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Abstract

Diffusion Spectrum Imaging (DSI) reveals detailed local diffusion properties at the expense of 

substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-

space, followed by image reconstruction that exploits prior knowledge on the diffusion probability 

density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity 

under wavelet and total variation (TV) transforms, or under adaptive dictionaries that are trained 

on example datasets to maximize the sparsity of the representation. These compressed sensing 

(CS) methods require full-brain processing times on the order of hours using Matlab running on a 

workstation. This work presents two dictionary-based reconstruction techniques that use analytical 

solutions, and are two orders of magnitude faster than the previously proposed dictionary-based 

CS approach. The first method generates a dictionary from the training data using Principal 

Component Analysis (PCA), and performs the reconstruction in the PCA space. The second 

proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with 

respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it 

can simply be the training dataset of pdfs without any training. All of the proposed methods 

achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction 

quality comparable to that of dictionary-based CS algorithm.
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Introduction

Diffusion Spectrum Imaging (DSI) is a diffusion imaging acquisition technique that involves 

acquisition of the full q-space samples and yields a complete description of the diffusion 

probability density function (pdf) for voxels in the target volume [1, 2]. As DSI yields both 

angular and radial information about water diffusion, pdf-based fiber tracking was shown to 

outperform orientation distribution function (odf) based tractography that relies only on 

angular structure of diffusion [3]. Even though DSI is capable of representing complex fiber 

distributions, encoding the full q-space entails substantially long scan times on the order of 

an hour or longer.

Reducing the acquisition time in DSI is a well-motivated problem with solution proposals 

that can be categorized under two branches. The first class of techniques reduces acquisition 

time by modifying the imaging sequence to allow for acquisition of multiple imaging slices 

at once. Methods in this category include parallel imaging based Simultaneous Multi-Slice 

(SMS) approach [4–6] and Simultaneous Image Refocusing (SIR) technique [7, 8]. High 

quality diffusion image reconstruction with 3-fold acceleration was recently demonstrated in 

this domain [6, 9, 10]. The second branch of methods involves undersampling in q-space 

and using reconstruction that imposes prior knowledge on the diffusion pdfs. Compressed 

sensing (CS) reconstruction based on sparsity prior in wavelet and total variation (TV) 

transforms was proposed by Menzel et al. [11]. More recently, imposing a sparsity prior 

with respect to a dictionary trained for sparse representation of pdfs was shown to yield 

better reconstruction than using fixed transforms (wavelet and TV) [12]. This technique 

combines the CS algorithm FOCUSS (FOCal Underdetermined System Solver) [13] and the 

sparse dictionary training method K-SVD [14], where a dictionary trained using pdfs from a 

particular subject was demonstrated to generalize to provide good reconstruction of other 

subjects. Even though the dictionary-based CS method reduces reconstruction errors up to 2 

times relative to wavelet and TV reconstruction, computation time remained a serious 

bottleneck for both of these methods. Reported reconstruction times are 27 seconds per 

voxel for wavelet and TV, and 12 seconds per voxel for dictionary-FOCUSS [12] in Matlab 

on a workstation with a 2.4GHz Intel Xeon processor and 12GB memory. These lead to 

several days of reconstruction, making iterative CS methods infeasible for clinical 

applications.

Other elegant articles that employ CS techniques for reconstruction of diffusion pdfs include 

[15–17]. Combination of CS reconstruction with dictionary learning for pdf estimation was 

explored in [18] and [19]. Sparsity enforcing reconstruction was also investigated in other 

diffusion imaging techniques, such as high angular resolution diffusion imaging (HARDI) 

[20, 21] and multi-shell imaging [22].

In this work, we propose two dictionary-based reconstruction algorithms that overcome the 

computational bottleneck while retaining high reconstruction quality. The first proposal is to 

apply Principal Component Analysis (PCA) on training data and derive a lower dimensional 

representation of diffusion pdfs. This way, fewer PCA coefficients are required to represent 

individual pdfs, effectively reducing the acceleration factor of the undersampled acquisition. 

The second method constrains the reconstructed pdfs to remain in the column space of a 
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dictionary, but instead of using iterative CS reconstruction, Tikhonov regularization is 

applied on the dictionary transform coefficients. This admits a closed-form expression, 

which is shown to be equivalent to the regularized pseudoinverse solution. The dictionary 

involved in the reconstruction can either be obtained using the K-SVD training algorithm, or 

it can simply be the training dataset of pdfs without any training. All proposed methods 

require a single matrix multiplication to reconstruct the pdfs of an entire imaging slice, 

hence attaining at least 2-orders of magnitude speed up in computation relative to iterative 

CS algorithms. We report computation times on the order of seconds per slice in Matlab for 

these methods, and show that the reconstruction quality is comparable to that of Dictionary-

FOCUSS on in vivo datasets.

The main contributions of this work are,

i. Two simple, L2-based algorithms for reconstruction of undersampled q-space with 

computation times as fast as 5 seconds per slice are proposed,

ii. Requiring the pdfs to remain in the range of a dictionary is demonstrated to be the 

crucial step in reconstruction, rather than enforcing sparsity with respect to this 

dictionary,

iii. Dictionary training for representation of pdfs is simplified: using a training set of 

pdfs without any dictionary optimization is shown to be sufficient,

iv. A compact dictionary can be obtained with K-SVD training, this substantially 

reduces the reconstruction time while yielding the same performance as employing 

an overcomplete representation as in [12],

v. The proposed L2-based methods and Dictionary-FOCUSS are compared in terms 

of reconstruction quality in pdf, q-space, and odf representations. Proposed 

algorithms are shown to be comparable to Dictionary-FOCUSS in all cases, while 

being much more practical.

