Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jul 1;90(13):6179–6183. doi: 10.1073/pnas.90.13.6179

Six mRNAs with different 5' ends are encoded by a single gamma-glutamyltransferase gene in mouse.

S Rajagopalan 1, D F Wan 1, G M Habib 1, A R Sepulveda 1, M R McLeod 1, R M Lebovitz 1, M W Lieberman 1
PMCID: PMC46891  PMID: 8101000

Abstract

The 5' region of the mouse gamma-glutamyltransferase (gamma GT; EC 2.3.2.2) gene has been cloned and analyzed. This analysis, combined with sequence information obtained from gamma GT cDNA clones, indicates that in mouse a single gamma GT gene codes for six different mRNAs that differ in their 5' sequences. Analysis of steady-state levels of gamma GT RNA reveals different expression patterns for these RNAs in different organs. The six different 5' sequences are widely separated within a 10-kb region and three of them show 75-86% identify with the three known rat gamma GT cDNAs. Although the heterogeneity of the 5' ends of gamma GT RNAs may be explained in part by alternative splicing, it is likely that multiple promoters are involved in their generation.

Full text

PDF
6179

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERT Z., ORLOWSKA J., ORLOWSKI M., SZEWCZUK A. HISTOCHEMICAL AND BIOCHEMICAL INVESTIGATIONS OF GAMMA-GLUTAMYL TRANSPEPTIDASE IN THE TISSUES OF MAN AND LABORATORY RODENTS. Acta Histochem. 1964 May 30;18:78–89. [PubMed] [Google Scholar]
  2. Cameron R., Kellen J., Kolin A., Malkin A., Farber E. Gamma-glutamyltransferase in putative premalignant liver cell populations during hepatocarcinogenesis. Cancer Res. 1978 Mar;38(3):823–829. [PubMed] [Google Scholar]
  3. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  4. Chobert M. N., Lahuna O., Lebargy F., Kurauchi O., Darbouy M., Bernaudin J. F., Guellaen G., Barouki R., Laperche Y. Tissue-specific expression of two gamma-glutamyl transpeptidase mRNAs with alternative 5' ends encoded by a single copy gene in the rat. J Biol Chem. 1990 Feb 5;265(4):2352–2357. [PubMed] [Google Scholar]
  5. Chretien S., Dubart A., Beaupain D., Raich N., Grandchamp B., Rosa J., Goossens M., Romeo P. H. Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression. Proc Natl Acad Sci U S A. 1988 Jan;85(1):6–10. doi: 10.1073/pnas.85.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dempo K., Elliott K. A., Desmond W., Fishman W. H. Demonstration of gamma-glutamyl transferase, alkaline phosphatase, CEA and HCG in human lung cancer. Oncodev Biol Med. 1981;2(1-2):21–37. [PubMed] [Google Scholar]
  7. Fiala S., Fiala A. E., Dixon B. -Glutamyl transpeptidase in transplantable, chemically induced rat hepatomas and "spontaneous" mouse hepatomas. J Natl Cancer Inst. 1972 May;48(5):1393–1401. [PubMed] [Google Scholar]
  8. Fraser P., Cummings P., Curtis P. The mouse carbonic anhydrase I gene contains two tissue-specific promoters. Mol Cell Biol. 1989 Aug;9(8):3308–3313. doi: 10.1128/mcb.9.8.3308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GOLDBARG J. A., FRIEDMAN O. M., PINEDA E. P., SMITH E. E., CHATTERJI R., STEIN E. H., RUTENBURG A. M. The colorimetric determination of gamma-glutamyl transpeptidase with a synthetic substrate. Arch Biochem Biophys. 1960 Nov;91:61–70. doi: 10.1016/0003-9861(60)90455-0. [DOI] [PubMed] [Google Scholar]
  10. Griffiths S. A., Manson M. M. Rat liver gamma glutamyl transpeptidase mRNA differs in the 5' untranslated sequence from the corresponding kidney mRNA. Cancer Lett. 1989 Jul 1;46(1):69–74. doi: 10.1016/0304-3835(89)90217-6. [DOI] [PubMed] [Google Scholar]
  11. Habib G. M., Rajagopalan S., Godwin A. K., Lebovitz R. M., Lieberman M. W. The same gamma-glutamyl transpeptidase RNA species is expressed in fetal liver, hepatic carcinomas, and rasT24-transformed rat liver epithelial cells. Mol Carcinog. 1992;5(1):75–80. doi: 10.1002/mc.2940050112. [DOI] [PubMed] [Google Scholar]
  12. Hanigan M. H., Pitot H. C. Gamma-glutamyl transpeptidase--its role in hepatocarcinogenesis. Carcinogenesis. 1985 Feb;6(2):165–172. doi: 10.1093/carcin/6.2.165. [DOI] [PubMed] [Google Scholar]
