modern

society. Underlying mechanisms show that stress is involved in the relationship between

sleep and metabolism through hypothalamic–pituitary–adrenal (HPA) axis activation. Sleep

deprivation and sleep disorders are associated with maladaptive changes in the HPA axis,

leading to neuroendocrine dysregulation. Excess of glucocorticoids increase glucose and

insulin and decrease adiponectin levels. Thus, this review provides overall view of the

relationship between sleep, stress, and metabolism from basic physiology to pathological

conditions, highlighting effective treatments for metabolic disturbances.

& 2015 Brazilian Association of Sleep. Production and Hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sleep and stress interact in a bidirectional fashion, sharing

multiple pathways that affect the central nervous system

(CNS) and metabolism, and may constitute underlying

mechanisms responsible in part for the increasing prevalence

of metabolic disorders such as obesity and diabetes [1].

Hormones like melatonin and others from the hypothala-

mic–pituitary–adrenal (HPA) axis modulate the sleep–wake

cycle, while its dysfunction can disrupt sleep. In turn, sleep

loss influence the HPA axis, leading to hyperactivation [2]. In

the first part of this paper, we focus on the definitions of sleep

and the HPA axis, and the relationship between sleep and
ep. Production and Hosti
licenses/by-nc-nd/4.0/).
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stress. In the second part, we review the effects of sleep and

stress on the metabolism, addressing mainly sleep depriva-

tion, circadian alterations, and key sleep and stress disorders.

Finally, we connected these topics to provide a better under-

standing of the intrinsic relationship between sleep, stress

and metabolism, and suggest possible targets for future

intervention.
The secretory activity of the HPA axis follows a distinct

24 h pattern. CRH is released in a circadian-dependent and

pulsatile manner from the parvocellular cells of the PVN [3].

In fact, the circadian rhythm of cortisol secretion derives

from the connection between the PVN and the central pace-

maker, the suprachiasmatic nucleus (SCN) [4]. The close
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Fig. 1 – 24-h individual cortisol profile showing the
minimum (nadir), the maximum (acrophase), the onset of
the circadian rise, and the amplitude of the cortisol profile.
After a nadir during the early night, there is an important
rise in ACTH and cortisol in the late night, reaching a peak
near the awakening time, driven by circadian oscillators,
such as sleep.
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proximity of AVP-containing SCN nerve endings near CRH-
containing neurons in the PVN suggests that via this projec-
tion circadian information is imprinted onto the HPA-axis [5].
Typically, the nadir (time point with the lowest concentra-
tion) for cortisol occurs near midnight. Then, cortisol levels
increase 2–3 h after sleep onset, and keep rising into to the
waking hours. The peak happens in the morning at about 9 a.
m. [4]. Along the day, there is a progressive decline that is
potentiated by sleep, until it reaches the nadir and the
quiescent period (Fig. 1). In general, 3 main pathways are
essential for biological clock function: the input (zeitgebers,
retina) - SCN circadian pacemaker (as clock genes, neuro-
transmitters, peptides) - output (pineal melatonin synth-
esis, thermoregulation, hormones). Then, these factors
interact with the sleep–wake cycle to modulate, for example,
sleep propensity and sleep architecture, and influence beha-
vior, performance or hormonal output such as cortisol [4].
2. Disturbed or shifted sleep, sleep loss and
HPA axis

Many stressful situations, such as low socioeconomic status
and chronic work overload, have been associated with a
deficit in sleep duration and several neuroendocrine effects
(for review, see [6]). Indeed, there is long-standing evidence of
reciprocal interactions between the HPA axis and sleep
regulation [7], which will be discussed below.

