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for confounding control
Shannon C. Grabich1*  , Whitney R. Robinson1, Stephanie M. Engel1, Charles E. Konrad2, David B. Richardson1 
and Jennifer A. Horney3

Abstract 

Background:  Epidemiological analyses of aggregated data are often used to evaluate theoretical health effects of 
natural disasters. Such analyses are susceptible to confounding by unmeasured differences between the exposed and 
unexposed populations. To demonstrate the difference-in-difference method our population included all recorded 
Florida live births that reached 20 weeks gestation and conceived after the first hurricane of 2004 or in 2003 (when 
no hurricanes made landfall). Hurricane exposure was categorized using ≥74 mile per hour hurricane wind speed 
as well as a 60 km spatial buffer based on weather data from the National Oceanic and Atmospheric Administration. 
The effect of exposure was quantified as live birth rate differences and 95 % confidence intervals [RD (95 % CI)]. To 
illustrate sensitivity of the results, the difference-in-differences estimates were compared to general linear models 
adjusted for census-level covariates. This analysis demonstrates difference-in-differences as a method to control for 
time-invariant confounders investigating hurricane exposure on live birth rates.

Results:  Difference-in-differences analysis yielded consistently null associations across exposure metrics and hur-
ricanes for the post hurricane rate difference between exposed and unexposed areas (e.g., Hurricane Ivan for 60 km 
spatial buffer [−0.02 births/1000 individuals (−0.51, 0.47)]. In contrast, general linear models suggested a positive 
association between hurricane exposure and birth rate [Hurricane Ivan for 60 km spatial buffer (2.80 births/1000 indi-
viduals (1.94, 3.67)] but not all models.

Conclusions:  Ecological studies of associations between environmental exposures and health are susceptible to 
confounding due to unmeasured population attributes. Here we demonstrate an accessible method of control for 
time-invariant confounders for future research.
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Background
Ecological analyses with exposure and outcome meas-
ures at aggregate level are often used in environmental 
and natural disaster epidemiology. The purpose of aggre-
gate level analyses can be the estimation of ecological 

associations or inference to individual risks. While aggre-
gate level research may be more practical when individ-
ual exposures and outcomes are difficult to define, there 
are many methodological challenges surrounding its 
use in inference on individual risks. Some concerns may 
include ecological bias, exposure misclassification and 
proper control of measured or unmeasured confounders. 
Challenges inherent to the timely collection of post-dis-
aster data or reliance on surveillance data often leads to 
lack of control for unmeasured confounding.
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To assess the health impacts of hurricanes and inform 
the policies needed to mitigate adverse effects, epide-
miologists often conduct analyses of aggregated data [1, 
2]. The findings of the current literature on hurricane 
exposure and reproductive health outcomes are gener-
ally mixed [3–7]. These inconsistencies may be in part 
the result of the limitations associated with the use of 
aggregate data such as determination of timing in expo-
sure and outcome relationships. Methods like difference-
in-differences fixed-effects modeling can be applied 
to control for unmeasured confounding in pre-post or 
county-level level analysis [8–10].

Difference-in-differences methods have a long history 
in disciplines outside of epidemiology [11–13]; however, 
their use is relatively less common in epidemiology, with 
the exception of a few studies [14–16] as well as case-
crossover and case-time-control designs. Difference-in-
differences methods can be applied to any model where 
outcomes are observed in a minimum of two groups (e.g., 
treatments or exposure categories) at two different time 
points assuming confounders are time invariant [17–19].
The exposed group must have an exposure status which 
changes across the two time points, while the referent 
group remains unexposed in both time periods. The esti-
mate in the unexposed group is then subtracted from 
that of the exposed group. This removes biases resulting 
from static population characteristics between the two 
time points. A commentary by Kaufman discusses the 
application of similar fixed-effects methods in epidemiol-
ogy to reduce bias and derive more valid estimates [20]. 
This method is a relatively simple yet powerful technique 
to address confounding inherent in comparing popula-
tions that may not have the same baseline characteristics.

To demonstrate an application of this method in 
county-level analysis, we assessed the association 
between hurricane exposure and live birth rates. Live 
birth rates are often anecdotally assumed to be influenced 
by natural disaster occurrences, with some reports sug-
gesting a “baby boom” following severe weather events 
[5, 21]. In other words, live birth rates may increase after 
disaster occurrence through increased conception rates. 
We compared an adjusted general linear model approach, 
to directly compare birth rates in counties affected and 
unaffected by hurricanes, to results obtained by a dif-
ference-in-differences analysis to illustrate the method’s 
application for future epidemiology research.