  13. International symposium on tumor promotion. October 12-15, 1981. Environ Health Perspect. 1983 Apr;50:1–381. doi: 10.1289/ehp.50-1569242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jaken S., Mason M. Differences in the isoelectric focusing patterns of gamma-glutamyl transpeptidase from normal and cancerous rat mammary tissue. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1750–1753. doi: 10.1073/pnas.75.4.1750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Li Y. C., Seyama T., Godwin A. K., Winokur T. S., Lebovitz R. M., Lieberman M. W. MTrasT24, a metallothionein-ras fusion gene, modulates expression in cultured rat liver cells of two genes associated with in vivo liver cancer. Proc Natl Acad Sci U S A. 1988 Jan;85(2):344–348. doi: 10.1073/pnas.85.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. López-Casillas F., Kim K. H. Heterogeneity at the 5' end of rat acetyl-coenzyme A carboxylase mRNA. Lipogenic conditions enhance synthesis of a unique mRNA in liver. J Biol Chem. 1989 May 5;264(13):7176–7184. [PubMed] [Google Scholar]
  17. Maire P., Gautron S., Hakim V., Gregori C., Mennecier F., Kahn A. Characterization of three optional promoters in the 5' region of the human aldolase A gene. J Mol Biol. 1987 Oct 5;197(3):425–438. doi: 10.1016/0022-2836(87)90556-0. [DOI] [PubMed] [Google Scholar]
  18. Perlino E., Cortese R., Ciliberto G. The human alpha 1-antitrypsin gene is transcribed from two different promoters in macrophages and hepatocytes. EMBO J. 1987 Sep;6(9):2767–2771. doi: 10.1002/j.1460-2075.1987.tb02571.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rajagopalan S., Park J. H., Patel P. D., Lebovitz R. M., Lieberman M. W. Cloning and analysis of the rat gamma-glutamyltransferase gene. J Biol Chem. 1990 Jul 15;265(20):11721–11725. [PubMed] [Google Scholar]
  20. Rathbun W. B., Wicker K. Bovine lens -glutamyl transpeptidase. Exp Eye Res. 1973 Feb;15(2):161–171. doi: 10.1016/0014-4835(73)90115-2. [DOI] [PubMed] [Google Scholar]
  21. Rutenburg A. M., Kim H., Fischbein J. W., Hanker J. S., Wasserkrug H. L., Seligman A. M. Histochemical and ultrastructural demonstration of gamma-glutamyl transpeptidase activity. J Histochem Cytochem. 1969 Aug;17(8):517–526. doi: 10.1177/17.8.517. [DOI] [PubMed] [Google Scholar]
  22. Schaffner D. L., Barrios R., Massey C., Bañez E. I., Ou C. N., Rajagopalan S., Aguilar-Cordova E., Lebovitz R. M., Overbeek P. A., Lieberman M. W. Targeting of the rasT24 oncogene to the proximal convoluted tubules in transgenic mice results in hyperplasia and polycystic kidneys. Am J Pathol. 1993 Apr;142(4):1051–1060. [PMC free article] [PubMed] [Google Scholar]
  23. Shapiro L. H., Ashmun R. A., Roberts W. M., Look A. T. Separate promoters control transcription of the human aminopeptidase N gene in myeloid and intestinal epithelial cells. J Biol Chem. 1991 Jun 25;266(18):11999–12007. [PubMed] [Google Scholar]
  24. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Solt D. B. Localization of gamma-glutamyl transpeptidase in hamster buccal pouch epithelium treated with 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst. 1981 Jul;67(1):193–200. [PubMed] [Google Scholar]
  26. Takadera T., Leung S., Gernone A., Koga Y., Takihara Y., Miyamoto N. G., Mak T. W. Structure of the two promoters of the human lck gene: differential accumulation of two classes of lck transcripts in T cells. Mol Cell Biol. 1989 May;9(5):2173–2180. doi: 10.1128/mcb.9.5.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Taniguchi N., Iizuka S., Zhe Z. N., House S., Yokosawa N., Ono M., Kinoshita K., Makita A., Sekiya C. Measurement of human serum immunoreactive gamma-glutamyl transpeptidase in patients with malignant tumors using enzyme-linked immunosorbent assay. Cancer Res. 1985 Nov;45(11 Pt 2):5835–5839. [PubMed] [Google Scholar]
  28. Tateishi N., Higashi T., Nomura T., Naruse A., Nakashima K. Higher transpeptidation activity and broad acceptor specificity of gamma-glutamyltransferases of tumors. Gan. 1976 Apr;67(2):215–222. [PubMed] [Google Scholar]
  29. Williams G. M., Ohmori T., Katayama S., Rice J. M. Alteration by phenobarbital of membrane-associated enzymes including gamma glutamyl transpeptidase in mouse liver neoplasms. Carcinogenesis. 1980;1(10):813–818. doi: 10.1093/carcin/1.10.813. [DOI] [PubMed] [Google Scholar]
  30. Yamasaki T., Nakajima H., Kono N., Hotta K., Yamada K., Imai E., Kuwajima M., Noguchi T., Tanaka T., Tarui S. Structure of the entire human muscle phosphofructokinase-encoding gene: a two-promoter system. Gene. 1991 Aug 15;104(2):277–282. doi: 10.1016/0378-1119(91)90262-a. [DOI] [PubMed] [Google Scholar]
  31. van Dijk M. A., van Schaik F. M., Bootsma H. J., Holthuizen P., Sussenbach J. S. Initial characterization of the four promoters of the human insulin-like growth factor II gene. Mol Cell Endocrinol. 1991 Oct;81(1-3):81–94. doi: 10.1016/0303-7207(91)90207-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES