
NIH Working Group Report—Using Genomic Information to
Guide Weight Management: From Universal to Precision
Treatment
Molly S. Bray1, Ruth J.F. Loos2, Jeanne M. McCaffery3, Charlotte Ling4, Paul W. Franks4, George M. Weinstock5,
Michael P. Snyder6, Jason L. Vassy7, Tanya Agurs-Collins8, and The Conference Working Group*

Objective: Precision medicine utilizes genomic and other data to optimize and personalize treatment.

Although more than 2,500 genetic tests are currently available, largely for extreme and/or rare pheno-

types, the question remains whether this approach can be used for the treatment of common, complex

conditions like obesity, inflammation, and insulin resistance, which underlie a host of metabolic diseases.

Methods: This review, developed from a Trans-NIH Conference titled “Genes, Behaviors, and Response

to Weight Loss Interventions,” provides an overview of the state of genetic and genomic research in the

area of weight change and identifies key areas for future research.

Results: Although many loci have been identified that are associated with cross-sectional measures of

obesity/body size, relatively little is known regarding the genes/loci that influence dynamic measures of

weight change over time. Although successful short-term weight loss has been achieved using many dif-

ferent strategies, sustainable weight loss has proven elusive for many, and there are important gaps in

our understanding of energy balance regulation.

Conclusions: Elucidating the molecular basis of variability in weight change has the potential to improve

treatment outcomes and inform innovative approaches that can simultaneously take into account infor-

mation from genomic and other sources in devising individualized treatment plans.

Obesity (2016) 24, 14–22. doi:10.1002/oby.21381

Introduction
The prevalence of overweight and obesity in the United States and other

Western countries has seen sharp increases, and worldwide obesity prev-

alence is increasing at alarming rates, including in populous nations, such

as India and China (1). The precipitous rise in obesity prevalence, coin-

ciding with the abundance of palatable, highly processed, energy-dense

foods and reduced physical activity levels, demonstrates the substantial

contribution of environmental factors to obesity. Nevertheless, a sizeable

proportion of the population remains of normal weight despite living in

obesogenic settings, suggesting that the extent to which people or popula-

tions respond to influences in their surroundings may be determined by

innate factors, such as genetic makeup. The heritability of body mass

index (BMI) has been consistently estimated at approximately 40-70%

(2-5), suggesting that about half of the interindividual variance in body

size can be attributed to genes, whereas the other half is due to environ-

mental influences. Both experimental and epidemiological studies have

provided extensive evidence for an intricate interplay between genes and

environment in the regulation of body weight and energy balance (6,7).

Although a genetic basis for obesity and body composition has been

well established (8), family and twin studies also provide evidence that

a person’s genetic makeup plays a role in response to weight loss or

gain. In classic genetic studies of energy balance in which body weight

was manipulated via overfeeding or exercise in monozygotic (MZ)

twins, Bouchard et al. reported a high concordance between the twin

pairs for both weight gain (rwithin-pair 5 0.55; F 5 3.4) (9) and weight

loss (rwithin-pair 5 0.74; F 5 6.8) (10). These investigators later reported
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that a variant in the resistin gene (RETN, IVS2 1 39C>T) was associ-

ated with increases in both abdominal visceral and total fat following

overfeeding in MZ twins, with individuals with the TC genotype hav-

ing significantly higher values of both measures compared with TT

homozygotes (11). Using a similar MZ twin design but inducing a daily

energy deficit via a 400 kcal/day energy-restricted diet, Hainer et al.

(12) observed 12.8 times more variation in weight loss between pairs

than within twin pairs (rwithin-pair 5 0.85; F 5 12.8). In another study of

MZ and dizygotic twins, Keski-Rahkonen et al. (13) reported the herit-

ability of intentional weight loss of �5 kg to be 38% (95% confidence

interval [CI], 19%-55%) in men and 66% (95% CI, 55%-75%) in

women. More recently, Hatoum et al. (14) found that a patient’s

genetic makeup was a strong determinant in weight loss after gastric

bypass surgery; first-degree relatives lost a similar amount of weight

following surgery (9% difference; intraclass correlation coefficient

[ICC] 5 70.4%), which was not observed between co-habiting individ-

uals (26% difference; ICC 5 0.9%) or other unrelated individuals

(25% difference; ICC 5 14.3%) following surgery. Taken together,

these twin and family studies indicate that response to weight change

interventions varies widely between individuals and that this may be

under some degree of genetic control.

To date, large-scale genome-wide association studies (GWAS) have

identified nearly 150 genetic variants that have been significantly

associated with cross-sectional measures of BMI, waist circumfer-

ence, or obesity risk, many in multiple populations (15,16). Among

the most consistent findings are those for pathways affecting central

nervous system processing and neural regulation of feeding (e.g.,

BDNF, MC4R, NEGR1), as well as genes associated with fasting

insulin secretion and action, RNA binding/processing, energy metab-

olism, lipid biology, and/or adipogenesis (e.g., FTO, TCF7L2, IRS1,

FOXO3, RPTOR, PTBP2, MAP2K5, MAPK3) (15). For many

GWAS variants, the underlying biology that links the variant to

body weight regulation is unclear. Many of these loci lie in

regulatory and/or other noncoding regions and may play important

roles in gene regulation, but not necessarily for the gene to which

they have been attributed (17,18). For example, variants within the

FTO gene, which have been consistently associated with obesity

traits in multiple GWAS, have recently been shown to reside within

enhancer elements that regulate expression of the IRX3 and IRX5 genes,

which appear to influence adipocyte development, thermogenesis, and

lipid storage (19). Importantly, the combined contribution of all variants

associated with body size measures to date is less than 5%, with FTO
having one of the largest effects at 0.34% (20). Using an approach called

genome-wide complex trait analysis (GCTA), which estimates the

combined effect of all genomic variation on complex outcomes, the

genomic heritability of cross-sectionally measured BMI has been

estimated to be between 16% and 30% (21,22). Although the GCTA

approach is likely to underestimate heritability, as it only reflects

variation captured on the genotyping array, these estimates suggest that

environmental context, gene-gene, gene-environment, epigenetic, and/or

other types of interaction/regulation may be critical to consider in

assessing the genetic underpinnings of a complex outcome, such as

energy balance. As an example, Winkler et al. (23) recently identified 21

novel loci with significant age- or gender-specific associations with BMI

or body shape.

It remains unclear whether variants associated with cross-sectional

measures of overall or abdominal obesity traits also contribute to

dynamic measures of body weight, as the genetic determinants of

weight change may differ from those associated with BMI (24). Few

studies have been performed to assess the role of genetic variation

within the context of weight change a priori, either in free-living

populations or in clinical trials involving specific behavioral, dietary,

or other types of interventions. Despite substantial evidence for a

genetic component contributing to the regulation of body mass/com-

position, only a limited number of genes (described later) have been

associated with body weight change in response to changes in the

environment.

Defining Weight Change Phenotypes
It is important to consider that changes in body weight and BMI,

although commonly used in large epidemiologic and clinical trials

because of their ease of measurement, may not fully capture genetic asso-

ciations with weight-related phenotypes. For example, in a 1-year con-

trolled trial of moderate exercise, variation in the cytochrome p19

(CYP19) gene was associated with significant decreases in total body fat

(23.1 kg vs. 20.5 kg, respectively for those with two vs. no copies of

the CYP19 11-repeat alleles, P< 0.01) and percent fat (22.4% vs.

20.6%, respectively, P< 0.001) but not change in BMI, suggesting that

genes may act upon body fatness without significantly influencing body

weight per se (25). Measures of body circumferences following weight

loss may indicate important changes in fat distribution and lean body

mass, and more refined measures of visceral versus subcutaneous fat

using computed tomography or magnetic resonance imaging may also

provide measures that are more closely correlated with gene function

than BMI or body weight.