Circadian misalignment affects sleep architecture and
may also reduce total sleep time. Both advanced and delayed
phases result in disruption of the normal phase relationship
between SWS and REM sleep [8]. During the first day of an 8 h
phase delay, profound disruptions in the 24 h cortisol rhythm
were found, with a higher nadir value mediated by the lack of
the inhibitory effects caused by sleep onset, and lower
acrophase values due to the lack of the stimulatory effects
of awakening, resulting in an overall 40% reduction in the
rhythm [9]. Five days after the shift, the cortisol profile had
adapted to the new schedule [9]. On the other hand, an
advanced phase of 8 h had advanced the timing of the
cortisol nadir by about 3 h and 20 min, with marked reduction
in the quiescent period, and increased the rising phase of
cortisol secretion by 3 h [10]. In this last case, no adaptation of
the timing of the acrophase to the new schedule was
observed. In summary, these studies confirm that the mis-
alignment of the sleep–wake cycle has a negative impact on
the stress system. Although it seems to be a short-term effect
probably due to a biphasic pattern of the cortisol rise after the
shift, it may also contribute to metabolic changes. Alterations
of the HPA axis may play a causative role in sleep disorders
such as insomnia. HPA axis dysfunction may be secondary to
a clinical sleep disorder, such as obstructive sleep apnea
(OSA), leading to other complications.

Insomnia is a sleep disorder characterized by difficulties in
falling or staying asleep or having restorative sleep, asso-
ciated with daytime impairment or distress [11]. Despite the
relationship between sleep and the HPA axis, little is known
about the neurobiological basis of this sleep disorder and its
link with HPA axis activation. One study did not show any
significant differences in urinary cortisol between control and
poor sleepers [12]. However, another study presented a
positive correlation between polysomnographic indices of
sleep disturbance and urinary free cortisol in adults with
insomnia [13]. Patients with insomnia without depression do
present high levels of cortisol, mainly in the evening and at
sleep onset, suggesting that, rather than the primary cause of
insomnia, the increase in cortisol may be a marker of CRH
and norepinephrine activity during the night [14]. Preceding
evening cortisol levels are correlated with the number of the
following night's nocturnal awakenings, independent of
insomnia [15]. However, excessive activation of the HPA axis
induces sleep fragmentation [16], while the sleep fragmenta-
tion increases cortisol levels [15], suggesting that the HPA
axis may contribute to the initiation as well as the perpetua-
tion of chronic insomnia [15]. There is still debate whether
the activation of the HPA axis found in insomnia is secondary
to sleep loss or a marker of CRH activity.

OSA is a common sleep disordered breathing, character-
ized by recurrent apneas (complete breathing cessation) or
hypopneas (shallow breathing), upper airway constriction,
hypoxemia, hypercapnia, autonomic activation, and EEG
arousal and sleep fragmentation, leading to daytime fatigue
and sleepiness [17]. As nocturnal awakening is associated
with pulsatile cortisol release and autonomic activation, we
can expect OSA to lead to HPA axis activation through the
same mechanisms involved in arousal and sleep fragmenta-
tion [4]. However, the studies to date are contradictory. Some
have shown that continuous positive airway pressure (CPAP)
therapy for OSA does not lower cortisol while the acute
withdrawal of CPAP does not change cortisol levels [18]. On
the other hand, other authors have demonstrated that CPAP
does reverse hypercortisolemia [19]. A systematic review
revealed that only 2 studies showed statistically significant
differences in cortisol levels after CPAP treatment [20].

Elevated cortisol levels were reported in patients with OSA
by some studies [21], but not in others [22]. Responsiveness of
ACTH to CRH administration was much higher in obese
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patients with OSA, possibly due to alterations in the central

control of ACTH secretion and impairment in the negative

feedback of glucocorticoids [23]. A recent study showed that

serum basal and peak cortisol levels were lower in OSA

patients when compared to the control group during 1 μg
ACTH and glucagon stimulation tests, showing an association

between OSA and hypocortisolemia in the morning with

reduced responses to ACTH and glucagon stimulation tests

[24]. Many of the discrepancies observed in the literature are

reflective of methodological differences. The majority of

studies are limited by assessment of cortisol at a single time

point. The available studies do not provide clear evidence

regarding whether OSA is associated with alterations in

cortisol levels or that treatment with CPAP changes cortisol

levels. Methodological concerns such as infrequent sampling,

failure to match comparison groups on demographic factors

known to impact cortisol levels (age, body mass index etc.),

and inconsistent control of confounding factors may have

limited the findings. However, there is evidence that exces-

sive HPA axis activation may be a result from sleep loss,

hypoxemia, and autonomic activation, playing an important

role in the metabolic alterations arising from OSA [17].
Many studies have shown increase in cortisol levels