Methods
Study population
We used a retrospective cohort of 2003 and 2004 Flor-
ida conceptions resulting in live birth to demonstrate 
the difference-in-differences method on the relationship 
between county-level hurricane exposure and live birth 

rates. Four hurricanes made landfall in Florida during the 
2004 hurricane season, exposing the majority of the 67 
counties to hurricane weather. No hurricanes made land-
fall during the 2003 season. Therefore conceptions during 
2003 were all considered unexposed while conceptions 
during 2004 could be considered exposed or unexposed 
depending on maternal county of residence. Our source 
population, from vital records data, included all docu-
mented Florida pregnancies conceived in 2003 and 2004 
that completed a minimum of 20 weeks gestation.

The 2004 cohort used in both the difference-in-dif-
ferences models and general linear models included 
women who conceived between August 14, 2004 and 
October 31, 2004. Conception was estimated based on 
clinical estimate from the birth certificate. The defined 
window of exposure falls from just after the first hurri-
cane occurrence through 3  months after the last hur-
ricane occurrence. This exposure window aligned with 
the conception-based “baby-boom” hypothesis. For the 
difference-in-differences analysis, we also used pregnan-
cies conceived in the previous year, from August 14, 2003 
and October 31, 2003, to calculate 2003 unexposed live 
birth rates.

Exclusions
We excluded births to non-Florida residents, as they did 
not have a residential address to link to Florida hurricane 
exposure. Additionally, births with gestational age less 
than 20 weeks and to mothers less than 15 years at deliv-
ery or greater than 45 years of age were also excluded. Of 
the 94,593 total eligible births, 92,398 remained in the 
analytic population after exclusion criteria were applied.

Hurricane exposure
We focused on two of the four 2004 hurricanes which 
made landfall in Florida: Charley (August 13, 2004) and 
Ivan (September 21, 2004) (Fig. 1). Charley was the first 
and strongest hurricane of the season, hitting many 
Florida counties with diverse population groups. In con-
trast, Ivan hit the Florida panhandle, where the popula-
tion that is socioeconomically and socially distinct from 
the rest of the state. Therefore, analyses comparing coun-
ties exposed to Hurricane Ivan to the rest of the state are 
uniquely susceptible to bias from unmeasured confound-
ing. Therefore, analysis of Hurricane Ivan presents a 
opportunity to explore whether the differences-in-differ-
ences model accounts for unmeasured confounding that 
may bias analyses using general linear models.

Counties were classified with respect to hurricane 
exposure using two previously published methods. The 
first method applied exposure based on a cutoff of hur-
ricane maximum wind severity according to the Saf-
fir-Simpson Wind Scale [22]. Based on the cutoff for 
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category 1 hurricane, counties affected by winds  ≥74 
mph were considered exposed and compared to coun-
ties with wind speeds less than 74 mph (unexposed). The 
second method was defined by a 60 km symmetrical spa-
tial buffer around the storm track. Any county within the 
60 km buffer, including partial counties, was considered 
exposed and compared to the counties completely out-
side of the buffer (unexposed) [23, 24]. We compared the 
two methods of classifying exposure to demonstrate the 
consistency of the results.

Statistical methods
We calculated county-level live birth rates for 2003 and 
2004 conceptions as the number of live births in a county 
divided by the total county population at midyear times 
1000. All analyses were conducted in SAS 9.2 (Cary, 
North Carolina) and an example SAS program of dif-
ference-in-differences methods is provided in the Addi-
tional file 1: supplemental digital content 1. This research 
was approved by the Institutional Review Boards at the 
Florida Department of Health (#H13049) and the Univer-
sity of North Carolina at Chapel Hill (#13-0784).

Difference‑in‑differences
Difference-in-differences is a statistical technique which 
attempts to mimic experimental research study design 
for analyses of observational data. The effect of exposure 

(treatment) on an outcome is calculated as the difference 
of the average change in the exposed group minus the 
change in the unexposed group. In this hurricane expo-
sure example, we are estimating the difference in live 
birth rate differences in exposed counties from the 2003 
to 2004 time periods as shown in the hypothetical dia-
gram Fig. 2. The change in birth rate labeled “Difference 
from hurricane effect” (graphically illustrates the rate 
estimated using the difference-in-differences analysis.