Weight change is a complex outcome, as both the degree and pat-

tern of weight change impact health. For example, in the Diabetes

Prevention Program (DPP; described in more detail later), both

short- and intermediate-term weight loss were associated with

reduced diabetes risk and intermediate cardiometabolic risk factor

levels, whereas weight cycling (defined as number of 5 lb [2.25 kg]

weight cycles) raised diabetes risk, fasting glucose levels, insulin

resistance, and systolic blood pressure. Initial (baseline to 1 month)

and late (last 6 months of the 2-year intervention period) weight

loss had no discernable impact of diabetes risk (26). Similar results

have been reported in people with pre-existing diabetes who under-

went lifestyle intervention as part of the Look AHEAD (Action for

Health in Diabetes) trial (27). These studies point to alternative phe-

notypes that may be informative for genetics studies of weight loss/

maintenance/regain.

Genetic Predictors of Obesity Treatment
Response
Given the small effects of BMI loci identified to date, it is possible

that genetic effects may be more closely aligned with dynamic,

rather than static, phenotypes. In a recent GWAS of weight change

trajectories from age 1-17 years, Warrington et al. (28) identified a

novel variant in the FAM120AOS gene and confirmed three known

adult BMI-associated loci (FTO, MC4R, and ADCY3) and one child-

hood obesity locus (OLFM4) with significant genome-wide associa-

tion (PWald < 1.13 3 1028) with BMI at 8 years and/or change

over time. The analysis of short-term change in response to weight

loss interventions may also reveal novel genes/loci and biology asso-

ciated with treatment response.
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Behavioral strategies for weight loss, involving kilocalorie restriction

and physical activity, are currently the frontline treatment for com-

mon forms of obesity (29). Randomized controlled trials of lifestyle

interventions for behavioral weight loss reliably produce initial

weight losses of 7% or more, resulting in clinically important health

benefits (30,31). Two of the largest obesity-treatment randomized

controlled trials to date have focused on energy intake, dietary fat,

and physical activity to support weight loss goals. The DPP random-

ized 3,234 individuals with obesity or overweight and at risk for dia-

betes to metformin treatment, lifestyle intervention, or a placebo

control arm (30,32). In the Look AHEAD study, 5,145 individuals

with obesity or overweight who had Type 2 diabetes (T2D) were

randomized to intensive lifestyle intervention (ILI) or a diabetes

support and education (DSE) control without an active weight loss

program (33). Both weight loss interventions produced significant

weight losses as compared with the control groups (e.g., Look

AHEAD, Year 1 percent weight change, ILI: 28.6% 1 6.9%, DSE:

0.7% 1 4.8%) (6). Partial weight regain was nonetheless common

(e.g., Look AHEAD, Year 4 percent weight change: ILI: 26.15%

vs. DSE: 20.88%; percent weight change at a median of 9.6-year

follow-up: ILI: 26.0% vs. DSE: 23.5% (31,34)).

The largest study to date to address the role of genetic variation in

weight loss response examined the association between 91 estab-

lished obesity-predisposing loci, derived from the comprehensive

results of GWAS available in 2015 (15), and weight loss or weight

regain in the DPP and Look AHEAD cohorts (35). The combined

genetic sample included 5,730 participants randomly assigned to

either behavioral weight loss treatment or a control condition. Of

the 91 loci, one was consistently associated with weight loss over 4

years in meta-analysis. Each copy of the minor G allele for the

rs1885988 variant at MTIF3 was significantly associated with a

mean 1.14 kg lower weight in the lifestyle arm versus a

nonsignificantly higher weight of 0.33 kg in the comparison arm.

These effects produced a statistical interaction of gene 3 treatment

arm reaching experiment-wide significance at Year 3 and nominal

significance across the 4 years. Nevertheless, no other obesity-

associated loci predicted weight loss, and no loci predicted weight

regain. The MTIF3 gene encodes a protein that is essential for ATP

synthesis and energy balance in the mitochondria (36). The minor G

allele has previously been associated with higher BMI (37,38) and

hip circumference (39). Thus, carriers of the MTIF3 obesity-

inducing allele seem to benefit more from ILIs than noncarriers.

This locus has also begun to emerge in epidemiologic gene 3

environment interactions studies of BMI, with MTIF3 genotype

associated more strongly with BMI for those eating a healthy

dietary intake pattern compared with those in the nonhealthy diet

group (40).

No studies to date have searched for novel genetic loci associated

with behavioral weight loss leveraging a genome-wide approach.

The only exploratory study to date comes from Look AHEAD, in

which single nucleotide polymorphism (SNP) variation across the

IBC chip (Illumina, San Diego, CA), a gene-centric assay of roughly

50,000 SNPs covering early candidate genes for cardiovascular dis-

ease, was examined in relation to magnitude of weight loss after 1

year (41). Two novel regions of significant array-wide association

with Year 1 weight loss in ILI were identified. ABCB11/G6PC
rs484066 was associated with 1.16 kg less weight loss per minor

allele at Year 1, whereas TNFRSF11A, or RANK, rs17069904 was

associated with 1.70 kg greater weight loss per allele at Year 1.

ABCB11, or BSEP, is a bile salt export pump and the primary medi-

ator of bile salt secretion and fat transport from the gut. G6PC is a

primary regulator of glucose homeostasis with mutations related to

hypoglycemia; this locus has previously been identified as a predic-

tor of high density lipoprotein cholesterol and glucose in GWAS

(42,43). RANK, along with the RANK ligand, are members of the

tumor necrosis factor (TNF) family of genes and are expressed in

adipose tissue (44). Although provocative, these exploratory analyses

await confirmation in independent samples. Smaller trials have

tested whether genetic variants may predict differential response to

diets varying in macronutrient composition. For example, the Pounds

Lost trial (45) found individuals carrying obesity-associated alleles

at the FTO locus to differentially benefit from a high-protein, calo-

rie-restricted diet in losing weight (46). Variation in the FTO locus

has also been shown to be associated with weight loss following

bariatric surgery (47,48). This interesting research awaits further

replication.

Taken together, this emerging evidence indicates that genetic varia-

tion may impact the efficacy of behavioral weight loss interventions.

Initial results indicate that agnostic genetic association studies

focused on treatment response may yield new insights into genetic

predictors of weight loss, but larger trials or a consortium of weight

loss trial will be required to achieve the larger samples size neces-

sary to test these hypotheses with statistical certainty.

Complex Systems That Influence Energy
Balance
Epigenetic mechanisms in energy homeostasis
and obesity
Interactions between the environment and the genome that modulate

the risk for obesity can happen through direct chemical alterations,

including DNA methylation and histone modifications (49). Methyl-

ation, an epigenetic mechanism that can both positively and nega-

tively regulate gene expression, plays a critical role in driving many

cell-specific and tissue-specific functions. It is now well established

that some epigenetic modifications of DNA may also occur in

response to changes in the environment, including nutrition and

exercise, which can alter gene expression in a stable and heritable

manner that may influence metabolism, behavior, and ultimately

overall health. These features make epigenetics a potentially impor-

tant pathogenic mechanism in complex disorders, such as obesity.

Recent epigenome-wide association studies have shown that physical

activity and high-fat diets may alter the DNA methylation pattern in

tissues of importance for energy homeostasis such as skeletal muscle

and adipose tissue (50-52); these epigenetic changes may affect

weight loss and/or weight gain. In support of this hypothesis, a 6-

month exercise intervention was associated with altered DNA meth-

ylation patterns of numerous candidate genes for obesity, such as

FTO, GRB14, and TUB in adipose tissue, as well as of genes regu-

lating adipogenesis, and was associated with decreased waist cir-

cumference in sedentary middle aged men (50). Additionally, obe-

sity has been associated with altered DNA methylation compared to

individuals without obesity in numerous human studies (49,53-55).