vi. For reproducibility of the results, Matlab implementation of the proposed 

algorithms is made available at: http://web.mit.edu/berkin/www/

Fast_DSI_Recon_Toolbox_v2.zip

Theory

Brief descriptions of DSI reconstruction with

i. Prespecified transforms (wavelet and TV penalties),

ii. Dictionary training with K-SVD,

iii. Dictionary-FOCUSS algorithm that applies CS with respect to a K-SVD trained 

dictionary,

iv. Proposal I: PCA-based reconstruction, and

v. Proposal II: Tikhonov regularization on dictionary coefficients, are presented.
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i. CS Recovery with Prespecified Transforms—Letting p ∈ ℂN represent the 3-

dimensional diffusion pdf at a particular voxel as a column vector, and q ∈ ℂM denote the 

corresponding undersampled q-space information, CS recovery with wavelet and TV 

penalties aims to solve the convex optimization problem at a single voxel,

Eq.1

where FΩ is the undersampled Fourier transform operator, Ψ is a wavelet transform operator, 

TV(․) is the Total Variation penalty, and α and β are regularization parameters that need to 

be determined. CS recovery with wavelet and TV regularization was initially proposed in 

[11], and was compared to dictionary-based reconstruction in [12]. Other options such as Ψ 

= I have been previously explored [16]. This unconstrained formulation relaxes the data 

consistency constraint FΩp = q to a least-squares penalty due to . As this linear 

system will no longer be satisfied with equality at the end of the unconstrained optimization, 

the part of the reconstructed q-space can be replaced with the originally acquired data where 

it is available. This would ensure data consistency, and increase the fidelity of the 

reconstruction relative to the fully-sampled data. As proposed in [11], acquired samples q 
can be substituted back to the q-space of minimizer of Eq.1 p̂ using the relation p̃ = F−1[(F − 

FΩ)p̂ + q], where F represents the fully-sampled Fourier transform operator. This expression 

keeps the CS estimated content for all of the missing q-space points, while inserting the 

sampled q-space data back to match FΩp̃ = q with equality.

ii. Dictionary Training with K-SVD—Given an ensemble P ∈ ℂN×L formed by 

concatenating L example pdfs  collected from a training dataset as column vectors, 

the K-SVD algorithm [14] aims to find the best possible dictionary for the sparse 

representation of this dataset by solving either one of the following problems,

Eq.

2

Eq.

3

where X is the matrix that contains the transform coefficient vectors as its columns, 

D ∈ ℝN×K is the trained dictionary, ε is a fixed constant that adjusts the data fidelity, s is an 

input parameter that determines the sparsity level of the transform coefficients, and ‖․‖F is 

the Frobenius norm. The K-SVD works iteratively, first by fixing D and finding an 

optimally sparse X using orthogonal matching pursuit, then by updating each column of D 
and the transform coefficients corresponding to this column to increase data consistency. 

The dependence of reconstruction performance of sparsity- and consistency-based 

dictionaries on the training parameters ε, s and the number of dictionary columns K is 

explored in the Results section.

iii. CS Recovery with FOCUSS using a Dictionary—The FOCUSS algorithm aims to 

find a sparse solution to the underdetermined linear system FΩDx = q, where x is the vector 
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of transform coefficients in the transform space defined by the dictionary D using the 

following iterations,

For iteration number t = 1, … T,

Eq.4

(5)

Eq.6

Here, Wt is a diagonal weighting matrix whose jth diagonal entry is denoted as , xt is the 

estimate of transform coefficients at iteration t whose jth entry is . The final reconstruction 

in diffusion pdf space is obtained via the mapping p = DxT+1. This reconstruction method is 

denoted as Dictionary-FOCUSS.

To see how FOCUSS enforces a sparse solution intuitively, let x = Ws at convergence. Eq.5 

now reduces to

Eq.7

And the weighted L2-term becomes .

iv. Proposal I: Reconstruction with Principal Component Analysis—PCA is a 

technique that seeks the best approximation of a given set of data points using a linear 

combination of a set of vectors which retain maximum variance along their directions. PCA 

starts by subtracting the mean from the data points to center these samples [23]. Again 

beginning with a collection of pdfs P ∈ ℂN×L, whose ith column is a training pdf pi ∈ ℂN, we 

obtain a modified matrix Z ∈ ℂN×L by subtracting the mean pdf from each column,

Eq.8

where zi is the ith column of Z. Next, the covariance matrix ZZH is diagonalized to produce 

an orthonormal matrix U and a matrix of eigenvalues Λ,

Eq.9

It is possible to obtain a reduced-dimensionality representation by generating the matrix UT 

which contains the T columns of U that correspond to the T largest eigenvalues in Λ. For a 

given pdf p, the PCA projection becomes,
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Eq.10

The location of the projected point pca in the larger dimensional pdf space is,

Eq.11

With the preceding definitions, we can estimate the target pdf from undersampled q-space in 

the least-square sense,

Eq.12

Expressed in terms of the PCA coefficients,

Eq.13

The solution to the least squares problem in Eq.13 is computed using the pseudoinverse, 

pinv(․),

Eq.14

The result in pdf space is finally given by

Eq.15

The reconstruction matrix UTpinv (FΩUT) needs to be computed only once. The dimension 

of the PCA space T is a parameter that needs to be determined. A possible way to choose 

this parameter is by optimizing the reconstruction performance with respect to an error 

metric on the training dataset. This point will be discussed in more detail under Methods.

PCA-based reconstruction can easily be extended so that all pdfs in a given slice can be 

estimated at once. Letting Q denote the matrix whose ith column corresponds to the 

undersampled q-space data qi from voxel i, all pdfs in the slice are obtained by,

Eq.16

In this expression, Pmean is the matrix obtained by concatenating the mean pdf pmean as 

column vectors. The compact expression in Eq.16 allows by-passing voxel-by-voxel 

reconstruction and leads to additional computational savings. Finally, the acquired q-space 

samples were substituted back in the reconstructed signals’ q-space for increased data 

consistency.
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v. Proposal II: Dictionary-based Reconstruction with Regularized 
Pseudoinverse—Given a dictionary D, Tikhonov regularized reconstruction of dictionary 

coefficients at a particular voxel x are found by solving,

Eq.17

Since this objective function is strictly convex, the unique global optimizer is found by 

setting the gradient equal to zero,

Eq.18

Alternatively, we can relate Eq.18 to the singular values of the observation matrix FΩD by 

letting FΩD = UΣVH,

Eq.19

Hence, the Tikhonov regularized solution can be found by applying singular value 

decomposition (SVD) to the observation matrix FΩD and modifying ith singular value due to 