Difference-in-differences models have the same 
assumptions as the underlying model form (in this 

Fig. 1  2004 Florida track map with 60 km buffer displayed (n = 67 counties)

Fig. 2  Hypothetical Illustration of difference-in-differences method
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case general linear model) with additional assump-
tions regarding parallel trends in county attributes. This 
implies that within-county characteristics, e.g., median 
income, are invariant between time periods or change at 
the same rate across exposed and unexposed counties. 
If this assumption holds, then difference-in-differences 
removes confounding by these covariates, even those 
which are unmeasured. When this assumption is vio-
lated, there will be residual confounding by factors that 
change differentially between study years.

We conducted analyses of the difference-in-differences 
method using PROC GLM with the ABSORB statement 
in SAS 9.2 to estimate the rate difference between the 
2003 and 2004 within-county live birth rates. This is anal-
ogous to the rate difference generated in a general linear 
model with the previous unexposed year rate difference 
removed, estimating the marginal within-county rate 
difference (Fig.  3). The 2003 conception period in these 
models stands in for the baseline differences in covariate 
distributions between counties before hurricane expo-
sure or non-exposure in 2004.

General linear models
We illustrate sensitivity of results by fitting general linear 
models to estimate the association between hurricane 
exposure and county-specific live birth rates of 2004 con-
ceptions. We conducted unadjusted and adjusted general 
linear models using PROC REG with identity link and 
Gaussian random distribution in SAS 9.2 software to 
estimate rate differences.

To demonstrate a regression approach to control con-
founding in aggregate analyses, the models were adjusted 
for county-level 2000 US Census covariates, includ-
ing percent renter-occupied units, median household 
income, percent of persons who speak English less than 
well and percent of adults with more than high school 
education. These variables have been used previously in 
developing social indices and controls in county-level 
studies [25–27]. The chosen covariates were determined 

a priori based on a literature review of natural disasters 
and public health.

Results
The first hurricane of 2004, Charley, moved northeast 
through central Florida impacting a large geographic 
area. In contrast, Hurricane Ivan made landfall in Ala-
bama and Florida, affecting only a small area of the 
Florida panhandle. The Florida counties exposed to Hur-
ricane Ivan had lower median incomes, less education 
and a higher proportion of renter occupied units than the 
unexposed counties (Table  2). The number of exposed 
and unexposed counties varied with the specific hur-
ricane (Table  1). For example, using the 60  km buffer, 
twenty-three counties were classified as exposed to Hur-
ricane Charley while only two were exposed to Hurricane 
Ivan.

Associations in Table  1 are reported as rate differ-
ences (RD) with 95 % confidence interval (95 % CI). For 
Hurricane Charley, neither the difference-in-differences 
nor the general linear models identified an association 
between hurricane and live birth rates. The 95  % confi-
dence intervals produced by the difference-in-differences 
method exhibited greater statistical precision as shown 
by the tighter confidence intervals.

The associations found for Hurricane Ivan differed 
from Hurricane Charley. The difference-in-differences 
model did not suggest an association between hurri-
cane exposure and live birth rates. In contrast, in the 
general linear models, live birth rates were consist-
ently positively associated with both the 60  km buffer 
[RD = 2.80 births/1000 individuals (1.94, 3.67)] and the 
wind speed ≥74 mph [RD = 2.23 births/1000 individuals 
(1.47, 2.99)]. Higher birth rates in the exposed Panhandle 
counties, even after covariate-adjustment, are compatible 
with our hypothesis that GLM analysis of Hurricane Ivan 
would be subject to residual confounding from unmeas-
ured social and socioeconomic factors that are more 
common in the Panhandle and associated with higher 
birth rates.

Discussion
To assess the health impacts of environmental exposures 
including natural disasters, epidemiologists often con-
duct analyses of aggregated data. Such approaches may 
have methodological limitations, including incomplete 
confounder control, exposure misclassification and lack 
of group level covariate information. We sought to dem-
onstrate an application of the difference-in-differences 
method in estimating the effect of county-level hur-
ricane exposure on live birth rates. While still poten-
tially suffering from bias due to residual confounding 
and migration, this method overcomes some of the 

Fig. 3  Methods description for general linear and difference-in-
differences models
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limitations of conventional approaches by addressing 
confounding by unmeasured time-invariant attributes. 
It has become increasingly common in epidemiologic 
and public health research to perform aggregate level 
analysis (e.g., at the level of the county, ZIP code or cen-
sus track) and to use aggregate indices or census varia-
bles to control for confounding (Platt et al. [26]). Results 
from the difference-in-differences analyses demonstrate 
a method to improve control of confounding due to 

unmeasured variables in aggregate analyses. We dem-
onstrated the use of difference-in-difference into a spa-
tial single year comparison; however, studies of other 
outcomes with hurricane exposure often use pre-post 
analysis or clinic-based populations. Methods like dif-
ference-in-difference modeling can be applied to con-
trol confounding in ecological pre-post or county-level 
analysis [28]. Overall across exposure metrics and hur-
ricanes, the consistency of the difference-in-differences 

Table 1  Census-adjusted general linear model (GLM) and  difference-in-differences models of  Hurricane exposure 
and live birth

Rates per 1000 Individuals, Florida 2004 (n = 67 counties)

Adjusted models include percent renter-occupied units, median household income, percent of persons who do not speak English and percent of persons with more 
than high school education

CI confidence interval, GLM general linear model
a  N exposed column indicates the number of exposed counties given indicated exposure method and hurricane out of 67 total counties

Exposure method Hurricane Charley exposure Hurricane Ivan exposure

N exposeda Estimate (95 % CI) N exposeda Estimate (95 % CI)

60 km buffer

 Within county difference-in-differences model 23 0.02 (−0.16 to 0.20) 2 −0.02 (−0.51 to 0.47)

 Across County GLM adjusted model −0.30 (−0.72 to 0.13) 2.80 (1.94 to 3.67)

Wind speed ≥ 74 mph

 Within county difference-in-differences model 5 0.18 (−0.13 to 0.49) 3 0.05 (−0.34 to 0.44)

 Across county GLM adjusted model 0.06 (−0.67 to 0.78) 2.23 (1.47 to 2.99)

Table 2  Description of census county variables from adjusted analysis, Florida 2004 (n = 67 counties)

a  Exposure for Table 2 was categorized by 60 km buffer

Census variable Overall number  
counties

Charley exposed  
countiesa (n = 23)

Ivan exposed 
countiesa (n = 2)

N (%) N (%) N (%)

Renter occupied units

 <15 % 5 (7.5 %) 1 (4.3 %) 0 (0.0 %)

 15 to <25 % 43 (64.2 %) 13 (56.5 %) 1 (50.0 %)

 25 to <35 % 12 (17.9 %) 7 (30.4 %) 1 (50.0 %)

 35+ % 7 (10.4 %) 2 (8.7 %) 0 (0.0 %)

Median household

 <Median (38,819 K) 47 (70.1 %) 14 (60.8 %) 1 (50.0 %)

 >Median (38,819 K) 20 (29.9 %) 9 (39.2 %) 1 (50.0 %)

Percent persons do not speak English

 <5 % 12 (17.9 %) 0 (0.0 %) 0 (0.0 %)

 5 to <15 % 41 (61.1 %) 15 (65.2 %) 2 (100.0 %)

 15 to <20 % 7 (10.4 %) 4 (17.4 %) 0 (0.0 %)

 25+ % 7 (10.4 %) 4 (17.4 %) 0 (0.0 %)

Percent persons with ≥HS education

 <65 % 4 (6.0 %) 2 (8.7 %) 0 (0.0 %)

 65 to <75 % 26 (38.8 %) 4 (17.4 %) 0 (0.0 %)

 75 to <85 % 26 (38.8 %) 12 (52.2 %) 1 (50.0 %)

 85+ % 11 (16.4 %) 5 (2.2 %) 1 (50.0 %)
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method suggests the integrity of this method over the 
general linear models.

There is no current consensus on the impact of hurri-
cane exposure on reproductive health, with associations 
widely varying across studies [3, 29]. These mixed find-
ings are potentially the result of varied mechanisms of 
exposure (e.g., stress, economical, injury etc.), variations 
in exposure definitions, dissimilar study populations, 
incomplete confounding control or potential heterogene-
ity in hurricane effects. Our analysis applied several expo-
sure metrics over multiple hurricanes to examine some 
of these potential sources of inconsistencies. All differ-
ence-in-differences models yielded null associations for 
both hurricanes and for all exposure metrics. In contrast 
the general linear model yielded some potential associa-
tions with Hurricane Ivan. In supplemental analyses of the 
other hurricanes in the 2004 season, while some variabil-
ity exists between the GLM and DID method, none are as 
stark a contrast as that seen in Hurricane Ivan. In analyses 
of Hurricane Frances and Jeanne, general linear models 
varied in magnitude and direction while we found consist-
ently null associations using the difference-in-differences 
approach (Additional file 1: supplemental digital content 
2). Additionally, the results from the Hurricane Ivan mod-
els are compatible with the hypothesis that uncontrolled 
confounding by unmeasured or imprecisely measured 
factors like low socioeconomic status, more widespread 
lack of medical access, and social norms around higher 
parity may bias GLM models of these data.

