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Abstract

Few studies have quantified the dispersion of potentially infectious bioaerosols produced by 

patients in the health care environment and the exposure of health care workers to these particles. 

Controlled studies are needed to assess the spread of bioaerosols and the efficacy of different types 

of respiratory personal protective equipment (PPE) in preventing airborne disease transmission. 

An environmental chamber was equipped to simulate a patient coughing aerosol particles into a 

medical examination room, and a health care worker breathing while exposed to these particles. 

The system has three main parts: (1) a coughing simulator that expels an aerosol-laden cough 

through a head form; (2) a breathing simulator with a second head form that can be fitted with 

respiratory PPE; and (3) aerosol particle counters to measure concentrations inside and outside the 

PPE and at locations throughout the room. Dispersion of aerosol particles with optical diameters 

from 0.3 to 7.5 μm was evaluated along with the influence of breathing rate, room ventilation, and 

the locations of the coughing and breathing simulators. Penetration of cough aerosol particles 

through nine models of surgical masks and respirators placed on the breathing simulator was 

measured at 32 and 85 L/min flow rates and compared with the results from a standard filter tester. 

Results show that cough-generated aerosol particles spread rapidly throughout the room, and that 

within 5 min, a worker anywhere in the room would be exposed to potentially hazardous aerosols. 

Aerosol exposure is highest with no personal protective equipment, followed by surgical masks, 

and the least exposure is seen with N95 FFRs. These differences are seen regardless of breathing 

rate and relative position of the coughing and breathing simulators. These results provide a better 

understanding of the exposure of workers to cough aerosols from patients and of the relative 

efficacy of different types of respiratory PPE, and they will assist investigators in providing 

research-based recommendations for effective respiratory protection strategies in health care 

settings.
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INTRODUCTION

Some infectious diseases can spread when people come into contact with aerosol particles 

containing viable microorganisms that are expelled from the respiratory tract of individuals 

who are ill. The airborne transmission of disease is of particular concern to the health care 

community because health care workers are much more likely to be exposed to infectious 

patients than the general public. For this reason, the dissemination of infectious aerosol 

particles in health care environments and the efficacy of different types of personal 

protective equipment (PPE) worn by health care workers is of great interest.

The spread of airborne infectious particles in the indoor environment has been the subject of 

numerous research papers.(1,2) It is widely agreed that health care workers should wear an 

N95 filtering-facepiece respirator (N95 FFR) or higher level respirator when they are known 

to be at risk for the airborne transmission of disease.(3) In the United States, employers are 

required by the Occupational Safety and Health Administration (OSHA) to provide federally 

approved respirators to workers when necessary to protect their health. N95 FFR must be 

certified by the National Institute for Occupational Safety and Health (NIOSH) to filter 95% 

or more of a 0.3 μm challenge aerosol.

Surgical masks are cleared for sale by the Food and Drug Administration (FDA) but are not 

certified to provide respiratory protection and generally do not meet the NIOSH filtration 

criteria.(4,5) However, many questions have been raised as to when workers are actually at 

risk for airborne disease transmission and about the relative efficacy of different types of 

PPE against specific illnesses in the health care setting, most notably, influenza.(6–9) During 

the H1N1 influenza pandemic in 2009, for example, some health organizations such as the 

Centers for Disease Control and Prevention (CDC) recommended that health care workers 

wear respirators when treating patients with influenza-like illness, while others such as the 

World Health Organization (WHO) did not.

Current infection control recommendations for seasonal influenza assume that influenza is 

spread mainly by large-particle respiratory droplets containing infectious virus that do not 

travel more than about 6 ft from a patient and that surgical masks provide adequate 

protection (“large-particle” is not defined in the guidelines, but “small-particle” is later 

defined as ≤ 5 μm, implying that large-particles are >5 μm).(10) However, a study of 

influenza patients during the H1N1 pandemic showed that patients produced aerosols that 

contained influenza virus RNA while coughing and that much of this RNA was contained in 

small respirable aerosol particles ≤ 4 μm. Cough aerosols from two of these patients 

contained viable influenza virus.(11) Two air sampling studies have shown that respirable 

particles containing influenza virus RNA can be found throughout health care 

facilities,(12,13) and a recent hospital study suggested that small aerosol particles from an 

influenza patient were blown by an air purifier toward other patients in a hospital ward, 
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leading to additional infections much farther away.(14) Thus, many questions remain as to 

the risk of exposure to diseases like influenza and the circumstances under which respiratory 

protection is needed.

Exposure risk for a health care worker depends on a combination of factors, including the 

relative locations of an infectious patient and a worker, room ventilation, environmental 

conditions, infectious particle size and quantity, and the type of PPE if any that is worn. 

Studies that integrate these factors and examine their interactions are needed to better 

understand the risk of disease transmission and when and where infection control measures 

are most needed.

One approach to studying these phenomena together is to place manikins in a room with a 

controlled environment to simulate the dispersion of aerosols from patients and their 

inhalation by workers. This arrangement allows for studies that include the effects of 

multiple interacting factors, such as human respiratory patterns, room ventilation, aerosol 

particle dynamics, and the use of engineering controls and PPE to reduce the exposure of 

personnel to biohazardous agents.

In one study, Bjorn et al.(15) placed thermal breathing manikins in a room and determined 

that exhaled air can form a thermally stratified layer that increases its horizontal dispersion. 

In two studies, Qian et al.(16,17) placed manikins in a mock hospital ward and airborne 

isolation room and showed that the air jet from patient exhalation, airflows from the 

ventilation system, and respiratory activities of other individuals in the room interact to 

distribute aerosol particles. They also found that exhaled jets can travel long distances in 

some cases, and that commonly used room ventilation schemes are not effective at removing 

all sizes of aerosol particles. Pantelic et al.(18) used a thermal manikin and coughing 

simulator to test a personalized ventilation system as protection against simulated cough 

aerosols and showed that the system offered partial protection, but that cough aerosols were 

still able to penetrate through it. Diaz and Smaldone(19) put two head forms connected to 

breathing simulators in a small enclosure, placed facemasks and N95 respirators on the 

source and recipient head forms, and examined the efficacy of these PPE against 

radiolabeled aerosol particles. They found that a facemask on the aerosol source head 

reduced exposure of the recipient to exhaled aerosols, but that a facemask on the receiver 

offered little protection; a properly fitted N95 respirator protected the receiver, but a poorly 

fitted respirator did not.

Cough-generated aerosols are an especially important potential path for disease transmission 

because coughing is a ubiquitous symptom of respiratory infections and because the violent 

expulsion of air associated with a cough can generate large amounts of aerosol particles and 

propel them at least 6 ft. For this reason, NIOSH is studying the dispersion of cough-

generated aerosol particles in a room and how well PPE such as surgical masks and 

disposable filtering facepiece respirators (FFR) protect the wearer from such aerosols. 

Results of these studies will provide a greater understanding of the spread of potentially 

infectious aerosols from patients and the need for PPE when exposed to bioaerosols, and 

will assist NIOSH in providing research-based recommendations for effective respiratory 

protection strategies in health care settings.
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METHODS

Filter Penetration

Filter penetration is defined as the fraction of a challenge aerosol that passes through a mask 

or respirator. Filtration performance of five samples of each of the selected devices was 

measured at 32, 85, and 95 L/min airflow using a standard filter tester (Model 8130; TSI, 

Inc., Shoreview, Minn.) with a sodium chloride aerosol (count median diameter 0.075 μm, 

geometric standard deviation <1.86). The 32 L/min flow rate corresponds to the ISO 

standard for an adult 1.88 m tall with a mass of 85 kg engaged in moderate work.(20) The 85 

L/min flow rate is the current standard used for NIOSH respirator certification testing. The 

95 L/min flow rate is the maximum possible with the filter tester and is comparable to the 

100 L/min flow rate currently used in NIOSH Chemical, Biological, Radioactive, and 

Nuclear (CBRN) certification testing to address high work rates and peak respiratory flows.

Respirators and masks were mounted on acrylic or metal plates and sealed with melted 

beeswax. PPE was tested as received from the manufacturer without any relative humidity 

pre-treatment. The initial PPE filtration and flow resistance were measured, but the effects 

of particle loading were not. All studies were conducted at room temperature.

