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Abstract

The literature on treatment effects focuses on gross benefits from program participation. We 

extend this literature by developing conditions under which it is possible to identify parameters 

measuring the cost and net surplus from program participation. Using the generalized Roy model, 

we nonparametrically identify the cost, benefit, and net surplus of selection into treatment without 

requiring the analyst to have direct information on the cost. We apply our methodology to estimate 

the gross benefit and net surplus of attending college.
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1 Introduction

The traditional approach to the evaluation of public policy compares the benefits and costs 

of policies. Measures of net surplus are used to determine whether policies should be 

undertaken (see Hotelling, 1938; Tinbergen, 1956; Harberger and Jenkins, 2002; and Chetty, 

2009). The recent literature on program evaluation, or “treatment effects”, focuses on gross 

benefits of policies and considers neither the marginal costs nor the perceived surplus 

associated with the programs being evaluated.1
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We extend this literature using the generalized Roy model. In it, agents choose treatment if 

their expected surplus from doing so is positive, so the benefit outweighs the subjective cost. 

We present conditions under which we can use the economics of the model to identify cost 

and surplus parameters even without direct information on the costs of treatment. 

Information on revealed choices creates a simple relationship between the cost and benefit 

parameters: for individuals who are indifferent towards treatment participation, the benefit 

equals the cost and the surplus is zero. Building on existing identification results for benefit 

parameters, we show how to identify surplus and cost parameters by varying the margin of 

indifference. Our identification analysis applies traditional exclusion restrictions that 

separately shift costs and benefits from treatment. We use cost shifters to identify the benefit 

of treatment, and benefit shifters to vary the margin of indifference and thus to identify the 

cost of the treatment.

Our analysis complements and extends the work by Björklund and Moffitt (1987) who first 

noted the duality between cost and benefit parameters in the generalized Roy model. They 

estimate marginal gains and surpluses for policies within a parametric normal generalized 

Roy model. They use structural econometric methods to identify the components of the cost 

and benefit functions. This paper extends their analysis to a more general setting. It develops 

and applies a nonparametric identification analysis of benefits, costs, and surpluses without 

the need to identify all of the ingredients of a fully specified structural model. This approach 

implements Marschak’s Maxim (Heckman, 2010) by directly estimating the cost, benefit, 

and surplus parameters rather then constructing them from the estimates of a full structural 

model.

We present ex ante and ex post analyses of costs and benefits. Applying our methods to the 

data on ex post gross benefits analyzed by Carneiro et al. (2011), we find that heterogeneity 

in benefits, and not costs, is the main driver of the variability in the decision to attend 

college.

Our analysis is reminiscent of the Heckman (1974) model of female labor supply. In that 

analysis, the econometrician observes the offered wage only for the agents who choose to 

work. The economist does not observe the reservation wage of any agent. Yet, his analysis 

identifies the parameters of the offered wage equation and the reservation wage equation by 

using the implication of the underlying economic model that agents decide to work if the 

offered wage exceeds the reservation wage.2 In our analysis, we observe program outcomes 

for agents who select into treatment, and we observe the no treatment outcome for the agents 

who do not select into treatment. We do not observe the cost of treatment for any agent. Yet, 

using the economics of the model, we are able to identify the average benefit and average 

cost of treatment parameters by exploiting the agent’s decision rule of selecting into 

treatment if the benefit exceeds the cost.

Our analysis is very different from analyses using randomized experiments to infer 

treatment effects. In commonly implemented randomizations, it is not possible to identify 

1See the discussion in Heckman and Vytlacil (2007) and Heckman (2010).
2The same methodology applies to search theory, see Flinn and Heckman (1982).
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the choice probability (Heckman, 1992; Heckman and Smith, 1995). Instead of using 

randomization to bypass problems of self-selection, we exploit the information that agents 

self-select into treatment and infer information on the cost of the treatment that cannot be 

recovered by standard randomized experiments.

The paper unfolds in the following way. Section 2 introduces the generalized Roy model. 

Section 3 reviews the average benefit of treatment parameters from Heckman and Vytlacil 

(1999, 2005, 2007), and develops and analyzes the dual cost parameters that match the 

benefit parameters. Section 4 presents our identification analysis of the cost and surplus 

parameters. Section 5 extends our analysis to allow agents to have imperfect foresight about 

future outcomes. We apply our analysis to study the decision to attend college in Section 6. 

Section 7 concludes.

2 The Generalized Roy Model

Suppose there are two potential outcomes (Y0, Y1), and a choice indicator D with D = 1 if the 

agent selects into treatment so that Y1 is observed and D = 0 if the agent does not select into 

treatment so that Y0 is observed. Anticipating our empirical analysis, Y1 is the annualized 

flow of income from college, and Y0 is the annualized flow of income from high school. The 

observed outcome Y can be written in switching regression form (Quandt, 1958, 1972):

(2.1)

where E(Yj | X) = μj and

(2.2)

for j = 0, 1. X is a vector of regressors observed by the economist while (U0, U1) are not. 

Combining Equations (2.1) and (2.2),

The individual gross benefit of treatment associated with moving an otherwise identical 

person from state “0” to “1” is B = Y1 − Y0 and is defined as the causal effect on Y of a 

ceteris paribus move from “0” to “1”. Defining E(C | Z) = μC(Z), the subjective cost of 

choosing treatment as perceived by the agent is

(2.3)

where Z is an observed random vector of cost shifters and UC is a random variable 

unobserved by the econometrician. Individuals choose treatment if the perceived benefit 

from treatment is greater than the subjective cost:

(2.4)
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where S is the surplus, i.e. the net benefit, from treatment:

with μS(X, Z) = [μ1(X) − μ0(X)] − μC(Z) and V = UC − (U1 − U0). Our identification analysis 

of cost and surplus parameters does not assume particular functional forms for μ0, μ1, and 

μC, nor does it assume that the distributions of U0, U1, and UC are of a known parametric 

form.

The original Roy (1951) model assumes that there are no observed regressors, X, that the 

cost of treatment is identically zero (i.e. μC = 0, UC = 0), and that (U0, U1) ~ N(0, Σ). 

Heckman and Honoré (1990) present an identification analysis for a nonparametric version 

of the Roy model using variation in regressors and making no parametric assumption on the 

distribution of (U0, U1). Their version of the Roy model also imposes the condition that the 

cost of treatment is identically zero. In contrast, we allow for nonzero cost of treatment. In 

fact, for our identification analysis we require nondegenerate cost of treatment and observed 

cost shifters.3 From the point of view of the observing economist, (X, Z) is observed and 

(U1, U0, UC) is unobserved. This model assumes that agents know the gross benefit, B = Y1 

− Y0, of treatment. We show in Section 5 that our results extend to a broader class of 

models, where agents only have imperfect foresight about the benefits of treatment. This 

model also supposes that there is no other aspect of the benefit of treatment than Y1 − Y0. 

Implicitly, any subjective benefits of the program are incorporated into the costs of 

treatment, i.e. the cost function includes the subjective benefits of the treatment. For 

example, if job training allows the individual to work in a job with preferred amenities, this 

is modeled as a (negative) contribution to the subjective cost of treatment. The classification 

of effects in either positive benefits or negative subjective cost (or vice versa) does not affect 

the definition of the surplus. To simplify the exposition, we suppose that Z and X do not 

contain any common elements. Thus, all of our analysis can be seen as implicitly 

conditioning on all common elements of X and Z.

We make the following technical assumptions:

(A-1) (U0, U1, UC) is independent of (X, Z).

(A-2) The distribution of μC(Z) conditional on X is absolutely continuous with 

respect to Lebesgue measure.

3Because Heckman and Honoré (1990) impose a Roy model with zero cost of treatment, they are able to identify the joint distribution 
of (U0, U1). In contrast, because we allow for nonzero cost of treatment (and, in particular, for unobserved costs of treatment), we are 
unable to identify the dependence between U0 and U1 which precludes the identification of some potentially interesting economic 
parameters. See Heckman (1990), Heckman and Smith (1998) and Heckman et al. (1997b) for related analysis. With additional 
information, the joint distribution of (U1, U0, UC) can be identified. See, e.g., Carneiro et al. (2003), Aakvik et al. (2005), and 
Abbring and Heckman (2007). D’Haultfoeuille and Maurel (2013) identify the cost of treatment in a related Roy model in which the 
cost of treatment is a deterministic function of observed covariates. Their identification strategy is fundamentally different from ours, 
and critically relies on the restriction that the cost of treatment is constant conditional on covariates.
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(A-3) The distribution of V = UC − (U1 − U0) is absolutely continuous with respect 

to Lebesgue measure and has a cumulative distribution function that is strictly 

increasing.

(A-4) The population means E|Y1|, E|Y0| and E|C| are finite.

Assumption (A-1) assumes that (U0, U1, UC) is independent of (X, Z). Thus, D is 

endogenous but all other regressors in both the treatment equation and the outcome equation 

are exogenous. We implicitly condition on any regressors that enter both the outcome 

equations and the cost equation. Thus, this condition should be interpreted as an 

independence assumption for the error terms with regard to the unique elements of X and Z 

conditional on the regressors that enter both equations. No independence condition is 

required for the common elements. We also do not impose any restrictions on the 

dependence among the unobservables. (A-2) requires that there exists at least one 

continuous component of Z conditional on X. This assumption will only be required for our 

identification analysis, and is not needed for our definition or analysis of the cost and 

surplus parameters. (A-3) is a regularity condition. It allows for the possibility that UC is 

degenerate (costs do not vary conditional on Z) or that U1 − U0 is degenerate (benefits do 

not vary conditional on X), though not both. Assumption (A-4) is required for the mean 

benefit and cost parameters to be well defined. An implication of our model with 

Assumptions (A-1) and (A-3) is that 0 < Pr(D = 1 | X, Z) < 1 w.p.1, so that there is a treated 

group and a control group for almost all (X, Z). Note that this restriction still allows the 

support of the distribution of Pr(D = 1|X, Z) to be the full unit interval.

Let P(X, Z) denote the probability of selecting into treatment given (X, Z). Statisticians call 

this the “propensity score” P(X, Z) ≡ Pr(D = 1 | X, Z) = FV(μS(X, Z)), where FV(·) denotes 

the distribution of V.4 We sometimes denote P(X, Z) by P, suppressing the (X, Z) argument. 

We also work with US, a uniform random variable (US ~ Unif[0, 1]) defined by US = FV(V). 

Different values of US denote different quantiles of V. Given our previous assumptions, FV 

is strictly increasing, and P(X, Z) is a continuous random variable conditional on X.

The generalized Roy model presented in this paper is a special case of the model of 

Heckman and Vytlacil (1999, 2005). Under Assumptions (A-1)–(A-4), the model of 

Equations (2.1)–(2.4) implies the model and assumptions of Heckman and Vytlacil (1999, 

2005). From the analysis of Vytlacil (2002), the more general model is equivalent to the 

conditions that justify the Local Average Treatment Effect (LATE) model of Imbens and 

Angrist (1994). We impose more restrictions here. In particular, we impose the generalized 

Roy model and the corresponding assumptions that will allow us to exploit its structure for 

identification of subjective cost parameters. As in the conventional Roy model (Heckman 

and Sedlacek, 1985), we assume additive separability in the outcome equations. Additive 

separability is not required in Heckman and Vytlacil (1999, 2005), but is required by our 

analysis in order to obtain additive separability in the latent index equation consistent with 

the generalized Roy model.5 Thus our assumptions are most appropriate for continuous 

4We will refer to the cumulative distribution function of a random vector A by FA(·) and to the cumulative distribution function of a 
random vector A conditional on random vector B by FA|B(·). We write the cumulative distribution function of A conditional on B = b 
by FA|B(· | b).
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outcome variables, and we exclude discrete outcomes from our analysis. We also assume 

conditions on X that are not required in Heckman and Vytlacil (1999, 2005) to identify the 

gross benefit parameters. Their analysis conditions on X, and thus does not need to assume 

that X is independent of the error vector. In contrast, in order to use the generalized Roy 

model to recover subjective cost parameters, we require that the unique elements X are 

independent of the error vector.6

3 Benefit, Cost, and Surplus Parameters

This section defines and analyzes the benefit, cost, and surplus parameters. We maintain the 

model of Equations (2.1)–(2.4), and invoke Assumptions (A-1) and (A-3)–(A-4). We do not 

require Assumption (A-2) for the definition of the parameters, but do require it for our 

identification analysis.

Standard treatment effect analyses identify averaged parameters of the gross benefit of 

treatment, B = Y1 − Y0. The most commonly studied treatment effect parameter is the 

average benefit of treatment BATE(x) ≡ E(Y1 − Y0 | X = x) = μ1(x) − μ0(x). This is the effect 

of assigning treatment randomly to everyone of type X = x assuming full compliance, and 

ignoring any general equilibrium effects. Another commonly used parameter is the average 

benefit of treatment on persons who actually take the treatment, referred to as the benefit of 

treatment on the treated: BTT(x) ≡ E(Y1 − Y0 | X = x, D = 1) = μ1(x) − μ0(x) + E(U1 − U0|X = 

x, D = 1). Heckman and Vytlacil (1999, 2005) unify a broad class of treatment effect 

parameters including the BATE(x) and BTT(x) through the marginal benefit of treatment, 

defined as BMTE(x, uS) ≡ E(Y1 − Y0|X = x, US = uS) = μ1(x) − μ0(x) + E(U1 − U0|US = uS). 

BMTE(x, uS) is the treatment effect parameter that conditions on the unobserved desire to 

select into treatment.

The conventional analysis of treatment effects does not define, identify, or estimate any 

aspect of the cost of the treatment. We define a set of cost parameters parallel to the benefit 

parameters, where cost is the subjective cost as perceived by the agent. Thus, we define the 

average cost of treatment, the average cost of treatment on the treated, and the marginal cost 

of treatment as follows:

Recalling that S = B − C = μS(X, Z) − V, where μS(X, Z) = [μ1(X) − μ0(X)] − μC(Z) and V = 

UC − (U1 − U0), we can define the corresponding surplus parameters:

5Recall again that we are implicitly conditioning on all common elements of (X, Z), so that these need not be additively separable 
from the error term.
6In this respect, our analysis is broadly analogous to the identification strategies and conditions of Vytlacil and Yildiz (2007) and 
Shaikh and Vytlacil (2011), who also require that there be exogenous regressors in the outcome equation that is excluded from the 
treatment choice equation, and they exploit variation in such regressors for identification.

Eisenhauer et al. Page 6

J Polit Econ. Author manuscript; available in PMC 2015 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and

With these parameters, we can answer questions not only about the outcome change from 

treatment, but also about the subjective cost of treatment and the net surplus as well. As the 

surplus from treatment participation STT(x, z) is always positive among the treated, it follows 

immediately that BTT(x) > CTT(z) holds as well. Following Heckman and Vytlacil (1999, 

2005), we can represent the average treatment effects and treatment on the treated as 

averaged versions of the marginal effects of treatment:

(3.1)

Following the same line of argument as used by Heckman and Vytlacil (1999, 2005),

(3.2)

and

(3.3)

We now establish relationships among these parameters. First, consider the marginal surplus 

parameter. Recall that US = FV(V) with FV strictly increasing. Thus US = uS is equivalent to 

, and

 is strictly increasing, and thus SMTE(x, z, uS) is strictly decreasing in uS. Individuals 

with low uS want to enter the program the most and are those with the highest surplus from 

the program, while individuals with high uS want to enter the program the least and have the 

smallest surplus from the program. Using the fact that FV is strictly increasing and that P(X, 
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Z) = FV(μS(X, Z)), conditioning on us = P(x, z) is equivalent to conditioning on V = μS(x, z). 

Thus

An individual with uS = P(x, z) is an individual who is indifferent between being treated and 

untreated if assigned X = x and Z = z. Since SMTE(x, z, uS) is strictly decreasing in uS, 

SMTE(x, z, uS) is positive for uS < P(x, z), is equal to zero at uS = P(x, z), and is negative if uS 

> P(x, z). If we instead fix evaluation point uS and consider how SMTE(x, z, uS) varies with 

(x, z), SMTE(x, z, uS) will be positive for all (x, z) such that P(x, z) > uS and will be negative 

for all (x, z) such that P(x, z) < uS.

We have thus far discussed only the marginal surplus function. Using the relationship 

SMTE(x, z, uS) = BMTE(x, uS)−CMTE(z, uS), we can translate statements about SMTE(x, z, uS) 

into inequalities about the marginal benefit and marginal cost functions:

The benefit and cost parameters coincide when evaluated at uS = P(x, z), because at this 

point the marginal cost equals the marginal benefit. We exploit this equality at the margin of 

indifference in the next section to achieve identification of the cost parameters.

To fix ideas, in Figure 1 we display the full set of marginal effects for a numerical example. 

We plot the marginal effect functions for fixed values of (x, z), where it happens that P(x, z) 

= 0.50. Individuals at that margin, uS = 0.50, have their benefit of treatment just offset by 

their subjective cost and are thus indifferent between participation in treatment and 

nonparticipation. The benefits are positive, but so are the costs. Overall, the surplus is zero. 

For uS < 0.50, the marginal benefit function lies above the marginal cost function and thus 

the marginal surplus is strictly positive. The reverse is true for uS > 0.50.

This example is constructed to have intuitive properties, with the marginal benefit of 

treatment BMTE(x, uS) decreasing in uS and the marginal cost of treatment CMTE(z, uS) 

increasing in uS. Agents with the greatest unobserved desire to select into treatment not only 

have higher benefits, but also have lower costs. These properties, while intuitive, need not 

hold in general—individuals with lower values of uS (and thus a greater unobserved desire 

to take treatment) must necessarily have higher net surplus than those with higher values of 

uS, but they need not have higher benefits and lower costs. It is possible, for example, that 

benefits and costs are so strongly positively correlated that those with the greatest 

unobserved desire to participate have either the smallest benefits and the lowest costs or the 

largest benefits and the highest costs. In Appendix A, we establish sufficient conditions for 

intuitive properties on BMTE(x, uS) and CMTE(z, uS) to hold, as well as testable implications 

of those conditions.
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4 Identifying the Surplus and Benefit Functions Nonparametrically

Heckman and Vytlacil (1999, 2005) show that local instrumental variables (LIV) identify 

the marginal benefit of treatment:

(4.1)

We can identify E(Y|X = x, P = p) and its derivative for all (x, p) ∈ Supp(X, P), where 

Supp(X, P) denotes the support of (X, P(X, Z)).7 We can thus identify BMTE(x, uS) for all 

values of (x, uS) ∈ Supp(X, P). For a fixed x, we can identify BMTE(x, uS) for uS ∈ Supp(P|X 

= x). The more variation in propensity scores P conditional on X = x, the larger the set of 

evaluation points uS for which we identify BMTE(x, uS). Variation in propensity scores 

conditional on X is driven by variation in Z, the cost shifters. Thus, if we observe regressors 

that produce large variations in costs, we will be able to identify BMTE(x, uS) on a larger set.

We can identify BATE(x) and BTT(x) by identifying BMTE(x, uS) over the appropriate support 

and then integrating the latter with the appropriate weights, which are known given data on 

X and Z. By Equation (3.1), we identify BATE(x) if Supp(P|X = x) = [0, 1]. For fixed X = x, 

this requires that there be enough variation in the cost shifters Z to drive the probabilities 

P(x, Z) all the way to zero and to one. In other words, holding fixed the regressors that enter 

the outcome equation, we must observe cost shifters such that conditional on some values of 

those cost shifters, the cost to the agent is so low that the agent will select into treatment 

with probability arbitrarily close to one, and, conditional on other values of the cost shifters, 

the cost to the agent is so high that the agent will select into treatment with probability 

arbitrarily close to zero. Likewise, we identify BTT(x) if  where 

 is the supremum of Supp(P|X = x). This support requirement in turn requires that, for 

fixed X = x, there be enough variation in the cost shifters Z to drive the selection probability 

arbitrarily close to zero.8

Using Equation (4.1) and the relationship for people on the margin of choice that BMTE(x, 

P(x, z)) = CMTE(z, P(x, z)), we have

(4.2)

Using this relationship, we identify CMTE(z, uS) for all values of (z, uS) ∈ Supp(Z, P). We 

thus identify the marginal cost parameter without direct information on the cost of treatment 

by using the structure of the Roy model and by identifying the marginal benefit of treatment 

for individuals at the margin of participation. For a fixed z, we identify CMTE(z, uS) for uS ∈ 

7For any random vectors A and B, we will write the support of the distribution of A as Supp(A), and the support of distribution of A 
conditional on B = b as Supp(A|B = b).
8Heckman and Vytlacil (2001a) show that one can identify BATE(x) and BTT(x) under slightly weaker conditions than those required 
to follow this strategy of first identifying BMTE(x, u) over the appropriate support. In particular, they show that the necessary and 
sufficient condition for identification of BATE(x) is that {0, 1} ∈ Supp(P|X = x), and for BTT(x) that {0} ∈ Supp(P|X = x).
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Supp(P|Z = z). The greater the variation in propensity scores conditional on Z = z, the larger 

the set of evaluation points for which we identify CMTE(z, uS). Variation in propensity scores 

conditional on Z = z is driven by variation in X, the regressors that affect the potential 

outcomes and thus that drive the benefit of treatment. If we observe X regressors that cause 

large variations in benefits, we will be able to identify CMTE(z, uS) at a larger set of uS 

evaluation points. In contrast, if there are no X regressors, then P only depends on Z and we 

can only identify CMTE(z, uS) for uS = P(z).

From Equation (3.2), we can identify CATE(z) if Supp(P|Z = z) = [0, 1]. This requires, for 

fixed Z = z, for there to be enough variation in the outcome shifters X to drive the 

probabilities P(X, Z) all the way to zero and to one. In other words, holding fixed the 

regressors that enter the cost equation, we must observe outcome shifters such that 

conditional on some values of those outcome shifters, the benefit to the agent is so high that 

the agent will select into treatment with probability arbitrarily close to one; conditional on 

other values of the outcome shifters, the benefit to the agent is so low that the agent will 

select into treatment with probability arbitrarily close zero. Likewise, we identify CTT(x) if 

 where  is the supremum of Supp(P|Z = z). This support 

requirement in turn requires that, for fixed Z = z, there is sufficient variation in the outcome 

shifters X to drive the probabilities arbitrarily close to zero.

Finally, consider identification of the surplus parameters. Using the fact that

we can identify the marginal surplus parameter at (x, z, uS) such that (x, uS) ∈ Supp(X, P) 

and (z, uS) ∈ Supp(Z, P). By Equation (3.3), we can integrate SMTE(x, z, uS) using the 

appropriate weights (which are identified from the data on X and Z) to identify SATE(x, z) 

and STT(x, z) under the appropriate support conditions. For example, we identify SATE(x, z) if 

Supp(P|X = x) = [0, 1] and Supp(P|Z = z) = [0, 1].

Thus, for identification of the treatment parameters we need sufficient variation in cost 

shifters conditional on the outcome shifters. For identification of the cost parameters, we 

need sufficient variation in the outcome shifters conditional on the cost shifters. For 

identification of the surplus parameters we need sufficient variation in both sets of 

regressors. We can thus identify the marginal cost, the average cost, and the cost of 

treatment without direct information on the cost. Consequently, we can also identify the 

corresponding surplus parameters as well. Our ability to do so is directly related to the 

extent of variation in observed regressors that shift the benefit of the treatment.

We summarize our discussion in the form of a theorem:

Theorem 1

Assume that Equations (2.1)–(2.4) and our Assumptions (A-1)–(A-4) hold.
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1. BMTE(x, uS) is identified for (x, uS) ∈ Supp(X, P); CMTE(z, uS) is identified for (z, 

uS) ∈ Supp(Z, P); and SMTE(x, z, uS) is identified for (x, z, uS) such that (x, uS) ∈ 

Supp(X, P) and (z, uS) ∈ Supp(Z, P).

2. BATE(x) is identified if Supp(P|X = x) = [0, 1]; CATE(z) is identified if Supp(P|Z = z) 

= [0, 1]; SATE(x, z) is identified if Supp(P|X = x) = [0, 1] and Supp(P|Z = z) = [0, 1].

3. BTT(x) is identified if ; CTT(z) is identified if 

; STT(x, z) is identified if  and 

.

Our results allow for unobserved heterogeneity in costs and benefits conditional on the 

observed regressors. If there is no unobserved (by the economist) heterogeneity in the costs 

of treatment, UC = 0, then CMTE(z, uS) = CTT(z) = CATE(z) and thus we can identify the cost 

of treatment on the treated and average cost parameters without the additional support 

conditions. Likewise, if we impose that there is no unobserved heterogeneity in the benefits 

of treatment, U1 − U0 = 0, we have BMTE(z, uS) = BTT(z) = BATE(z) and can thus identify all 

of the benefit parameters without additional support conditions.

We establish identification of the marginal effect parameters within the conditional support 

of P. However, exploiting additive separability, we are able to extend the margin of 

identification to the unconditional support of P by a chaining argument. We illustrate the 

reasoning behind this for the BMTE(x, uS), but the analogous result applies to the marginal 

cost and surplus functions as well.

Recall that BMTE(x, uS) = μ1(x) − μ0(x) + E(U1 − U0|US = uS) is identified for all (x, uS) ∈ 

Supp(X, P). How BMTE(x, uS) varies with x does not depend on the point of evaluation of uS, 

and how BMTE(x, uS) varies with uS does not depend on the point of evaluation of x. This 

insight is helpful in securing identification of BMTE(x, uS) for other (x, uS) pairs.

For example, consider two potential values of X, x0 and x1, and suppose that there exists 

some p* such that p* ∈ Supp(P|X = x0) ∩ Supp(P|X = x1) so that BMTE(x0, p*) and BMTE(x1, 

p*) are both identified by Theorem 1. BMTE(x, uS) is additively separable in x and uS. As a 

consequence of additive separability, it follows directly that

(4.3)

If uS ∈ Supp(P|X = x1), we identify BMTE(x1, uS) by Theorem 1. We can solve Equation 

(4.3) to identify BMTE(x0, uS) even if uS ∉ Supp(P|X = x0). Alternatively, if uS ∈ Supp(P|X = 

x0), we identify BMTE(x0, uS) by Theorem 1 and can now solve Equation (4.3) to identify 

BMTE(x1, uS) even if uS ∉ Supp(P|X = x1). Thus, if there exists some p* such that p* ∈ 

Supp(P|X = x0) ∩ Supp(P|X = x1), we can chain together identification of BMTE(x0, uS) for uS 

∈ Supp(P|X = x0) and identification of BMTE(x1, uS) for uS ∈ Supp(P|X = x1) to obtain 

identification of BMTE(x0, uS) and BMTE(x1, uS) for all uS ∈ Supp(P|X = x0) ∪ Supp(P|X = 

x1). One can iterate to further increase the range of values for which BMTE(x, uS) is 

identified. Under an additional rank condition, we can use this strategy to identify BMTE(x, 

uS) for all (x, uS) ∈ Supp(X) × Supp(P). In particular, we consider the following assumption:
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(A-5) X and P(X, Z) are measurably separated; i.e., any function of X that almost 

surely equals a function of P(X, Z) must be almost surely equal to a constant.

Measurable separability between X and P is a rank condition. A necessary condition for 

measurable separability between X and P(X, Z) is for P(X, Z) to be nondegenerate 

conditional on X, as implied by P(X, Z) = FV(μS(X, Z)) along with Assumptions (A-2) and 

(A-3). In Theorem 5 in Appendix A, we build on Theorem 2 of Florens et al. (2008) to 

provide sufficient conditions on our model for measurable separability between X and P(X, 

Z). As shown by that theorem, strengthened versions of Assumptions (A-2) and (A-3), along 

with an additional support condition, are sufficient for measurable separability between X 

and P(X, Z).

Using Assumption (A-5), we obtain the following identification result:

Theorem 2

Assume that Equations (2.1)–(2.4) and our Assumptions (A-1)–(A-5) hold. Then, for x ∈ 

Supp(X) and z ∈ Supp(Z),

1. BMTE(x, uS), CMTE(z, uS) and SMTE(x, z, uS) are identified for uS ∈ Supp(P).

2. BATE(x), CATE(z) and SATE(x, z) are identified if Supp(P) = [0, 1], and

3. BTT(x), CTT(z) and STT(x, z) are identified if Supp(P) = [0, pmax].

The proof of Theorem 2 is in Appendix B. The theorem shows that, under our maintained 

assumptions and condition (A-5), identification of the treatment parameters depends on the 

marginal support of P, not on the support of P conditional on X or Z.

5 Extension to the Case of Limited Information by the Agent

Thus far, our analysis has assumed choice Equation (2.4), i.e., that D = 1[S ≥ 0] where S = 

(Y1 − Y0) − C. This implicitly assumes that agents have perfect foresight about their net 

benefit. In this section, we extend the choice model of Equation (2.4) to allow for limited 

information on the part of the agents, while maintaining the model for latent outcomes (Y0, 

Y1) and cost C of Equations (2.2) and (2.3). We assume that agents form valid expectations 

about their outcomes and costs given the information that they have at the time of their 

treatment choice and that they select into treatment if the expected surplus is positive. We 

allow agents to know only some elements of (X, Z), and possibly to have incomplete 

knowledge of (U0, U1, UC) and hence their own idiosyncratic benefit and cost of treatment. 

We now show that the preceding analysis goes through with minor modifications, though it 

is now important to distinguish conditioning sets: what is known to the agent at the time of 

treatment choice (which might include some information not known to the econometrician), 

what is known to the econometrician (which might include some information not known to 

the agent at the time of treatment choice), and what is realized ex post. The essential change 

in our procedure in the case of incomplete information is that the marginal benefit of 

treatment identified by LIV must be projected onto the agent’s information set when 

selecting treatment to form the expected marginal benefit of treatment conditional on the 

information available to the agent. This coarsened version of BMTE is used to identify the 
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marginal cost parameter. In addition, only components of X that are known to the agent at 

the time of treatment choice can aid in identification of the cost parameters. The exclusion 

restrictions for identification of the cost parameter are variables in X that are not in Z and 

that are known to the agent at the time of choosing treatment.

Let (XI, Z) denote components of (X, Z) that are observed by the agent when choosing 

whether to select into treatment.9 Suppose that the agent’s information set is (XI, Z, UI).10 

UI is the private information of the agent relevant to his or her own benefits and cost of 

treatment, and is not observed by the econometrician.

We revise assumption (A-1) in the following way:

(A-1′) (U0, U1, UC, UI) is independent of (X, Z), and X is independent of Z 

conditional on XI.

Assumption (A-1′) imposes the requirement that the private information of the agent is 

independent of the observed regressors. Note that, under this independence assumption, (U0, 

U1, UC, UI) ⫫ (XI, Z), and

using the definition V = UC − (U1 − U0).

Assumption (A-1′) implies that (X, Z) ⫫ UI | (XI, Z), so that UI does not help the agent 

predict elements of (X, Z) that are not contained in (XI, Z). Thus, we allow the agents to have 

private information about their own idiosyncratic benefits (U1 − U0) and costs UC, though 

we impose the restriction that the only information known by the agent that is useful for 

predicting X is (XI, Z). Furthermore, Assumption (A-1′) requires that, conditional on the 

components of X known to the agent at the time of selecting into treatment, Z does not help 

to predict those elements of X not known at the time of treatment selection. This restriction 

is only imposed for notational convenience and can be easily relaxed.

We restate Assumption (A-3) as:

(A-3′) The distribution of Ṽ = E(V|UI) is absolutely continuous with respect to 

Lebesgue measure, and the cumulative distribution function of Ṽ is strictly 

increasing.

An implication of (A-3′) is that E(V|UI) is a nondegenerate random variable, and thus that 

agents have some nontrivial information about their own idiosyncratic cost or benefit from 

treatment when deciding whether to select into treatment. We maintain Assumptions (A-2) 

and (A-4) as before.

9We assume that agents know all components of Z, while we allow agents to be ignorant of some components of X. This assumption 
simplifies our notation and conforms to our empirical analysis of Section 6. The analysis can be extended (at the cost of somewhat 
more cumbersome notation) to allow agents to know only a subvector of Z as well as only a subvector of X at the time of selection into 
treatment.
10In other words, the information set of the agent equals σ(X, Z, UI), the sigma-algebra generated by (X, Z, UI).
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Define  for j = 0, 1, and , and note that given our 

independence assumptions and the law of iterated expectations, 

. Define . Under our 

assumptions,

The decision rule becomes

(5.1)

where E(S|XI, Z, UI) is the expected surplus from treatment, with the expectation conditional 

on the agents information set. We thus have

where our independence assumptions imply Ṽ ⫫ (XI, Z), and thus the selection model is of 

the same form as that used by Heckman and Vytlacil (1999), which allows us to use LIV to 

identify BMTE(x, uS). Redefining US = FṼ(Ṽ) and 

, we have

with US distributed unit uniform and independent of (X, Z) and thus independent of (XI, Z).

Define , 

and , the marginal benefit, cost, and net 

surplus of treatment conditional on the agent’s information set, where again by the law of 

iterated expectations and our independence assumptions

Evaluating  at uS = P(xI, z), we obtain
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where the second equality is obtained by plugging in the definition of US, the third equality 

is obtained by plugging in the definition of Ṽ, and the fourth equality is obtained using the 

law of iterated expectations and the fact that E(V|UI) is degenerate given UI. Since 

, we have

Thus, identification of  provides identification of .

Since our model is a special case of Heckman and Vytlacil (1999), we can follow them in 

using LIV to identify BMTE(x, uS) for (x, uS) in the support of (X, P(XI, Z)). It is important to 

note that LIV does not identify the BMTE(x, uS) that is relevant to the agent’s decision 

problem. LIV identifies BMTE(x, uS) = E(Y1 − Y0|X = x, US = uS), not 

. However, we can project the BMTE(x, uS) 

identified by LIV on the information known to the agent at the time of selecting into 

treatment and coarsen the set used to define and identify BMTE(x, uS), to identify the 

 relevant to the agent’s decision problem. It is the latter that is relevant for 

identifying the cost functions. By the law of iterated expectations, we obtain

(5.2)

where FX(·|XI = xI) is the cumulative distribution function of X conditional on XI = xI. We 

directly identify FX(·|XI = xI), and thus, for given uS, obtain identification of BMTE(x, uS) for 

all x ∈ Supp(X|XI = xI) implies identification of . Since, for a given x, we 

identify BMTE(x, uS) if uS ∈ Supp(P(XI, Z)|X = x), we thus identify  if

In other words, to identify ex ante , we need to identify ex post BMTE(x, uS) 

for every value x that X can take given XI = xI, and thus we need for uS to be an element of 

Supp(P(XI, Z)|X = x) for each value x that X can take given XI = xI. However, using the fact 

that XI is a subvector of X and independence assumption (A-1′), it follows that Supp(P(XI, 
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Z)|X) = Supp(P(XI, Z)|XI), and thus using Equation (5.2) we identify  for (xI, 

uS) in the support of (XI, P(XI, Z)). Using the fact that 

, we identify  for (z, uS) in the support 

of (Z, P(XI, Z)). We have thus identified the marginal cost parameter, and can integrate it to 

obtain other cost parameters. We can also combine it with the benefit parameters to identify 

net surplus parameters as before. The only elements of X that are useful for identifying the 

cost parameters are those elements that are in X, but not in Z, and which are known to the 

agent at the time of selection into treatment (i.e., are contained in XI).

6 Estimating the Cost and Surplus from Educational Choices

We apply our methodology to an analysis of educational choice and estimate the marginal 

benefit, cost, and surplus from a college education. Carneiro et al. (2011) provide estimates 

of the marginal benefit of attending college. We extend their work by adding results for the 

subjective cost and surplus. Björklund and Moffitt (1987) provide fully parametric estimates 

of cost and surplus in the context of a manpower training program in Sweden. Application 

of their approach offers a useful benchmark to gauge our more flexible estimation strategy. 

Our nonparametric identification analysis follows Marschak (1953) who noted that for many 

policy analyses only combinations of structural parameters are required. We embrace 

Marschak’s Maxim (Heckman, 2010) and implement an estimation strategy with minimal 

assumptions and transparent sources of identification for the marginal effects of treatment.

We analyze a sample of 1,747 white males from the National Longitudinal Survey of Youth 

of 1979 (NLSY79).11 The outcome variable is the log of the mean non-missing values of the 

hourly wage between 1989 and 1993, which we interpret as an estimate of the log hourly 

wage in 1991, and an approximation to the long-run wage. Schooling is measured in 1991 

when individuals are between 28 and 34 years of age. We separate individuals into two 

groups: persons with no college (D = 0) and persons with at least some college (D = 1). We 

present annualized returns to education, obtained by dividing all our estimates by four which 

is the average difference in years of schooling between those with D = 1 and those with D = 

0.

To identify the , we require variables that do not affect the cost of attending 

college, but that change future wages and are known to the agent at college entry (benefit 

shifters). We measure long-run labor market conditions by permanent local wages and 

compute average earnings between 1973 and 2000 for each location of residence at 17 as a 

proxy. Since we will also condition on current labor market conditions at the time of 

potential enrollment, these regressors should only affect the schooling decision through their 

effect on agent’s expected future wages and thus the expected benefit of treatment. We 

assume that the main benefits to a higher education are through earnings. Any other 

subjective benefits, such as allowing access to jobs with preferred amenities, are implicitly 

included (as a negative contribution) in costs. The validity of our exclusion restriction would 

11See Bureau of Labor Statistics (2005) for a detailed description of the NLSY79 and Appendix C for details on the construction of 
the variables.
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be threatened if our measure of permanent local wages affects the subjective benefit of 

education.

We identify BMTE(x, uS) and  using variables that do not affect future wages, 

but only the cost of attending college (cost shifters). We use current fluctuations in local 

labor market conditions such as local wages at the time of the educational decision, which 

shift the opportunity cost of schooling. They should not help to predict the agent’s expected 

future wages as we also control for permanent local labor market conditions. Effectively, we 

use only the innovations in local wages as cost shifters. We also include tuition cost, a 

dummy variable indicating urban residence at age 14, and distance to college as shifters that 

affect the direct cost of attending college.

Table 1 presents the covariates used in our empirical analysis. We highlight the two different 

types of exclusion restrictions. Variables that affect benefits as well as costs of treatment 

(common elements) include the Armed Forces Qualifying Test (AFQT) scores, mother’s 

education, number of siblings, and cohort dummies. In what follows, we keep this set of 

observables in the background to ease notation. X and Z continue to denote the benefit and 

cost shifters respectively. XI is the subvector of X which is known to the agent at the college 

entry decision. We include two variables in X not included in XI : years of experience and 

wages in the county of residence. The excluded variables are measured approximately 12 

years after the agent’s college entry decision and thus not in the individual’s information set 

at the time of the treatment decision. We follow the analysis of Section 5 and allow agents to 

have imperfect foresight about the realizations of these variables. They form expectations 

about their future wages, but do not have perfect information. In line with our exposition, we 

assume that Z does not help to predict the ex post realization of X conditional on XI and 

denote the agent’s information about their idiosyncratic cost and benefit from treatment as Ṽ 
= E (V | UI).

We specify a linear version of the generalized Roy model. Define potential outcomes:

The choice equation is:

where we assume that agents form valid expectations about their own outcomes so that E 

(X(β1 − β0) | XI) = XI (α1 − α0) holds. Note that XI does not only affect the returns to 

education directly, but also helps to predict the ex post realization of those elements of X not 

contained in XI.

We first implement the traditional structural approach and explicitly estimate all components 

of the generalized Roy model and combine them to form the marginal effect parameters 

(Björklund and Moffitt, 1987). We impose normality for the unobservables and fit the model 

by maximum-likelihood. As the participation decision is based on the net surplus and X does 
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not affect the cost of treatment, this implies a cross-equation restriction between the 

coefficients on X in the outcome equations and XI in the choice equation. We account for 

agents’ imperfect foresight and set , where (X̄, X̄
I) 

denote the matrices with the outcome shifters of the whole sample. We estimate the whole 

model in one step. In a standard Probit model, the coefficients can only be identified up to a 

factor of proportionality. However, as the wage gain (α1 − α0)XI appears with a coefficient 

of one in the choice equation, we do not need to normalize the variance of Ṽ and estimate it 

instead. We can then construct the marginal effects of treatment based on the results:

where σU1−U0,Ṽ and σUCṼ denote the covariance between (U1 − U0, Ṽ) and (UC, Ṽ) 

respectively.  indicates the inverse of a normal cumulative distribution function with 

standard deviation σṼ.

The sign of the slope of the marginal effect parameters is determined by σUCṼ and σU1−U0Ṽ 

as . We present our results for these parameters in Table 2. The estimate for σU1−U0Ṽ 
is negative and thus the marginal benefits of treatment decrease when moving along the 

margins of Ṽ. The opposite is true for σUCṼ and so the marginal cost increases in uS. 

However, only σU1−U0Ṽ is significantly different from zero at the 10% level.

Figure 2 presents our fully parametric results for the ex post marginal benefit and ex ante 

cost and surplus parameters. We plot them as a function of uS and evaluate them at the 

sample mean of (XI, Z). As agents are assumed to form valid expectations about their future 

benefits, the ex ante and ex post marginal benefits are identical. Individuals with a high 

unobserved desire for treatment (low uS) have the highest benefit, strictly decreasing from 

+16% to −4%. The estimated surplus is positive for low values of uS and decreases when 

moving along the margins of Ṽ. The opposite holds for the marginal cost, which is always 

positive and slightly increasing. The cost is lowest for individuals with low values of uS and 

ranges from +3% to +10%. In summary, the benefit is highest and cost lowest for those most 

likely to pursue a higher education. However, the estimates are not precisely determined. 

The marginal benefit of treatment is significantly different from zero for roughly half of the 

individuals. Along all margins of Ṽ, the marginal cost of a college education does not 

significantly differ from zero. By construction, the marginal surplus is strictly positive for all 

those individuals who participate in the treatment and negative for those that do not. 

Conditional on the observables set to their sample mean, individuals are indifferent towards 

treatment when uS = 0.51.
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Figure 2 presents the marginal effect parameters over the full unit interval from the 

structural model. The distributional assumptions on (U1, U0, Ṽ) expand the margins for 

which we can identify the marginal effects of treatment. As we assume full independence 

between all observables and unobservables, we identify the marginal effects of treatment 

over the unconditional common support of P (XI, Z). In our sample, this support ranges 

between 0.03 and 0.98. Adding joint normality, we can extrapolate even further and cover 

the full unit interval.

However, our formal analysis demonstrates that in a fully nonparametric setting we are only 

able to identify the  over the support of P (XI, Z) conditional on XI = xI and the 

 over the support of P (XI, Z) conditional on Z = z. We identify the 

 over the intersection of the two supports. In Figure 3 we plot the 

conditional densities of P (XI, Z) in our data. As XI and Z are both multidimensional, we 

condition on the decile of the relevant index, i.e. on XI (α1 − α0) for the  and 

Zγ for the .12 The support is very limited and thus the results of a fully 

parametric implementation rely heavily on extrapolation based on the distributional 

assumptions.

We now develop a semiparametric estimation strategy that relies on fewer assumptions and 

provides more transparent sources of identification. We apply Marschak’s Maxim, 

estimating only those combinations of structural parameters needed for the marginal effect 

parameters. To fix ideas, consider the estimation of the BMTE(x, uS), where the conditional 

expectation of (U1 − U0) along the margins of Ṽ is a key element. In the fully parametric 

normal-theory approach, it is directly constructed from estimates of (σU1,Ṽ, σU0,Ṽ) and :

Instead, in what follows, we directly obtain E (U1 − U0 | US = uS) without having to estimate 

all structural components. We will also carefully recognize the relevant conditional support 

of P for each parameter and thus present a data-sensitive structural analysis (Heckman, 

2010).

We determine the support of P by building on an estimator of the joint support of the 

distribution of (X, Z):

12We trace out the remaining variation in P (XI, Z) by applying a two-dimensional kernel density estimation with a bivariate normal 
kernel.
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where || · || corresponds to the Euclidean norm and i denotes a generic observation in our 

data.13 Then, letting xI (x) indicate the appropriate subvector of x, our resulting estimator for 

the support of (XI, Z) is:

We can use these estimates to construct our desired support for the marginal cost and benefit 

parameters:

Note, that the variation in p for a given x and xI (x) is the same in ŜX,P and ŜX<sub>I</sub>,P. 

Thus we can identify the BMTE(x, uS) and  over the same margins. Finally, 

for the marginal surplus parameter, we collect in ŜX<sub>I</sub>,Z,P all (xI, z, p) where the 

relevant subsets in ŜX<sub>I</sub>,P and ŜZ,P overlap in p. We only report estimates for the 

margins within these sets and thus acknowledge the limitations of the data.

We estimate the BMTE(x, uS) using the method of local instrumental variables (LIV) 

proposed in Heckman and Vytlacil (1999, 2001b, 2005). They show that under our 

conditions the BMTE(x, uS) is identified by differentiating the conditional expectation of 

observed outcomes:

(6.1)

Applied to sample data, this is the LIV estimator of Heckman and Vytlacil (1999).14 As 

noted in Carneiro et al. (2011), it is empirically very difficult to apply the LIV estimator 

while conditioning on all variables in the outcome equations. Thus we proceed by invoking 

the stronger assumption that in addition to the variables in X, all elements common to 

outcome and choice equations are independent of (U1, U0, Ṽ) as well. Because our 

generalized Roy model is also linear, the conditional expectation of Y simplifies to:

(6.2)

where K(p) = E(U1 − U0 | D = 1, P = p) can be estimated nonparametrically. We determine 

the parameters of Equation (6.1) by a partially linear regression of Y on X and P. We 

proceed in two steps. The first step is the construction of P, and the second step is the 

estimation of β1 and β0 using the estimated P. We carry out the first step using a Probit 

13In practice, we set ε such that at most 5% of the sample are within the support for a given pair of (Xi, Zi).
14See the Web Appendix of Heckman et al. (2006) for a detailed description of the implementation of the LIV estimator.
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regression of D on (XI, Z). In the second step we use Robinson (1988)’s method for 

estimating partially linear models as extended in Heckman et al. (1997a).15 Next, consider 

the estimation of K(P). Equation (6.2) implies that E(Ỹ) = K(p), where Ỹ = Y − xβ0 − px(β1 − 

β0) is the residualized observed outcome. We thus use a local quadratic regression of Ỹ on P 

to estimate K(P) and its partial derivative with respect to P.16 We construct the ex post 

marginal benefit of treatment BMTE(x, uS) based on these estimates:

For the ex ante marginal benefit of treatment, we account for the agents’ imperfect foresight 

about the future realization of components of X. As agents form valid expectations, we 

calculate 17 and then construct the  as 

follows:

We can identify the  using the equality of the marginal cost and benefit 

parameter at the margin of indifference:

(6.3)

This step directly mirrors Equation (4.2) from our nonparametric identification analysis. We 

obtain an estimate for the marginal cost of treatment using only information on the marginal 

benefits. We do not exploit any additional distributional assumptions such as joint normality 

of the unobservables.

We finally determine the  by taking the difference between benefits and 

costs:

(6.4)

Figure 4 presents our semiparametric results for the ex ante benefit, cost and surplus 

parameters as well as the ex post benefit. We calculate the marginal effects at the mean 

values in the sample (x̄, z̄) and at two additional points of evaluation (xA, zA) and (xB, zB). 

15We run kernel regressions of each of the regressors on P using a bandwidth of h = 0.05. We compute the residuals of each of these 
regressions and then run a linear regression of Y on these residuals.
16We choose the bandwidth that minimizes the residual square criterion proposed in Fan and Gijbles (1996), which gives us a 
bandwidth of h = 0.3.
17The economics of the model imply a restriction on the coefficients (α1 − α0) in the choice equation, which depend on the estimated 
values of (β1 − β0). However, we only learn about the values of (β1 − β0) using an initial estimate of P. We insure internal consistency 
of our estimation routine by iterating between the estimation of the BMTE(x, uS) and P with restricted (α1 − α0) until convergence.
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We plot them as a function of uS within the relevant conditional support and compute the 

90% confidence bands using the bootstrap.18

Our estimates show that individuals with a high unobserved desire for treatment (low uS) 

have high benefits as well as high costs from participation. When moving up the margins of 

uS the benefits fall more quickly than the costs as the surplus decreases. The 

ranges from +37% within the support of xA to as low as −12% within the support of xB. The 

 varies between +32% and −6% overall, but within each margin of support the 

variation is limited to about 4% in absolute value. We can calculate the 

which ranges from +5% to −5% as the difference between ex ante benefits and costs within 

the overlap of the support. Note that the estimates for the marginal benefits at xB are all 

negative. However, costs are as well and so the surplus is still positive at the lower end of 

the conditional support. After conditioning on observables, it is unobservable heterogeneity 

in benefits and not costs that is driving the college entry decision. However, all estimates are 

rather imprecise, precision is highest at the mean values in the sample.

The conditional support is limited as shown in Figure 3. The location and range of the 

support depends on the point of evaluation. In general, we can identify BMTE(x, uS) and 

 over longer stretches of uS than the  function. In fact, for all xI, z 

evaluation points considered, the values of uS for which we identify  is a subset 

of the values of uS for which we identify . Hence, for the xI, z evaluation 

points considered, we can identify  only over the set of uS values 

corresponding to the smaller set of uS values for which we identify . The 

conditional variation in P is largest at x̄I where we can identify the longest stretch for the 

 with uS ∈ (0.42, 0.61), while it is smallest for  with uS ∈ (0.81, 

0.89). Note that we identify all marginal effect parameters around the margin of indifference 

at .

We can also assess the magnitude of the expectation errors due to the agents’ imperfect 

foresight about parts of their future benefits. Given our prediction model, the ex post and ex 

ante benefits coincide for the average individual (x̄, z̄). However, a comparison between 

realized and predicted benefits reveals that at xA, ex post benefits are overestimated by about 

9%, while at xB the prediction is only off by 3%.

We can compare the results for the marginal effects of treatment between the two estimation 

approaches at (x̄, z̄) within the conditional support. The semiparametric approach indicates 

larger heterogeneity in benefits and costs due to the steeper slope of the marginal effect 

parameters. In both cases, benefits decrease considerably when moving along the margins of 

Ṽ while variation in costs is limited. Thus, it is heterogeneity in benefits that drives the 

college attendance decision. This is in line with the results by Björklund and Moffitt (1987), 

18We use 2,000 bootstrap replications. In each iteration of the bootstrap we re-estimate P so all standard errors account for the fact 
that P itself is an estimated object.
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who also find that heterogeneity in rewards is more important than heterogeneity in costs for 

the participation decision in their context of a manpower training program in Sweden.

7 Summary and Conclusion

This paper extends the modern treatment effect literature by developing a framework for 

identifying both the marginal benefit and marginal cost of policies. The treatment effect 

literature focuses only on the benefit side, and does not address the question of the 

subjective cost of treatment as perceived by the agents attempting to take it. We build on the 

pioneering parametric analysis of Björklund and Moffitt (1987) by extending the 

nonparametric analysis of Heckman and Vytlacil (1999, 2005, 2007) to identify subjective 

cost and surplus functions. We provide identification results for the case of perfect foresight 

(as in the previous literature) as well as cases with imperfect foresight not previously 

considered. An analysis of college-going finds unobserved heterogeneity in the benefits as 

well as costs of attending college, with agents selecting into college based on both their 

idiosyncratic expected benefit and perceived cost of attending college. We find more 

heterogeneity in expected benefits than in perceived cost. Thus, the observed variability in 

college attendance is mainly driven by the variability in expected benefits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Marginal Effects of Treatment
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Figure 2. 
Marginal Effects of Treatment, Parametric
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Figure 3. 
Conditional Support
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Figure 4. 
Marginal Effects of Treatment, Semiparametric
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Table 1

Specification

X XI Z Common

Years of Experience (in 1991) ✓

Current Local Wages (in 1991) ✓

Permanent Local Wages ✓ ✓

AFQT Scores ✓

Mother’s Education ✓

Number of Siblings ✓

Cohort Dummies ✓

Urban Residence ✓

Local Presence of Public College (age 14) ✓

Local Tuition at Public College (age 17) ✓

Local Wages (age 17) ✓

Notes: Our main specification includes years of experience (linear and squared), current local wages (linear), permanent local wages (linear and 
squared), AFQT scores (linear and squared), mother’s education (linear and squared), number of siblings (linear and squared), urban residence 
(linear), cohort dummies (linear), local presence of public colleges (linear), local tuition of public college (linear), and local wages (linear). All 
exclusions from the benefit equation are interacted with AFQT scores, mother’s education, and number of siblings.
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Table 2

Slope Parameters

Parameter Estimate 90% Confi. p -val.

σ(U1−U0),Ṽ −0.042 −0.216 / 0.001 0.06

σUC,Ṽ 0.015 −0.020 / 0.579 0.29

0.058 0.005 / 0.769 0.00

Notes: Confi. = Confidence Interval, p - val. = p -values.
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