during the nighttime period of total sleep deprivation and

in the prolonged wakefulness of the following day. This is

likely a result of stress due to the effort of maintaining

wakefulness, as high frequency EEG activity is correlated

with indices of arousal and cortisol release [25,26]. However,

some authors also reported no change [27,28] or a decrease in

cortisol levels [29,30] after 1 or more nights of sleep depriva-

tion. These discrepancies seem to be influenced by insuffi-

cient frequency of blood sampling, small sample size, and by

fatigue and sleepiness. In animals, however, the results are

more consistent. Adult rats subject to paradoxical sleep

deprivation during 96 h show increased levels of corticoster-

one, which are normalized after 48 h of sleep rebound [31].

Notwithstanding, it is important to consider that animal

models do not accurately reflect human physiology; and

thus, it is difficult to compare these results.
Studies using chronic protocols of sleep restriction, which

model a widespread condition in modern society, have also

addressed the role of HPA axis. The first study assessed the

effect of 6 consecutive nights of 4 h in bed in young men,

showing increased levels of cortisol in the afternoon and

early evening, and a shorter quiescent period, with onset

delayed by 1.5 h [16]. The rate of decrease of free cortisol in

saliva was nearly 6 times slower in sleep restricted volunteers

compared to fully rested condition. Notably, chronic short

sleepers do present higher levels of cortisol compared to

chronic long sleepers [32].
Sleep deprivation seems to be related to the elevation of

cortisol, reflecting impairment of HPA axis regulation, and

resulting in glucocorticoid overload, which can lead to large

deleterious effects on the body. Moreover, there is an asso-

ciation between short sleep duration and higher risk of

developing obesity and type II diabetes, suggesting the HPA

axis hyperactivation as one of the mechanism involved in the

metabolic consequences of sleep loss [33,34].
3. Effects of glucocorticoids on sleep and
metabolism

Classic studies in rats and humans have demonstrated that

exogenous CRH is able to modulate sleep by increasing EEG

frequency and wakefulness and decreasing SWS [35,36].

However, studies focused on the direct effects of glucocorti-
coids have shown that they increase time spent awake at the

expense of REM sleep [37]. Other studies show that cortisol

decreases SWS when MRs are activated, while dexametha-

sone increases awakening after activation of GRs [38]. The

effects of both exogenous and endogenous glucocorticoids on

sleep EEG depend on the type and location of the receptors
activated (MR vs. GR), the dose of cortisol/corticosterone used,

and the optimal cortisol levels to effect maximal nocturnal

CRH suppression [4,39]. Studies that have demonstrated

decreases in SWS with elevated cortisol levels and total

occupation of GR may be due to excessive GR activation in

the amygdala. The effects are opposite to the known inhibi-
tory action found in PVN and anterior pituitary, leading to

positive feedback [39,40]. However, the effects of glucocorti-

coids as well as CRH on REM are not well understood and

most of them are contradictory [4].
Chronic exposure to excess glucocorticoids, such as occurs

during diseases like Cushing's syndrome, can offer insight

into the role of these hormones in sleep. For example,
consistent alterations in polysomnographic recordings are

reported in Cushing's syndrome, such as reduction of SWS,

increased sleep latency, enhanced wake time, shortened REM

latency, and elevated REM density, among others [17], reflect-

ing the deleterious effects of glucocorticoid excess. Bierwolf

and colleagues [41] have demonstrated that adrenal secretory
activity starts predominantly during periods of NREM in both

Cushing's and healthy patients, showing a link between

pituitary–adrenal activity and the ultradian rhythmicity of

NREM and REM sleep.
Reductions in sleep duration have become common due to

the socioeconomic demands and opportunities in modern

society [42]. In average, self-reported sleep time has
decreased 1.5–2 h in the USA [43]. Quantitative alterations in

sleep duration may impact the metabolic balance of the body,

including control of body mass and food intake, glucose

metabolism, and adipokine levels (for review, see [44]). In

addition to the neurocognitive consequences of sleep loss,

recent studies have been focused on the role of sleep in areas
outside the brain, including other organs and physiological

systems, such as the metabolism [45].
Many studies have shown an association between sleep

duration and obesity both in adults and children, suggesting

that short sleep duration may be a predictor of weight gain

[46–48] and an important risk factor for development of

insulin resistance, diabetes, and cardiovascular disease

[16,49,50]. A meta-analysis revealed that each reduction of
1 h of sleep per day is associated with an increase of 0.35 kg

m�2 in body mass index (BMI) [51]. These observed changes

due to sleep loss indicate a probable imbalance between food

intake and energy expenditure caused by neuroendocrine

alterations.
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Naturally, sleep is a period of fasting. Glucose utilization
by the brain is increased during REM sleep at the end of the
night [52], leading to a negative energy balance in the body.
However, sleep “resets” the metabolism and energy expendi-
ture rates in the brain, giving effective and flexible control of
energy expenditure under changing environmental pressures
[53]. Much like sleep, hypothalamic control of metabolism is
comprised by mutually inhibiting networks. The appetite-
promoting neuropeptide Y (NPY) and agouti-related protein
(AGRP) neurons mutually inhibit the appetite-suppressing
pro-opiomelanocortin (POMC) and amphetamine-related
transcript (CART) neurons. Both sets of neurons work as
sensors of the circulating hormones leptin and ghrelin. Leptin
is produced by adipose tissues and promotes satiety through
inhibition of NPY/AGRP neurons and activation of POMC/
CART neurons, with higher levels during sleep compared to
awake states, independent of food intake [54]. Recent animal
studies have also suggested that leptin participates in sleep
regulation, reducing REM sleep and modulating SWS [55]. In
turn, ghrelin is an appetite-stimulating hormone produced in
the gut, which acts by inhibiting POMC/CART and activating
NPY/AGRP. Like leptin, ghrelin has higher levels during sleep,
which are followed by a decrease in the morning before the
breakfast [56]. Current evidence indicates that ghrelin is also
a sleep-promoting factor, able to induce SWS and stimulates
GH secretion during the night [57,58].

Sleep curtailment is able to change food intake as a result
of decreased secretion of leptin [59–61] and increased secre-
tion of ghrelin [49,59,62], which leads to increased food intake
[49]. Two consecutive nights of sleep restriction (4 h of time in
bed) in young men were associated with a 28% increase in
ghrelin and 18% reduction in leptin during the day, leading to
increased hunger (24%) and appetite (23%), mostly for energy-
rich foods with high carbohydrate content and low nutri-
tional quality, such as sweets, salty snacks and starchy foods
[49]. Six consecutive nights of sleep restriction (4 h of time in
bed) increased sympathetic nervous system activity, evening
cortisol level and growth hormone, in addition to decreasing
glucose effectiveness and the acute insulin response by 30%
each, much like is found in non-insulin-dependent diabetes
[16]. Buxton and colleagues [63] found that sleep restriction
(5 h/night) for 1 week significantly reduced insulin sensitivity,
although no correlation was observed with cortisol levels. In a
protocol of 14 consecutive days of sleep restriction (5.5 h of
time in bed) with ad libitum food intake, caloric consumption
was increased during the night, when the individual would
generally be sleeping, explaining in part the increased vul-
nerability for weight gain induced by sleep loss [64]. On the
other hand, another study did not find differences in hunger
ratings after 1 night of total sleep deprivation compared to
1 night of sleep recovery (8 h time in bed) both in men and
women [65]. However, actual food intake was not measured
in this study, and therefore it is unknown whether partici-
pants would or would not have actually increased their food
intake during the day of total sleep deprivation compared to
the day of sleep rebound [66]. Gonnissen and colleagues [67]
evaluated the effect of sleep fragmentation during 8 h on
subjective feelings of appetite in men. They did not find a
significant reduction in total sleep duration, but rather a
reduction in REM sleep and an increase in N2 sleep stage.
The volunteers reported a greater desire to eat after the night
of sleep fragmentation, suggesting that sleep quality may be
more important than sleep duration for appetite regulation,
although they did not measure food intake in this study [67].

Increasing specific clinical evidence has shown that sleep
quality and metabolic-related systems are connected. For
instance, 50–98% of patients with OSA are morbidly obese
[6]. There is an association between OSA and type 2 diabetes
[68]. Cross-sectional studies indicate that up to 30% of
patients with OSA also present type 2 diabetes, while up to
86% of obese patients with type 2 diabetes have OSA [69,70].
Strong evidence suggests that OSA may increase the risk of
developing insulin resistance, glucose intolerance and dia-
betes [71]. Metabolic disorders and OSA share common
pathogenic pathways, such as alterations in autonomic
nervous system regulation, increased inflammatory activity,
alterations in adipokine levels and endothelial dysfunction,
which may be involved in the interplay between these
conditions [71]. However, it is not well understood whether
these effects are likely due to obesity. In this sense, a
systematic review showed that the current literature does
not support the hypothesis that OSA independently influ-
ences glucose metabolism [72]. The methodological quality
varied a lot within the included studies, pointing to a need for
more powerful, long-term randomized controlled trials defin-
ing changes of insulin resistance as primary endpoint [72].

Obesity is commonly associated with narcolepsy, a sleep
disorder characterized by hypocretin (also called orexin)
deficiency, excessive daytime sleepiness, and frequent sleep
attacks during the day [73]. Narcoleptic patients often present
an excess of fat storage in abdominal depots, metabolic
alterations, and craving for food with a binge eating pattern
[74,75]. The responsiveness of orexin neurons to peripheral
metabolic cues, such as leptin and glucose, and the dopami-
nergic reward system response suggest that both of these
2 neurons are related to the regulation of energy homeostasis
and vigilance states [76]. The studies are limited and it is not
clear if narcolepsy independently affects glucose metabolism.
A recent case-control study showed no clinically relevant
pathologic findings in the glucose metabolism of narcoleptic
patients compared to weight matched controls [77]. On the
other hand, Poli and colleagues showed that narcoleptic
patients have higher BMIs and BMI-independent metabolic
alterations, such as higher waist circumference, high-density
lipoprotein cholesterol, and insulin resistance, compared to
idiopathic hypersomnia patients [78]. Evidence has shown
that continuous disruption of circadian rhythm in human
shift workers is associated with weight gain, metabolic
disturbances, type 2 diabetes, and cardiovascular diseases
due to increases in postprandial glucose, insulin, cortisol, and
mean arterial pressure and decreased 24 h leptin levels
[45,79,80].

Another relevant factor that contributes to the develop-
ment of metabolic disturbances associated with sleep restric-
tion is energy expenditure. Individuals who sleep less are
more likely to experience fatigue and sleepiness during the
day, which may discourage them from daytime physical
activity and promote sedentary behaviors [81,82]. However,
the literature presents varied results, in part due to differ-
ences in sleep protocols, either total sleep deprivation [83,84]
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or partial sleep restriction [85,86], and measurement type
(doubly-labeled water [86,87], indirect calorimetry [84], meta-
bolic chamber [83,88], or actigraphy [85,86]). The majority of
studies have enrolled small samples with only young,
normal-weight men [83,84,88]. Thus, more studies are neces-
sary to determine if sleep duration does affect total energy
expenditure and if there is difference between men and
women, normal weight and overweight/obese, and young
and older individuals. It is possible that improving physical
activity could improve sleep, which in turn would impact
other components of energy balance, since individual varia-
bility in sleep onset latency is reduced by regular physical
activity [89].

Not only can sleep affect metabolism, but metabolic
changes also can affect sleep architecture [73]. There is an
association between late-night-snack intake and sleep pat-
terns [56]. Rodents adjust their sleep onset to match food
availability during their sleep–wake cycle [90]. Inversely, food
restriction can increase sleep onset latency and reduce total
SWS [91]. The common behavior of overeating during a period
of sleep deprivation may be a physiological attempt to restore
sleep, as it is known that higher food intake promotes sleep
[92]. The impact of sleep duration on energy expenditure is
less clear due to the multiple factors involved, such as
sleeping metabolic rate, thermic effect of food, physical
activity, non-exercise activity thermogenesis, etc. [66]. In
summary, current literature shows a pattern of increased
food intake during periods of sleep loss, mostly in lean and
normal sleepers. To date, studies looking for the influence of
sleep duration on energy expenditure have produced dispa-
rate results due to methodological issues. Due to individual
variability, future research assessing whether improving
physical activity would improve sleep is also desired for a
better understanding.
4. Stress and metabolism

Similarly to sleep, stress is also connected to metabolism.
Basal HPA axis activity seems to be dysregulated and over-
active both in humans with diabetes and in animal models of
type 1 and type 2 diabetes, underlining the neuroendocrine
abnormalities common to diabetes-related risk factors such
as depression, obesity, hypertension, and cardiovascular
diseases [93,94]. Exposure to stressful events leads to
increased release of glucocorticoids by activation of the HPA
axis [95]. Prolonged activation of the HPA axis may result in
maladaptive changes [96], affecting puberty, stature, body
composition, as well as leading to obesity, metabolic syn-
drome, and type 2 diabetes mellitus [97]. Excesses in gluco-
corticoids increase glucose and insulin and decrease
adiponectin levels [98]. Stress exposure alters food intake
[99], increasing or decreasing it, depending upon the type of
stress [100]. For instance, Ely and colleagues [99] showed that
rats subjected to repeated stress by restraint presented
increased ingestion of sweet food, while models of chronic
variable stress demonstrated a decrease in appetite for sweet
food or palatable solutions [101]. There is evidence that
glucocorticoids stimulate appetite [102] and increase body
weight through the orexigenic effect of NPY [103], an effect
that is inhibited by leptin and insulin [103]. Clinical studies

also reveal high food consumption, specifically of palatable

food, during periods of psychological stress [104]. The

increase in palatable food intake is induced by glucocorti-

coids [105] and is associated with reward-based eating, as a

way to reduce the stress response [106].
Although it appears that hypercortisolemia may contri-

bute to the development of different features of metabolic

syndrome, it is not clear in the literature whether glucocorti-

coids play a role in the pathogenesis of obesity. Some studies

show that cortisol levels are not higher in obese subjects, and

sometimes they are even lower than in lean subjects

[107,108]. This may be, at least in part, a consequence of

enhanced cortisol clearance that is thought to accompany

obesity, for instance, through increased activity of 5α-
reductase in the liver [108]. Mean 24 h plasmatic ACTH levels

were positively correlated with body mass index, reflecting

increased hypothalamic drive and reduced negative feedback

of cortisol in obesity [109].
Other factors related to cortisol action are also determi-

nants. In this sense, the local expression of 11β-hydroxysteroid
dehydrogenase 1 (11β-HSD1) plays a role in the relationship

between cortisol, adiposity, and metabolic disease [110]. The

enzyme 11β-HSD1, expressed in several peripheral tissues,

such as liver ad adipose tissue, canmodulate HPA axis activity,

regenerating active cortisol from its inactive form intracellu-

larly [111]. In humans, 11β-HSD1 expression is increased in

subcutaneous adipose tissue from obese subjects compared to

lean subjects [112], being stimulated by TNFα, leptin and

adipokines [113,114].
In the presence of insulin, cortisol promotes triglyceride

accumulation, mainly in visceral adipocytes, thus leading to

increased central adiposity. Masuzaki and colleagues have

also demonstrated that overexpression of 11β-HSD1 in adi-

pose tissue resulted in visceral obesity and metabolic syn-

drome in mice fed with a high-fat diet [115]. Adipose tissue

that overexpressed 11β-HSD2, the enzyme that inactivates

cortisol, protected mice from high-fat diet-induced obesity

[116]. The modulation of 11β-HSD1 might be a promising

therapeutic target for obesity and metabolic disturbances.

Studies focusing the inhibition of 11β-HSD1 in animal models

of diabetes and obesity have shown improvement of insulin

resistance and glucose levels, beyond weight loss [117,118].
Dysregulation of the HPA axis has been associated with

some eating disorders [119,120], mainly due to changes in

insulin, NPY levels, and other peptides implicated in food

intake regulation that can be modulated by cortisol metabo-

lism [112]. Food intake is stimulated by administration of

glucocorticoid prednisone in healthy men [121], while diet

influences cortisol metabolism, affecting the HPA axis and

the reward circuitry for palatable foods [112,122]. Important

effects of altered cortisol levels on weight gain are also

reported in Cushing's syndrome and Addison's disease,

which are both associated with effects such as central

obesity/hypercortisolism and weight loss/hypocortisolism,

respectively [123].



Fig. 2 – Schematic of the main interactions between sleep, stress and metabolism. Sleep disorders which can lead to sleep loss
share common pathways with stress system via HPA axis activation on the metabolic dysfunction, contributing to increased
risk of developing obesity and diabetes.
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5. Sleep, stress, and metabolism

Because of the new lifestyle imposed by work and family,

physical and psychological problems, and social changes due

to internet and television, stress and sleep restriction have

become endemic, with a major impact on the metabolic

process. Importantly, stress hormone levels correlate posi-

tively with decreased sleep duration, while both are asso-

ciated with obesity, metabolic syndrome, and eating

disorders [73]. A study by Galvao and colleagues [124] showed

that rats subjected to 96 h of paradoxical sleep deprivation

present increased immunoreactivity for CRH and orexin as

well as higher levels of ACTH and corticosterone, in addition

to increased diurnal food intake, but without changes in

global food intake. A negative correlation was found between

corticosterone and body weight gain throughout paradoxical

sleep deprivation [124].
Stress is known to reduce SWS, REM sleep, and delta

power, as well as to affect metabolism in rodents, with the

magnitude varying according to the type and duration of

stress exposure [73]. Sleep deprivation, in turn, activates

many stress-related pathways including the HPA axis and

sympathetic nervous system, which indirectly modulate

arousal and affect the metabolism [26,125]. It has been

proposed that the bidirectional relationship between sleep

and stress and its impact on metabolism are, in part,

mediated by hypocretin circuitry. Hypocretinergic cells pro-

ject to several CRH-responsive regions in the central nervous

system, including locus coeruleus, the PVN, the bed nucleus of

the stria terminalis and the central amygdala [126].
Sleep deprivation per se is associated with HPA axis

hyperactivity and negatively affects glucose tolerance [16].

The mechanism involved in impaired glucose metabolism

following changes in the sleep–wake cycle seems to be the
decreased efficacy of the negative feedback regulation of the
HPA axis [42]. Activation of HPA axis may be a risk factor in
the development of metabolic syndrome in OSA, via
increased visceral obesity, insulin resistance, and sympa-
thetic activity as well as changes in leptin levels [4,127].
However, HPA axis hyperactivity must be only one among
several factors that mediate metabolic syndrome in OSA. On
the other hand, a recent study in healthy women with
clinically diagnosed primary chronic insomnia has demon-
strated a dysregulation of circadian cortisol secretion despite
normal sleep architecture. Although the limitation of a small
number of participants, the authors found that increased
midnight cortisol levels were not associated with impaired
metabolism of glucose and lipids [128].

The bidirectional interaction between sleep and the HPA
axis is complex. Current studies suggest that HPA hyperac-
tivity, sleep loss, and sleep disturbances are closely linked in
a vicious circle and play a role in the pathogenesis of
metabolic disorders. Understanding sleep and stress system
physiology is essential for elucidating the physiopathology of
these syndromes and revealing new ways of prevention and
treatment.
6. Summary and conclusions

The current review provides evidence for overlap between
sleep, stress, and metabolism, which can explain, at least in
part, the outcomes observed in the modern society, where
sleep deprivation, overnutrition, and chronic exposure to
stress potentially lead to the increased incidence and pre-
valence of metabolic disorders such as obesity and type
2 diabetes. Through hyperactivation of the HPA axis and
changes in the neuroendocrine response, sleep loss and
chronic stress can lead to metabolic dysfunction. The HPA
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axis dysregulation is commonly seen in obesity, sleep depri-
vation, and sleep disorders such as OSA and insomnia.
Conversely, sleep architecture and metabolism are impaired
in hypercortisolism conditions such as Cushing's disease,
confirming the close relationship between sleep, stress and
metabolism, which is summarized in Fig. 2. We conclude that
good sleep quality achieved through sleep hygiene and
treatment of sleep disorders, in addition to nutritional educa-
tion with regular meal frequency and circadian alignment of
food intake, would be interesting strategies for preventing
metabolic disorders. Targeting 11β-HSD1, a key enzyme in
cortisol metabolism in peripheral tissues, and the hypocretin
system, which actively and partially regulates the intercon-
nection between sleep, stress and metabolism, might repre-
sent a promising therapeutic option for obesity, insulin
resistance, and other consequences of excess glucocorticoids
which arise from interactions between sleep and stress.
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