Suggested associations between hurricane exposure 
and live birth rates are largely anecdotal, including clini-
cal observations and media reports. Two studies have 
focused on birth rates after hurricane occurrence. Cohan 
and Cole investigated live birth rates in twenty-four 
South Carolina counties in a time-series analysis before 
and after Hurricane Hugo and found that before the hur-
ricane live birth rates decreased, while after the hurricane 
live birth rates increased [21]. Hamilton investigated 
county live birth rates in the Gulf Coast states (Louisi-
ana, Mississippi and Alabama) following Hurricane Kat-
rina and had mixed results depending on state [5]. While 
both studies controlled for measured population charac-
teristics, the difference-in-differences approach (which 
additionally accounts for some unmeasured factors) may 
more fully adjust for differing population characteristics.

Difference-in-differences models assumptions regard-
ing parallel trends can in theory be evaluated to the extent 
that all confounders’ distributions are available in both 
time periods. A review of the current literature suggests 
that the parallel trend assumption was likely met as hur-
ricanes are thought of as an exogenous occurrence likely 
uncorrelated with changes in determinants of birth rates 
[30]. However, like many environmental studies, our 

exposure was defined by county of residence and there-
fore secular trends influencing birth rate may differ by 
county. Researchers should consider these assumptions in 
the application of the difference-in-differences method.

While the difference-in-differences model may have 
improved control of unmeasured confounder bias, other 
biases may persist. For instance, several articles have crit-
icized the use of difference-in-differences methods using 
large datasets, where inappropriately small standard 
errors can incorrectly indicate significant relationships 
[28, 31]. This is a particular problem if outcomes are non-
independent between subjects, which is not expected to 
be the case in our birth rate outcome. Our difference-in-
differences models showed tighter 95 % confidence inter-
vals than the general linear models, indicating smaller 
standard errors, however, we assume individual changes 
in conception are independent.

There were also limitations with our study methods. A 
major limitation of our study is that the four hurricanes 
hit Florida in 2004 in rapid succession, limiting our abil-
ity to understand independent hurricane effects. In par-
ticular, the Ivan-unexposed counties were affected by 
exposure to other hurricanes, which could bias our esti-
mates towards the null. However, supplemental analy-
sis did not indicate that additional hurricanes conferred 
additional risk on affected counties. Another limitation 
is that the number of counties exposed changed by the 
method of exposure categorization, thus rendering com-
parisons across method or hurricane difficult, especially 
using general linear models (Table  1). The county-fixed 
effects which are used in the difference-in-differences 
approach better allows for comparisons across models. 
Moreover, our reliance on Vital Statistics data prevents 
us from understanding the impact of early pregnancy 
loss as well as being unable to adjust for information on 
migration into or out of our study population.

Changes in live birth rates can be influenced by increases 
in the number of conceptions, migration into or out of the 
study area, and changes in fetal loss rates. While we are 
assuming migration into and out of our Florida cohort is 
equal, we have no way to document births that occurred out-
side of the state of Florida due to relocation or evacuation. 
Studies of the 2004 hurricane season estimate that between 
one-quarter and one-third of Florida’s population evacu-
ated their homes prior to at least one hurricane; and many 
were evacuated several times [32].We assume the relocation 
of potentially exposed individuals could bias associations 
toward the null since people returning to exposed counties 
would have actually received no direct exposure by evacuat-
ing heavily influenced areas. Maternal exposure was defined 
based on residence at the time of delivery as listed on the 
birth certificate; however, we acknowledge that residence in 
a county throughout pregnancy has not been verified.
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Conclusion
In summary, we illustrate a method of inference for 
aggregate analyses to partially account for unmeas-
ured confounding. Our analysis differs from much of 
the current epidemiological application of differences-
in-differences method by demonstrating its appli-
cation with county-level data. The inconsistency of 
the literature on hurricanes and reproductive health 
may be in part due to biases inherent in pre-post or 
regression-based county-level comparisons. Because 
of limited information on covariates in administrative 
data sources like those analyzed here, the DID method 
may be particular useful as the exploitation of aggre-
gate-level “big data” increases. This example can aid 
future researchers in applying these methods to future 
studies.
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