 [24, 25]. Defining Σ+ = (ΣHΣ + λ · I)−1ΣH to be the diagonal matrix with 

entries , the solution matrix VΣ+UH in the last line of Eq.19 needs to be computed only 

once. The regularization parameter λ can be selected to optimize the reconstruction 

performance on the training dataset that was used to generate the dictionary D. This point is 

addressed in more detail under the Methods section. The result in pdf space is finally 

computed as p̃ = Dx̃. Regularized pseudoinverse reconstruction is denoted as PINV in the 

remainder of the text. Similar to PCA, all pdfs in a single slice can be estimated at once due 

to P̃ = DVΣ+UHQ.

Herein, two different dictionaries are considered for reconstruction; using K-SVD training 

or directly using the training dataset of pdfs as the dictionary by setting D = P. Tikhonov-

regularized reconstruction with K-SVD-trained dictionary is denoted with PINV(K-SVD), 

and reconstruction with the training pdfs as the dictionary is denoted with PINV(PDF) for 

the remainder of this work. Similar to PCA, acquired q-space samples are substituted back 

in the reconstructed pdfs’ q-space.

Methods

To test the performance of the various reconstruction algorithms, diffusion EPI acquisitions 

were obtained from three healthy volunteers (subjects A, B, and C) using a 3T system 

(Magnetom Skyra Connectom, Siemens Healthcare, Erlangen, Germany) equipped with the 

AS302 “CONNECTOM” gradient with Gmax = 300 mT/m (here we used Gmax = 200 mT/m) 
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and Slew = 200 T/m/s. A custom-built 64-channel RF head array [26] was used for reception 

with imaging parameters of 2.3 mm isotropic voxel size, FOV = 220×220×130, matrix size 

= 96×96×57, bmax = 8000 s/mm2, 514 directions full sphere q-space sampling (corners of q-

space were zero-padded since they were not sampled) organized in a Cartesian grid with 

interspersed b=0 images every 20 TRs (for motion correction, 25 b=0 images in total), in-

plane acceleration = 2× (using GRAPPA reconstruction algorithm [27]), TR/TE = 5.4 s / 60 

ms, total imaging time ~50 min. In addition, at 5 q-space points ([1,1,0], [0,2,−1], [0,0,3], 

[0,4,0], and [5,0,0]) residing on 5 different shells of DSI q-space samples, 10 averages were 

collected for noise quantification. The corresponding b-values for these 5 points were 640, 

1600, 2880, 5120, and 8000 s/mm2. Eddy current related distortions were corrected using 

the reversed polarity method [28]. Motion correction (using interspersed b=0) was 

performed using FLIRT [29] with sinc interpolation.

Variable-density undersampling (using a power-law density function [30]) with R=3, 5, and 

9 acceleration factors was applied in q-space on a 12×12×12 grid. Three different 

dictionaries were trained with data from slice 30 of subjects A, B, and C. Reconstruction 

experiments were applied on test slices that are different than the training slices. In 

particular, two single-slice reconstruction experiments were performed,

i. First, voxels in slice 40 of subject A were retrospectively undersampled in q-space, 

and reconstructed using all methods under consideration: Dictionary-FOCUSS, 

PCA, Tikhonov regularization with K-SVD dictionary (PINV(K-SVD)) and with 

training dataset itself as the dictionary (PINV(PDF)). The training data were 

sampled from slice 30 of subject B.

ii. Second, voxels in slice 25 of subject B were retrospectively undersampled, and 

again reconstructed with Dictionary-FOCUSS, PCA, PINV(K-SVD) and 

PINV(PDF). In this experiment, the training data were obtained from slice 30 of 

subject A.

In these experiments, slice 30 was selected for training, and slices 25 and 40 were chosen for 

test based on their anatomical location, so that the test slices would reside on lower and 

upper parts of the brain, while the training slice was one of the middle slices. Three different 

acceleration factors, R=3, 5, and 9 were applied for dictionary-based reconstruction. By 

taking the fully-sampled data as ground-truth, the fidelity of the reconstruction methods 

were compared using root-mean-square error (RMSE) normalized by the ℓ2-norm of ground-

truth as the error metric both in pdf domain and q-space.

The performance of K-SVD-trained dictionaries was evaluated for a range of training 

parameters ε (consistency constraint), s (sparsity level) and K (dictionary size). The lowest 

error was obtained with sparsity-constrained training at sparsity level s=10 and dictionary 

size K=258. All subsequent PINV(K-SVD) and Dictionary-FOCUSS reconstructions in the 

current work employed this “optimal” dictionary. Testing Dictionary-FOCUSS 

reconstruction error for various iteration number settings revealed that 5 outer loops of 

reweighted ℓ2 updates with 30 inner iterations to solve Eq. 5 yielded equivalent results to the 

previously reported 10 outer and 50 inner loops in [12]. Another source of performance gain 

for Dictionary-FOCUSS was the smaller size of the optimal dictionary (258 columns) as 
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opposed to the overcomplete 3191-column dictionary employed in [12]. The combined 

effect of reduced iteration number and smaller dictionary size yielded about 45-times speed 

up for Dictionary-FOCUSS compared to reported speed in [12], without degrading the 

reconstruction performance.

Tikhonov regularization parameter λ for PINV and the dimension of the PCA space T were 

determined using the training data. In particular, reconstruction experiments were performed 

on the training dataset with the same undersampling pattern used for the test dataset, and the 

parameter that yielded the lowest RMSE was selected as the optimal regularization 

parameter. For PINV(K-SVD), at all acceleration factors and for both of subjects A and B, 

λ=0.01 was seen to yield the lowest RMSE values on the training set. Regarding 

PINV(PDF), λ=0.03 was the optimal parameter for all acceleration factors on subject A. For 

subject B, lowest error at R=3 and 5 was obtained with λ=0.1, while the optimal setting was 

λ=0.03 at R=9. The optimal dimension of the PCA space for subject A was found to be 

T=(50, 26, 22) at accelerations R=(3, 5, 9), respectively. For subject B, the corresponding 

values were T=(45, 27, 13).