Aerosol Exposure Simulation Chamber

Experiments to simulate the exposure of a respiring health care worker to the aerosol 

produced by a coughing patient were conducted in a 2.7 m × 2.7 m × 2.4-m-high 

environmental chamber (Figure 1). The room included a HEPA filtration system to remove 

airborne particles before and after testing. The coughing simulator, breathing simulator, and 

aerosol particle counters were controlled from outside the exposure chamber. During 

experiments, the chamber temperature was 24°C (SD 1.4°C), and relative humidity was 33% 

(SD 6%).

Coughing Simulator

A coughing simulator was constructed that uses a metal bellows driven by a computer-

controlled linear motor (Model STA2506; Copley Controls, Canton, Mass.) to reproduce the 

flow and aerosol pattern associated with a human cough. To determine the flow-volume 

profile to be used for the simulated cough, flow-volume measurements of coughs from 17 

healthy adult subjects (10 male, 7 female) in a previous study(21) were examined. One 

representative cough was selected that was closest to the average volume and peak flow rate. 

The cough had a 2.1 liter volume with a peak flow of 8.45 L/sec and a mean flow of 2.64 L/

sec. In these experiments, the coughing and breathing simulators were synchronized so that 

each cough was initiated at the start of an inhalation by the breathing simulator.

Breathing Simulator

A digital breathing machine (Warwick Technologies Ltd., Warwick, UK) with a standard 

medium-sized head form (Sheffield Model 189003; ISI, Lawrenceville, Ga.) was used to 

simulate a respiring health care worker. The breathing waveform was sinusoidal with flow 

rates of 32 and 85 L/min. Before each experiment, if the breathing simulator was to be tested 

using a mask or respirator, the mask or respirator was sealed to the head form using 
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adhesive. Filter penetration through the surgical mask or N95 FFR when mounted on the 

head form was measured inside the environmental chamber using a standard respirator fit 

testing device (Model 8038 PortaCount Pro Plus; TSI).

Aerosol Particle Concentration Measurements

During experiments, aerosol particle concentrations in the exposure chamber were 

continuously monitored using optical particle counters (OPC, Model 1.108; Grimm 

Technologies, Inc., Douglasville, Ga.). Depending on the experiment, the aerosol particle 

counters drew aerosol samples from a port above the mouth of the breathing simulator head 

form (inside the PPE), 10 cm to the left and right of the head form (outside the PPE) at the 

same height as the mouth (152 cm), and at other locations in the room.

Test Aerosol

The test aerosol was produced by nebulizing a 28% KCl solution using a single-jet Collison 

nebulizer (BGI, Inc., Waltham, Mass.) at 14 kPa (20 lbs/in.2) and passing the aerosol 

through a Model 3062 diffusion drier (TSI). The test aerosol was mixed with 4 L/min of dry 

filtered air and flowed into the cylinder of the coughing simulator until a cough was 

initiated. The particle size distribution of the nebulizer output was measured using a Grimm 

OPC with a 100:1 dilutor (Model 1.159-100) and is shown in Figure 2. For the nebulizer 

output measurement, 10 L/min of dry diluent air was used to keep the particle concentration 

within the range of the Grimm OPC.

Test Procedure

During a typical test, after the coughing and breathing simulators were prepared, the 

exposure chamber was sealed, data collection from the aerosol particle counters was 

initiated, and the HEPA filtration system was run for 30 min to reduce the ambient aerosol 

particle concentration below 100 particles/L of air. The breathing simulator was then started, 

and the nebulizer was activated for 10 min to load the bellows of the coughing simulator 

with the test aerosol. After loading, the nebulizer was stopped and a single cough was 

triggered. Aerosol particle concentration data were collected for 20 min after the cough. A 

single cough was used in each test for all experiment types (i.e., both within-chamber 

particle dispersion experiments and experiments examining particle penetration through 

masks and respirators).

Calculations

For experiments examining the distribution of aerosol particles throughout the room, the 

particle counts for each size range were summed over 1-min intervals and divided by the 

instrument flow rate (1.2 L/min) to obtain the average concentration. For exposure chamber 

experiments examining the penetration of aerosol particles through PPE, one OPC measured 

the aerosol concentration inside the PPE, and two OPCs measured the aerosol concentration 

on either side of the breathing head at the same height. For all three OPCs, particle counts 

for each size range were summed over the time interval from 5 to 20 min after the cough. 

Penetration was then calculated for each size range by dividing the number of particles 

counted inside the PPE by the average of the number particles counted by the two external 
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OPCs. The 5- to 20-min time interval was chosen to avoid the initial time period after a 

cough when large spatial variations in particle concentration are seen, which could affect the 

particle concentrations at the three probes.

RESULTS

Particle Distribution in the Room After a Cough

The initial experiments in the simulated examination room looked at the distribution of 

aerosol particles around the room after a cough. For these experiments, three OPCs were 

placed at different heights 183 cm in front of the coughing simulator, while three others 

were distributed around the room (Figure 3). During these experiments, the room HEPA 

filtration system was turned off and the room was sealed, so there were zero air changes/

hour (ACH). Immediately after a cough, the OPC directly across from the coughing 

simulator and at the same height showed a very large spike in aerosol concentration; the 

average concentration over the first minute was 6.60 × 105 particles/L (SD 1.67 × 105) for 

0.3- to 0.4-μm particles (Figure 3) and 1894 particles/L (SD 488) for 3- to 4-μm particles 

(Figure 4). This initial spike progressively decreased as the measurement location was 

moved to other locations in the room away from the path of the cough plume. For example, 

at the lower left corner, the average concentrations over the first minute were 665 particles/L 

(SD 931) for 0.3- to 0.4-μm particles and 1 particle/L (SD 1) for 3- to 4-μm particles.

The initial spike also decreased when the measurement location was moved vertically above 

or below the path of the plume. In the first minute after a cough, the aerosol concentrations 

varied considerably from location to location, with a coefficient of variation (CV) across all 

locations of 162% for 0.3- to 0.4-μm particles and 175% for 3- to 4-μm particles. However, 

as time progressed, aerosol concentrations at all locations converged toward similar steady-

state values. After 5, 10, and 15 min, the average concentrations of 0.3- to 0.4-μm particles 

across all locations were 42105, 46017, and 47807 particles/l (SD 21837, 4893, and 4273). 

For 3- to 4-μm particles, the 5-, 10-, and 15-min average concentrations were 115, 113, and 

102 particles/L (SD 61, 26, and 15). For the 0.3-to 0.4-μm particles, the CV of the aerosol 

concentration at the different locations was 21% after 5 min and 13% after 10 min. Similar 

results were seen for other particle sizes, although the steady-state CV tended to be higher; 

the CV for 3- to 4-μm particles was 30% after 5 min and 18% after 10 min.

Effect of Breathing Simulator Location on Exposure to Cough-Generated Aerosols

For the next set of experiments, the breathing simulator was used to determine the exposure 

to cough-generated aerosol particles that would occur for a worker in the room without PPE, 

and the effect of the worker’s location. These experiments were also conducted with zero 

ACH. The aerosol concentration was measured at the mouth of the breathing simulator. As 

can be seen in Figure 4, in the immediate aftermath of a cough, the exposure is much higher 

when the worker is directly in the path of the cough plume. However, after 5 min, the 

aerosol concentrations at all locations are very similar (CV = 20% after 5 min and 15% after 

10 min).
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Effect of Room Ventilation

To test the effect of different air exchange rates, experiments were conducted while the 

room air was circulated through a HEPA filtration system and returned to the room to 

provide 0, 6, or 12 ACH. In U.S. health care facilities, 6 ACH is the design standard for 

medical examination and treatment rooms, while 12 ACH is the standard for airborne 

infection isolation rooms and Emergency Department waiting rooms.(22) The room 

ventilation system had a ceiling air inlet and a floor-level air outlet and was arranged so that 

the air flowed from one side of the room to the other. This design was based on the CDC’s 

general guidelines for airborne infection isolation rooms.(23) Figure 5A shows that, at zero 

ACH, a sharp initial peak was seen in the particle concentration at the mouth of the 

breathing simulator after a cough.