To map the performance of the methods across the brain, reconstruction experiments on 

multiple slices across the whole brain were performed using Dictionary-FOCUSS, PCA, 

PINV(K-SVD), and PINV(PDF). Mean and standard deviation of RMSE in pdf domain for 

each slice were computed for subjects A and B.

In order to explore whether dictionary reconstruction generalizes across subjects, slice 40 of 

subject A was reconstructed using Dictionary-FOCUSS, PCA, PINV(K-SVD), and 

PINV(PDF) with dictionaries trained on data from subjects A, B, and C at R=3.

Since the fully-sampled data are corrupted by noise, computing RMSEs relative to them will 

include contributions from both reconstruction errors and additive noise. To address this, the 

additional 10 average data acquired at the selected five q-space points were used. As a single 

average full-brain DSI scan takes ~50 min, it was not practical to collect 10 averages for all 

of the undersampled q-space points. As such, we rely on both error metrics, namely: the 

RMSE relative to 1 average fully-sampled dataset and the RMSE relative to gold standard 

data for five q-space points.

To investigate how reconstruction error varies as a function of q-space location, at R=3, q-

space images at the “missing” (not sampled) directions were computed using the pdfs 

estimated by all methods under consideration. RMSE values were obtained for all missing q-

space directions by taking the fully-sampled 1 average dataset as ground truth.

Odf visualizations for a region of interest selected on slice 40 of subject A were computed 

for all methods at 3-fold undersampling. Additionally, fiber tractography solutions were 

computed for PCA, PINV(K-SVD) and PINV(PDF) reconstructions at 3-fold acceleration 

and for the fully-sampled dataset. We compared the images of a single subject, reconstructed 

from data using each of the three proposed reconstruction methods or reconstructed from 

fully sampled data, in terms of the tractography solutions that they produced. Streamline 

deterministic DSI tractography was performed on each data set in trackvis (http://

trackvis.org) and 18 white-matter pathways were labeled. The labeling was performed 
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following the protocol described in [31], where two regions of interest (ROIs) are drawn for 

each pathway in parts of the anatomy that the pathway is known to traverse. To eliminate 

variability due to manual labeling in the two data sets and make our comparison as unbiased 

as possible, the ROIs used here were not drawn manually on the each data set. Instead we 

obtained the ROIs from a different data set of 33 healthy subjects, where we had previously 

labeled the same pathways [32]. We averaged the respective ROIs from the 33 subjects in 

MNI space [33] and performed affine registration to map the average ROIs to the native 

space of each of the four data sets (fully sampled or 3-fold accelerated with the three 

proposed reconstruction methods). In each of the four data sets, we identified the 

tractography streamlines that went through the ROIs corresponding to each of the 18 

pathways.

Results

Dictionary-FOCUSS, PCA, PINV(K-SVD), and PINV(PDF) reconstruction errors relative 

to fully-sampled pdfs in slice 40 of subject A are presented in Fig.1. All dictionary-based 

methods use the same training pdfs that were collected from slice 30 of subject B. At 

acceleration factor R=3, Dictionary-FOCUSS, PCA, PINV(K-SVD), and PINV(PDF) had 

7.6%, 7.8%, 7.5%, and 7.5% average error, respectively. At the higher acceleration factor of 

R=5, Dictionary-FOCUSS, PCA, PINV(K-SVD), and PINV(PDF) yielded 8.6%, 8.9%, 

8.6%, and 8.6% RMSE, respectively. At R=9, the average RMSE figures were 9.9%, 11.0%, 

10.2%, and 10.1% for Dictionary-FOCUSS, PCA, PINV(K-SVD), and PINV(PDF). The 

computation times were 11 min for Dictionary-FOCUSS, 10 sec for PCA, 4 sec for 

PINV(K-SVD), and 13 sec for PINV(PDF).

Fig.2 compares pdf reconstruction errors obtained with the reconstruction methods under 

consideration for slice 25 of subject B. The training data for the dictionary-based methods 

were the pdfs in slice 30 of subject A. At acceleration R=3, Dictionary-FOCUSS, PCA, 

PINV(K-SVD), and PINV(PDF) returned 10.7%, 11.2%, 10.7%, and 10.7% average RMSE, 

respectively. At the higher acceleration factor of R=5, Dictionary-FOCUSS, PCA, PINV(K-

SVD), and PINV(PDF) yielded 12.3%, 12.8%, 12.2%, and 12.2% RMSE, respectively. At 

R=9, the errors were 13.8%, 14.8%, 13.9%, and 13.9% for Dictionary-FOCUSS, PCA, 

PINV(K-SVD), and PINV(PDF). The computation times were 13 min for Dictionary-

FOCUSS, 13 sec for PCA, 6 sec for PINV(K-SVD), and 15 sec for PINV(PDF).

Pdf reconstruction errors for subject A across slices are plotted for Dictionary-FOCUSS, 

PCA, PINV(K-SVD), and PINV(PDF) in Fig.3. At four slices, RMSE maps are also 

depicted for comparison. The mean RMSE averaged across all slices was found to be 10.2% 

for Dictionary-FOCUSS, 10.8% for PCA, 10.1% for PINV(K-SVD), and 10.3% for 

PINV(PDF). Results from the same analysis are presented in Fig.4 for subject B. In this 

case, the mean RMSE averaged across all slices was found to be 10.2% for Dictionary-

FOCUSS, 10.5% for PCA, 10.1% for PINV(K-SVD), and 10.1% for PINV(PDF).

Using training data obtained from three different subjects, A, B and C, dictionary-based 

reconstruction at R=3 undersampling was performed on slice 40 of subject A. The resulting 

error maps are depicted in Fig.5, where Dictionary-FOCUSS had 7.60%, 7.56%, and 7.58% 
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average RMSE with dictionaries trained on subjects A, B, and C, respectively. The mean 

errors were 7.75%, 7.76%, and 7.76% for PCA, 7.48% with all dictionaries for PINV(K-

SVD) and 7.51%, 7.50%, and 7.49% for PINV(PDF) using training data from subjects A, B, 

and C.

To isolate the reconstruction error from the contribution of noise to the RMSE figures, 

comparison against the 10 average dataset collected at 5 different q-space points is presented 

in Fig.6. The comparison is based on slice 40 of subject A at 3-fold undersampling, while 

the data used for dictionary training were slice 30 of subject B. The average error for each of 

the curves in Fig.6 were 10.7% for fully-sampled 1 average data, 8.3% for Dictionary-

FOCUSS, 9.0% for PCA, 8.2% for PINV(K-SVD), and 8.2% for PINV(PDF) 

reconstruction.

Reconstruction errors at acceleration R=3 for slice 40 of subject A at the “missing” q-space 

points are plotted in Fig.7. When averaged over all missing q-space points, the RMSEs were 

found to be 15.5% for Dictionary-FOCUSS, 15.8% for PCA, 15.4% for PINV(K-SVD), and 

15.4% for PINV(PDF). The panel on the right shows the q-space images at the location 

[5,0,0] estimated by the six reconstruction methods, as well as the fully-sampled 10 average 

and 1 average images.

Odf visualizations based on the pdfs reconstructed by the four methods at 3-fold acceleration 

are compared with the glyphs obtained from the fully-sampled data for slice 40 of subject A 

in Fig.8. The region of interest is marked on the Fractional Anisotropy (FA) map, inside 

which four voxels are further magnified.

Isosurface plots for three example pdfs from the pdf training dataset, three columns from the 

258-column K-SVD dictionary, and the first three eigenvectors in the PCA-basis are 

depicted in Fig.9. For each plot in PDF and K-SVD dictionaries, the isosurface level was 

determined to be at 5% of the maximum value in the column vector. For the PCA 

eigenvectors, isosurface was computed at 20% of the maximum value in each vector.

The dependence of K-SVD based Tikhonov-regularized reconstruction PINV(K-SVD) on 

the K-SVD training parameters ε (data consistency constraint), s (sparsity level), and K (the 

number of dictionary columns) is explored in Fig.10. For sparsity-based training, transform 

coefficients with at most s = (3, 10, 25, 50) non-zero elements were considered. With data 

consistency-based K-SVD training, consistency levels of ε = (10−4, 10−3, 10−2, 10−1) were 

employed. In both cases, three dictionary sizes were used. K = 258 corresponds to the rank 

of the real part of the pdf training set P used in generating the K-SVD dictionaries. K = 1728 

is equal to the dimension of the pdf signals, and yields a square-sized dictionary. K = 3191 is 

the number of training pdf samples, which allows an overcomplete representation. Among 

the 24 K-SVD dictionaries, sparsity-based training with K = 258 columns and s = 10 

elements gave the smallest error of 7.48% while reconstructing slice 40 of subject A at 3-

fold acceleration. This parameter setting was chosen to be optimal one and was used in all 

results reported with Dictionary-FOCUSS and PINV(K-SVD). Additionally, Fig.10 

investigates the reconstruction performance of PINV(PDF) as a function of the number of 
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pdfs in the training dataset. The lowest error of 7.50% was obtained when all 3191 pdfs 

were included in the PDF dictionary.

Fig. 11 shows the tractography solutions of subject A in the fully sampled and 3-fold 

accelerated reconstructions using the PCA, PINV(K-SVD) and PINV(PDF) methods. Fig. 

12 shows plots of the average fractional anisotropy (FA) and mean diffusivity (MD) of each 

of the 18 white-matter pathways, as calculated from each of these four reconstructions.

Discussion

The three proposed methods PINV(K-SVD), PINV(PDF), and PCA were demonstrated to 

have reconstruction quality comparable to that of Dictionary-FOCUSS in pdf and odf 

domains and q-space based on Figs. 1 through 8. At the same time, they attained 2 orders of 

magnitude reduction in computation time relative to Dictionary-FOCUSS. With this initial 

implementation, which reconstructs an entire slice at once and runs on Matlab, processing 

times as low as 5 seconds per slice are already achievable. While being feasible for clinical 

application of accelerated DSI, the presented methods do not sacrifice reconstruction quality 

for computation speed.

The governing idea of this work is that the key to good reconstruction quality is the priors 

encoded in a dictionary, and not the particular type regularization applied on the transform 

coefficients. Constraining the reconstructed pdfs to be a linear combination of the dictionary 

columns is shown to be a much stronger prior than sparsity or smoothness constraints on the 

linear combination weights. As such, simple ℓ2-regularized reconstruction yields as good 

results as the iterative ℓ1 solution, as long as a dictionary is involved. Indeed, using the same 

dictionary made of 258 columns that requires at most 10 dictionary columns to represent the 

training dataset, Dictionary-FOCUSS with ℓ1-regularization, and PINV(K-SVD) with ℓ2-

constraint yield very similar results. To further support the claim that sparsity is not 

essential, we proposed PCA and PINV(PDF) methods that include no sparsity assumption in 

either training or reconstruction steps. In fact, PINV(PDF) is so simple that it only requires 

the reconstructed pdfs to be in the range of training pdfs, but it works equally well as the 

other more involved methods presented in this work. The advantage of using a K-SVD 

trained dictionary is that it allows a more compact representation, while a couple of 

thousand pdfs are required to achieve good reconstruction quality in PINV(PDF) (Fig.10). 

To show that K-SVD trained 258-column dictionary and the 3191-column dictionary made 

from training pdfs have equivalent representation power, we computed the difference in the 

range of these dictionaries via,

Eq.20

Here, residual is the energy of the part of one dictionary that cannot be represented by the 

other one. To arrive at this relation, note that left singular vectors corresponding to the non-

zero singular values of a matrix span the range of this matrix. By applying SVD on the K-

SVD trained dictionary and the dictionary made of training pdfs and keeping the 258 

columns corresponding to the significant singular values, the matrices G and H that span the 
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range of these two dictionaries are obtained. The expression (GGH − I)H then gives the 

difference between the span of one dictionary and its projection onto the range of the other. 

For K-SVD and PDF dictionaries, residual was computed to be 8.9·10−12, which is 

negligibly small. As such, PINV(PDF) method by-passes sparsity assumptions and 

dictionary training without compromising representative power.

To further support the point that the presence of a dictionary that represents the pdfs is 

essential, we set the dictionary in PINV reconstruction to the identity matrix I, so that ℓ2-

penalty is applied on the pdfs themselves, rather than dictionary transform coefficients. At 3-

fold acceleration, this resulted in a substantially high error of 68.6% for slice 40 of subject 

A. Moreover, if ℓ1-regularization is applied on the pdfs by setting the dictionary to the 

identity matrix I in the FOCUSS algorithm, 15.6% RMSE is obtained. In contrast, using a 

pdf-based dictionary with PINV(PDF) reduced this error 7.5% (Fig.1).

An alternative approach to improving reconstruction speed is to increase the convergence 

rate of iterative CS algorithms through Nesterov-type gradient descent algorithms [34]. 

These optimal methods rely on a weighted combination of all previous gradients, and reduce 

the number of iterations required to reach a certain solution precision. With the FISTA 

algorithm [34], wavelet-based deblurring was seen to require 10 times fewer number of 

iterations compared to gradient descent. However, even with optimal descent techniques, 

processing time of CS algorithms would still remain above an hour for full brain 

reconstruction, which may not be a clinically feasible interval. Further, ℓ1 regularization 

parameters need to be determined for such optimal CS algorithms. Parallel programming 

and optimized implementation in an efficient language such as C++ are two potential 

sources of performance gain for all methods considered in the current work.

For all of the proposed methods, there is also one parameter that needs to be tuned, namely, 

the ℓ2 regularization parameter for PINV(K-SVD) and PINV(PDF), and the number of 

columns kept in PCA. We propose to use the fully-sampled training dataset to determine 

“optimal” parameters with respect to the RMSE metric. Using the same undersampling 

pattern that will be applied on the test dataset, the parameter setting that yields the lowest 

reconstruction RMSE on the training dataset is determined by parameter sweeping. We note 

that there are other established ways to determine these regularization parameters (e.g., L-

curve method [25], cross-validation). With the assumption that fully-sampled data exist for 

dictionary training, we further utilized this set for parameter extraction. For subject A, the 

dimension of the PCA space was determined by minimizing the reconstruction error on the 

training set from subject B to obtain the optimal values T=(50, 26, 22) at R=(3, 5, 9). 

Instead, if the parameters were determined by optimizing the performance on subject A, the 

optimal values would be T=(49, 24, 23). This set of parameters would yield 7.7%, 8.9% and 

10.9% at R=(3, 5, 9), compared to 7.8%, 8.9%, and 11.0% obtained in Fig.1 with the 

parameters determined on the training set. The difference is mild, causing a change of at 

most 0.1% in the average error.

Similarly for subject B, the optimal parameter setting was found to be T=(45, 27, 13) based 

on the training dataset from subject A. Assuming that it was possible to optimize the 

parameters with data from subject B, T=(45, 22, 13) would have been obtained. In this case, 

Bilgic et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the only difference is at R=5, where the RMSE in Fig.2h would decrease from 12.8% to 

12.6% if T=22 was used instead of T=27. Hence, the PCA parameters extracted from the 

training dataset generalize very well to the test dataset and yield close to optimal 

reconstruction performance.

Because the optimal PCA dimension was seen to differ across subjects (for A, T=(50, 26, 

22) and for B, T=(45, 27, 13)), we tested the effect of applying the optimal T determined for 

subject A while reconstructing B and vice versa. Regarding slice 40 of subject A, the error 

values became 7.7%, 9.0% and 11.5% at R=(3, 5, 9), compared to 7.8%, 8.9% and 11.0% 

RMSE in Fig.1. Regarding the reconstruction of slice 25 of subject B, the RMSEs would 

change to 11.5%, 12.8%, and 15.8% at R=(3, 5, 9) compared to 11.2%, 12.8% and 14.8% 

obtained in Fig.2. These results suggest that optimal number of columns for PCA 

reconstruction generalizes across subjects, except when very high acceleration factors are 

employed.

The number of PCA columns that yielded the lowest error was seen to decrease as the 

acceleration factor increased. PCA reconstruction in Eq.15 involves the solution of a least 

squares problem via the pseudoinverse of FΩQT, and this problem is ill-conditioned if the 

condition number of FΩQT is large. In this case, small errors in the entries of this matrix can 

lead to large errors in the solution vector. While keeping the number of columns T fixed, it 

was observed that the condition number increased as the acceleration factor increased. For 

instance, letting T=100, cond (FΩQT) was computed to be 6.8 at R=3, 113.2 at R=5, and 

2.0·1014 at R=9. This indicates that smaller number of columns needs to be used at higher 

accelerations to keep the least squares problem well-conditioned.

The regularization parameter λ for PINV(K-SVD) and PINV(PDF) was seen to be relatively 

insensitive to changes in the acceleration factor R. For reconstruction of subject A, the 

optimal parameters were determined on the training dataset from subject B, and were found 

to be λ=10−2 for PINV(K-SVD) and λ=3·10−2 for PINV(PDF) for all undersampling factors. 

If the optimal parameters were determined on the test data itself, λ=10−2 for PINV(K-SVD) 

and λ=3·10−2 for PINV(PDF) would again be obtained at R = 3 and 5. However, slightly 

lower regularization parameters of λ=3·10−3 and λ=10−2 would be obtained at R = 9. 

Regarding subject B, the optimal parameters determined on the training dataset were λ=10−2 

for PINV(K-SVD) and λ=10−1 for PINV(PDF) at all acceleration factors, except that 

λ=3·10−2 at R = 9 was chosen for PINV(PDF). If these parameters were determined on the 

test data itself, λ=10−2 for PINV(K-SVD) and λ=10−1 for PINV(PDF) at all R factors would 

be selected. Based on this analysis, the regularization parameters selected on the fully-

sampled training dataset are seen to generalize well to reconstruction of undersampled test 

data. These parameters are also insensitive to the acceleration factor employed, further 

increasing the robustness of the proposed Tikhonov-regularized methods.

To explore whether dictionary-based methods generalize across healthy subjects, 

dictionaries trained on three different subjects were employed in reconstruction of a single 

slice from subject A. For all of the dictionary-based methods, essentially the same RMSE 

values were obtained with data from each subject (Fig.5). While this indicates that the 

proposed methods generalize well among young and healthy subjects, it remains an open 
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question whether the same observation can be made across different age groups or patient 

populations. The impact of using different imaging parameters on generalization of 

dictionary reconstruction also warrants further investigation. It is especially likely that 

employing different scan parameters would cause the pdf shapes to change, as this would 

correspond to a different snapshot of the diffusion process.

When 10 average data were taken as ground truth (Fig.6), all four dictionary-based methods 

at 3-fold acceleration were seen to yield lower error than the fully-sampled 1 average data. 

This could indicate that dictionary-based techniques successfully estimate the missing q-

space samples as well as denoise the q-space. In accordance with this conclusion, K-SVD 

was recently proposed as a denoising tool for high-angular diffusion imaging (HARDI) [35], 

where training and denoising were performed on q-space images.

Regarding the PCA method, using a lower dimensional space reduces the number of 

coefficients that need to be estimated from the sampled q-space points. Considering the case 

at R=3 with T=50 principal components, the projected pdfs reside in a 50-dimensional space 

whose coordinates need to be determined using 171 q-space samples (at 3-fold 

undersampling for 515 directions). Rather than operating in the pdf space with 12×12×12 = 

1728 dimensions, PCA method seeks 50 coefficients, thus substantially reduces the effective 

undersampling factor of the problem. This is thanks to the prior information encoded in the 

training pdf dataset.

Optimization of the dictionary trained with the K-SVD algorithm with respect to the training 

parameters was investigated in Fig.10. The lowest RMSE of 7.48% was obtained with the 

smallest dictionary of column size K=258 at the sparsity level s=10. However, the 

performance is relatively insensitive to the training parameters, e.g. 7.56% RMSE is 

obtained with the overcomplete dictionary at any sparsity or consistency level. The reason 

why the overcomplete dictionary remains the same while the parameters change is that, it is 

possible to represent any training pdf using a single dictionary coefficient, as the number of 

columns is equal to the number of training pdfs. Hence, using an overcomplete dictionary 

would simplify the parameter selection in K-SVD training while remaining close to optimal 

in terms of reconstruction quality. The Dictionary-FOCUSS results reported in [12] were all 

obtained with overcomplete dictionaries. This selection substantially increases the 

reconstruction times, since the overcomplete dictionary is about 10 times larger than the 

optimal 258-column dictionary employed here. By reducing the number of iterations about 3 

times and the dictionary size about 12 times, we were able to obtain 45-times speed up in 

Dictionary-FOCUSS reconstruction relative to [12], without degrading the RMSE values. 

Still, the proposed methods are two orders of magnitude faster than this newly optimized 

version of Dictionary-FOCUSS reconstruction.

Rather than matching the q-space data with equality, it is possible to formulate FOCUSS 

reconstruction in Eq.5 as an unconstrained optimization problem [36] as follows,

Eq.21

Via the mapping x = Ws, this update step would result in ℓ1-regularized reconstruction,
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Eq.22

where γ is a regularization parameter that needs to be determined. At R=3 on slice 40 of 

subject A, equality constrained reconstruction yielded 7.56% RMSE. With parameter 

sweeping, the optimal γ was found to be 10−4, with an error of 7.54%. Since the 

improvement in performance is negligible and the parameter γ needs to be tuned, regularized 

version of FOCUSS was not used in this work.

In addition to comparison in pdf domain and q-space as well as validation with respect to 

low-noise 10 average dataset, reconstruction methods were also compared against the fully-

sampled acquisition in terms of fidelity in odf reconstruction and fiber tractography. Fig.8 

demonstrates good correspondence between the fully-sampled odfs and all four dictionary-

based methods at 3-fold undersampling.

Example atoms from PDF, K-SVD and PCA based dictionaries are plotted in Fig.9. Top row 

depicts iso-probability surfaces for three individual pdfs that were sampled from Subject B. 

In the middle row, three columns of K-SVD-trained dictionary are reformatted to the three-

dimensional grid for display purposes. The final row shows the first three eigenvectors of 

the PCA representation. As opposed to the K-SVD atoms, the columns of the PCA basis do 

not resemble individual pdfs, since they represent the principal components of the training 

dataset. These eigenvectors summarize the variance in the dataset within a small number 

dimensions, hence they are not visually similar to the pdf isosurfaces plotted in the top row.

Visual inspection of the tractography solutions (Fig. 11) showed that similar white-matter 

pathways could be obtained from the images reconstructed from the fully sampled data and 

the 3-fold accelerated data with PCA, PINV(K-SVD) and PINV(PDF). The mean Hausdorff 

distance between the pathways obtained from the fully sampled reconstruction and each of 

the accelerated reconstructions, averaged over all 18 pathways was 3.2mm for PCA and 

4.5mm for both PINV(K-SVD) and PINV(PDF). This is less than 2 voxels, which we have 

previously found to be the inter-rater test-retest reliability of manually labeling the pathways 

[32].

We also found good agreement between the average FA and MD values in the four data sets 

(Fig. 12). The mean difference between the average FA values in the fully sampled and 3-

fold accelerated reconstructions, as a percentage of the value in the fully sampled data, was 

5.0%, 5.2%, and 6.0%, respectively, for the PCA, PINV(K-SVD), and PINV(PDF) 

reconstructions. The same errors for the average MD values were, respectively, 3.2%, 3.1%, 

and 3.4%.

Conclusion

To accelerate the acquisition speed of DSI, two dictionary-based reconstruction algorithms 

that estimate diffusion pdfs from undersampled q-space were proposed. Using the same 

training data, these methods decrease the computation time by 2 orders of magnitude 

relative to dictionary-based compressed sensing algorithm [12], making the use of such 

algorithms feasible for clinical applications. Experiments on in vivo data show that the 
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proposed algorithms yield comparable reconstruction quality to that of dictionary-based CS 

in terms of pdf, odf and tractrography solutions. The proposed methods do not make sparsity 

assumptions on the reconstructed pdfs, instead constrain them to be a linear combination of 

the dictionary columns. These fast ℓ2-based algorithms also simplify the training step: 

dictionaries obtained with simple linear algebra operations or without any training perform 

equally well as the more involved K-SVD training. Further, it is demonstrated that a 

dictionary trained using pdfs from a single slice of a particular subject generalizes well to 

slices at different anatomical regions from another subject.
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Fig.1. 
Pdf reconstruction error maps for slice 40 of subject A. a, b, c and d: At acceleration R=3, 

Dictionary-FOCUSS yielded 7.6% error in 11 min, PCA method resulted in 7.8% RMSE in 

10 sec, PINV(K-SVD) had 7.5% error in 4 sec, and PINV(PDF) gave 7.5% error in 13 sec. 

e, f, g and h: At R=5, the dictionary-based methods yielded 8.6%, 8.9%, 8.6%, and 8.6% 

RMSE. i, j, k and l: At R=9, the reconstruction errors were 9.9%, 11.0%, 10.2%, and 10.1% 

for Dictionary-FOCUSS, PCA, PINV(K-SVD), and PINV(PDF), respectively.
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Fig.2. 
Pdf reconstruction error maps for slice 25 of subject B. a, b, c and d: At acceleration R=3, 

Dictionary-FOCUSS yielded 10.7% error in 13 min, the PCA method resulted in 11.2% 

error in 13 sec, PINV(K-SVD) had 10.7% RMSE in 6 sec, and PINV(PDF) obtained 10.7% 

error in 15 sec. e, f, g and h: At R=5, the four dictionary-based methods yielded 12.3%, 

12.8%, 12.2%, and 12.2% RMSE. i, j, k and l: At R=9, the reconstruction errors were 

13.8%, 14.8%, 13.9%, and 13.9% for Dictionary-FOCUSS, PCA, PINV(K-SVD), and 

PINV(PDF), respectively.
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Fig.3. 
Upper panel: average and standard deviation of pdf reconstruction errors in each slice for 

subject A. Lower panel: comparison of Dictionary-FOCUSS, PCA, PINV(PDF), and 

PINV(K-SVD) error maps at four different slices.
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Fig.4. 
Upper panel: average and standard deviation of pdf reconstruction errors in each slice for 

subject B. Lower panel: comparison of Dictionary-FOCUSS, PCA, PINV(PDF), and 

PINV(K-SVD) error maps at four different slices.
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Fig.5. 
Top row: Reconstruction error maps of dictionary-based methods with training data from 

subject A. Middle row: training data from subject B. Bottom row: training data from 

subject C.
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Fig.6. 
q-space reconstruction errors relative to the 10 average data collected in five q-locations. On 

average, the RMSE figures were 10.7% for 1 average fully-sampled data, 8.3% for 

Dictionary-FOCUSS, 9.0% for PCA, 8.2% for PINV(K-SVD) and 8.2% for PI NV(PDF).
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Fig.7. 
Left: q-space reconstruction errors at the missing directions relative to the 1 average fully 

sampled data. When averaged over the missing q-space points, the RMSEs were found to be 

15.5% for Dictionary-FOCUSS, 15.8% for PCA, 15.4% for PINV(K-SVD), and 15.4% for 

PINV(PDF). Right: q-space reconstructions at the point q=[5,0,0].
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Fig.8. 
Odf visualizations at R=3 for Dictionary-FOCUSS, PCA, PINV(K-SVD), and PINV(PDF) 

are compared against the glyphs obtained with fully-sampled data.
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Fig.9. 
Isosurface plots of PDF, K-SVD, and PCA based dictionary columns obtained from slice 30 

of subject B.
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Fig.10. 
Left: Error of sparsity-based K-SVD trained dictionary reconstruction for different 

dictionary sizes and sparsity levels. Middle: Error of consistency-based trained dictionary 

reconstruction as a function of dictionary size and data consistency constraint. Right: 
Dependence of PINV(PDF) performance on the amount of pdfs included in the PDF 

dictionary.
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Fig.11. 
Axial view of white-matter pathways labeled from streamline DSI tractography in fully 

sampled data and 3-fold accelerated data reconstructed with PCA, PINV(K-SVD) and 

PINV(PDF). The following pathways are visible in this view: corpus callosum - forceps 

minor (FMIN), corpus callosum - forceps major (FMAJ), anterior thalamic radiations 

(ATR), cingulum - cingulate gyrus bundle (CCG), superior longitudinal fasciculus - parietal 

bundle (SLFP), and the superior endings of the corticospinal tract (CST).
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Fig.12. 
Average FA (left) and MD (right) for each of the 18 labeled pathways, as obtained from the 

fully sampled data and 3-fold accelerated data reconstructed with PCA, PINV(K-SVD) and 

PINV(PDF). Intra-hemispheric pathways are indicated by “L-” (left) or “R-” (right). The 

pathways are: corpus callosum - forceps major (FMAJ), corpus callosum - forceps minor 

(FMIN), anterior thalamic radiation (ATR), cingulum - angular (infracallosal) bundle 

(CAB), cingulum - cingulate gyrus (supracallosal) bundle (CCG), corticospinal tract (CST), 

inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus - parietal bundle 

(SLFP), superior longitudinal fasciculus - temporal bundle (SLFT), uncinate fasciculus 

(UNC).
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