However, at 6 and 12 ACH, this initial peak was greatly attenuated, probably in part because 

the airflow in the room swept the cough plume down and to the side of the breathing 

simulator. The aerosol concentration also decreased steadily over time; at 6 ACH, the 

concentration at the mouth was 9% of the zero ACH value after 20 min, while at 12 ACH 

the concentration was less than 1% of the zero ACH level after 13 min. Figure 5B shows 

that cough aerosol particles were dispersed throughout the room at all three air exchange 

rates, and that the particle concentrations at the second location decreased over time much 

like the particle concentrations at the mouth of the breathing simulator.

Filtration Efficiency of Different Types of PPE

Nine models of PPE from five manufacturers were chosen for this study based on those in 

the U.S. Strategic National Stockpile. Three of the PPE chosen were surgical masks, three 

were approved N95 FFRs, and three were combination N95 FFR/surgical masks. Table I 

lists the PPE studied and shows the airflow resistance and penetration for each model 

measured using a standard filter tester. As would be expected, for all PPE the flow resistance 

and filter penetration consistently increased as flow rate increased. The surgical masks 

showed a lower flow resistance but much higher aerosol particle penetration than the N95 

FFRs, illustrating that surgical masks generally offer less breathing resistance but are not 

effective filters for small particles even when sealed in place to prevent leakage around the 

edges of the mask.

Experiments were performed in the simulated exam room using no PPE on the breathing 

simulator and with three samples of each of the nine models of PPE shown in Table I. 

Results for tests conducted while breathing at 32 L/min are shown in Figure 6. When no 

PPE was worn, the penetration values were very close to 1 for all particle sizes. For all types 

of PPE, penetration was highest for aerosol particles in the 0.3- to 0.4-μm size range and 

declined steadily as the particle size increased.

Tests were also performed on all PPE at 85 L/min. As with the 32 L/min tests, penetration 

values were highest for 0.3- to 0.4-μm particles and declined steadily for larger sizes. 

However, for both the filter tester and the breathing simulator tests, penetration at 85 L/min 

was consistently higher than seen at 32 L/min. Filter tester penetration values correlated well 

with the breathing simulator results for 0.3- to 0.4-μm particles (correlation coefficient r2 = 
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0.94 at 32 L/min and 0.86 at 85 L/min), as seen in Figure 7. Breathing simulator results for 

32 and 85 L/min also correlated well (r2=0.95), as did the filter tester results for 32 and 85 

L/min (r2 =0.99). As a group, the surgical mask PPE admitted aerosol particles of all sizes at 

concentrations 22 times higher than the concentrations seen with the N95 and N95/surgical 

mask PPE at 32 L/min, and 32 times higher at 85 L/min.

DISCUSSION

Several respiratory illnesses such as SARS and influenza are thought to spread in part by 

inhalation of infectious aerosol particles. Health care workers face greater exposure to these 

hazards than the general public, and their potential risk would be expected to increase during 

a pandemic precisely when their skills are most critically needed. Thus, there is a need to 

provide health care workers with respiratory PPE when required. On the other hand, health 

care workers have reported that respiratory PPE such as N95 FFRs and powered air-

purifying respirators (PAPR) can be uncomfortable and interfere with hearing and speech 

intelligibility.(24,25) Because of this, there is an urgent need to better understand how 

aerosols from patients spread through the environment, which types of PPE are most 

effective at protecting workers, and when different types of PPE are necessary.

Our study has shown that aerosol particles from a coughing patient are carried rapidly in the 

direction of the cough, resulting in an almost immediate exposure to a high concentration of 

particles for anyone in the path of the cough plume. The wave form seen in Figure 3 at 

Position 1 is consistent with the change in concentration over time that would be expected at 

a position downstream from a point of a pulse emission with dispersion by turbulent 

diffusion and a strong transient advective airflow. These results are consistent with studies 

of airflow fields produced by human coughs; Zhu et al.(26) and Tang et al.(27) both reported 

that the flow field from a cough could extend more than 2 m from a subject. However, our 

results also show that the room air currents generated by the coughing of the patient and 

breathing of the worker disperse the cough particles throughout the room, and that within 

several minutes anyone in the room would be exposed to these particles regardless of their 

location. Thus, our study shows the importance of time scale on the dynamics of exposure: 

over the short term (up to a few minutes), health care workers and visitors who are directly 

in front of or close to a coughing patient have much higher average exposure levels, whereas 

over the longer term, room location of the patient and worker are less influential.

Several previous studies have shown that room ventilation can be an important factor in 

airborne disease transmission.(1) In our study, room ventilation gradually reduced the 

aerosol concentration, but even at a relatively high ventilation rate of 12 ACH, with the air 

blowing diagonally and downward across the room, some exposure to cough aerosols still 

occurred for several minutes after a cough. These results were found at locations both 

directly in front of the coughing simulator and away from the initial cough aerosol plume, 

suggesting that exposure to the cough aerosol would occur anywhere in the room. This is 

consistent with modeling results reported by Knibbs et al.,(28) although they and other 

authors also found that the configuration and direction of the ventilation system, and other 

factors, can have a large impact on exposure and that these factors are difficult to predict and 

control.(17,29,30) In a similar manner to the time scale discussion above, our results show that 
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ventilation has a much greater effect on exposure over the long term than in the short period 

immediately after a cough.

Our results from tests of different types of PPE using the standard filter tester and the 

coughing and breathing simulator reinforce a message that urgently needs to be clearly 

conveyed to the health care community: surgical masks do not provide protection against 

small airborne particles, and a properly fitted respirator is needed when exposed to 

infectious bioaerosols. Even when surgical masks were sealed to the test fixtures, they still 

allowed large numbers of aerosol particles to pass through their media and be inhaled. These 

results are consistent with a previous study that also showed the filtration performance of 

surgical masks varies widely between different models.(4) Further, when surgical masks are 

actually worn by workers, the protection offered by these devices is reduced even more due 

to face seal leaks that tend to form around the edges of the mask.(5,31,32) On the other hand, 

our results show that N95 FFRs can protect a worker from the high aerosol concentration 

within a cough plume impinging directly on the worker, and the steady-state aerosol that 

accumulates as the cough aerosol spreads throughout the room. This is true even if the 

worker is respiring heavily.

Finally, several limitations in our study must be acknowledged. First, the PPE were sealed to 

the breathing simulator head, which eliminated face seal leakage. This was necessary 

because the surface of the head is rigid, not compliant like human skin, and thus unsealed 

PPE do not fit as well and have greater face seal leakage compared with PPE on humans. 

However, leakage around the face seal of PPE is normal when humans wear surgical masks; 

this can also occur when humans wear N95 FFR. Thus, our results do overstate the 

protection that is likely to be provided by PPE in the field, especially for surgical masks. 

Second, human cough aerosol particles can cover a very broad size range, from tens of 

nanometers up to hundreds of micrometers.(33) Our study was intended to investigate aerosol 

particles that were large enough to carry pathogens but small enough to remain airborne, and 

thus, we examined particles over a much smaller size range. However, it is unclear where 

cough aerosol particles originate in the respiratory tract and how infectious pathogens are 

distributed relative to particle size within a cough aerosol.(33–35) Finally, our coughing and 

breathing simulators operate at room temperature rather than body temperature and therefore 

do not include any effects due to the buoyancy of the coughing and breathing plumes or air 

rising due to body heat.

CONCLUSIONS

Health care workers need protection from potentially infectious aerosols such as those 

produced by coughing patients. However, few studies have attempted to systematically 

evaluate the spread of cough-generated aerosols in a health care setting and the need for 

different types of PPE in this environment. Our study used coughing and breathing 

simulators to create a realistic simulation of a medical examination room with a patient 

coughing potentially infectious aerosol particles into the room, and a breathing health care 

worker exposed to them. We used this system to examine the dispersion of cough aerosols in 

the room and the efficacy of respiratory PPE.
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We found that cough aerosols are initially carried in a plume capable of traveling across a 

room and exposing a worker to a highly concentrated aerosol. However, we also found that 

after several minutes, aerosol particles across a broad size range will disperse throughout the 

room, reaching everyone inside. N95 FFRs with no face seal leakage consistently protected 

the breathing simulator from cough aerosol particles of all sizes even when the aerosol 

plume impinged directly on the face of the simulator. On the other hand, surgical masks did 

not provide adequate protection from small particles in cough aerosols even when sealed to 

the head of the breathing simulator.

Health care workers should be urged to follow existing guidelines for respiratory protection 

from known bioaerosol sources and should assume that protection is required anywhere in a 

room with a patient who is producing potentially infectious aerosols. More research is 

needed to determine whether diseases such as influenza can be transmitted to a significant 

degree by inhalation of infectious aerosols, to find ways to control and reduce the production 

and dispersion of potentially infectious aerosol clouds, to examine the possible role of larger 

ballistic spray droplets in disease transmission, and to study the protection offered by other 

types of PPE.
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FIGURE 1. 
Chamber to simulate exposure of a health care worker to potentially infectious aerosol 

particles from a coughing patient. Dimensions are in cm. The mouths of the coughing and 

breathing simulators were located 152 cm above the floor. The breathing simulator was 

placed in one of the three positions (1–3) indicated on the diagram. Depending on the test, 

aerosol optical particle counters were located in one or more of Positions 1–4 to monitor the 

dispersion of the cough aerosol within the room.
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FIGURE 2. 
Cough aerosol particle size distribution. The optical size distribution of the aerosol output 

from the Collison nebulizer using a 28% KCl solution. Over the measurement range of the 

instrument, the test aerosol had a count median diameter of 0.44 μm and a geometric 

standard deviation of 1.48. The aerosol particle density is 1.987 g/cm3. The optical diameter 

is approximately the physical diameter of the particles; because of the density of the 

particles, the aerodynamic diameter would be about 1.4 times the optical diameter.
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FIGURE 3. 
Distribution of 0.3- to 0.4-μm aerosol particles after a cough. This plot shows the 

concentration of aerosol particles throughout the simulated examination room after a single 

cough at Time 0. The particle concentration over time is shown at each location for particles 

with an optical diameter of 0.3 to 0.4 μm. Similar results were seen for other particle sizes. 

The plots show the average of three experiments.
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FIGURE 4. 
Distribution of 3- to 4-μm aerosol particles after a cough. This plot shows the concentration 

of aerosol particles throughout the simulated examination room after a single cough at Time 

0. The plots show the average of three experiments.
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FIGURE 5. 
Aerosol exposure at different locations in the chamber. This figure shows the concentration 

of 0.3- to 0.4-μm particles measured at the mouth of the breathing simulator while it was at 

different locations in the room. The breathing simulator was breathing at 32 L/min. Similar 

results were seen for other particle sizes. Each line shows the average of three experiments.
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FIGURE 6. 
Effect of room ventilation. The concentration of 0.3- to 0.4-μm particles are shown for 

different room air changes/hour at (A) the mouth of the breathing simulator and (B) 

Location 4 at the side of the room. The air inlet was located in the ceiling while the outlet 

was near the floor. The breathing simulator was breathing at 32 L/min. Similar results were 

seen for other particle sizes. Each line shows the average of three experiments.
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FIGURE 7. 
Aerosol penetration through PPE. The aerosol penetration was determined while breathing 

at 32 L/min and using (A) no PPE; (B) surgical masks; (C) N95 FFRs; and (D) N95 FFR/

surgical masks. Note that the vertical scale was adjusted for each plot for clarity. Particle 

sizes are optical diameters. Each bar shows the average from three samples of each model of 

PPE. Error bars show the standard deviation.
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FIGURE 8. 
Comparison of filter tester and breathing simulator penetration values at 32 and 85 L/min. 

Penetration values for all types of PPE tested in the aerosol exposure chamber correlated 

well with those from the filter tester. Results for the breathing simulator are for particles 

from 0.3 to 0.4 μm. Penetration values at each flow rate are the average of five PPE samples 

for the filter tester and three for the breathing simulator.
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