HIF3A has shown consistent differential DNA methylation in rela-

tion to obesity in several studies (56,57). Epigenetic mechanisms

may also affect a person’s response to weight increase, weight loss,
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and maintenance by controlling genes that regulate energy homeo-

stasis. For example, Demerath et al. (55) found that the degree of

methylation of eight different CpG sites, including one site near

CPT1A, was associated with a change in BMI in participants who

gained weight over a 30-year period. Additionally, when Dahlman

et al. (58) compared the methylome in adipocytes from women who

formerly had obesity and had lost weight following gastric bypass

surgery with women who had never had obesity, they found differ-

ential DNA methylation of genes involved in adipogenesis.

Weight loss associated with roux-en-Y gastric bypass surgery, which

is commonly used to treat morbid obesity, was recently shown to

alter the epigenome in adipose tissue, skeletal muscle, and blood

(59-61). Interestingly, maternal weight loss by gastric bypass surgery

was also found to influence the methylation pattern of offspring

born after, versus before, weight loss (62). In a separate study, Nico-

letti et al. (63) compared epigenetic changes in relation to two dif-

ferent weight loss strategies: an energy-restricted diet and gastric

bypass surgery, and they reported that baseline methylation of SER-
PINE1 may predict weight loss after gastric bypass surgery.

Together, these studies support an important role for epigenetic

mechanisms in controlling energy homeostasis and obesity. How-

ever, further studies are needed to fully dissect the role of epige-

netics in the growing incidence of obesity and to establish whether

epigenetic markers may be used to guide weight management.

The microbiome and weight change
The human microbiome may play a significant role in the etiology

of obesity in both humans and animal models (64). Hosted in the

gastrointestinal tract, the gut microbiome is part of a large endocrine

organ that regulates not only nutrient sensing and metabolism but

also satiety and energy homeostasis. The millions of microorganisms

comprising the complex intestinal “superorganism” perform a num-

ber of functions for host health, including food processing, break-

down and metabolism of indigestible nutrients, pathogen displace-

ment, synthesis of vitamins, and regulation of body weight (65).

They play such an important role that we now know that microbiota

disruptions in early life can have long-lasting effects on body weight

in adulthood (66). The host bacterial composition has been shown to

adapt in response to dietary factors and in response to weight loss.

Diet or surgically induced weight loss promote alterations in the gut

that can impact the efficacy of the treatment strategies (67,68). Spe-

cific bacterial species can have influences by themselves. For exam-

ple, the archaeon Methanobrevibacter smithii, has an enhanced abil-

ity to metabolize dietary substrates or end products of the

metabolism of other bacteria, thereby increasing host energy intake

and weight gain (69).

Experiments in animal models, particularly rodents, show specific

reproducible changes in the microbiota because of the ability to con-

trol factors such as genetics, diet, and environment. However, in

humans, these effects have been less consistently demonstrated.

With weight loss, there is a decrease in the ratio of Firmicutes to

Bacteroidetes phyla (68). Damms-Machado et al. (70) demonstrated

that surgical weight loss interventions like laparoscopic sleeve gas-

trectomy seem to improve the obesity-associated gut microbiota

toward a lean microbiome phenotype. They described a reduction of

the energy-reabsorbing potential of the gut microbiota following sur-

gery indicated by the Firmicutes/Bacteroidetes ratio. The interaction

of a community depends on a balanced microbial diversity, and

each group has different tasks and different qualities, which together

compose a “healthy” microbiome (71). Manipulation of gut micro-

biota could reduce intestinal low-grade inflammation and improve

gut barrier integrity, ameliorating metabolic balance and promoting

weight loss (71). The use of prebiotics and probiotics as potential

aids in weight loss/gain interventions has great potential, but further

evidence is needed to better understand the real clinical potential of

studies of the gut microbiome.

Behavioral Phenotypes Underlying BMI
and Body Weight Change
Of the known genes underlying Mendelian forms of severe obesity

(see Table 1), one consistent underlying feature is hyperphagia, sug-

gesting that ingestive behavior may be the prime driver of weight

gain or loss. Many of the loci associated with obesity in GWAS are

also expressed in the brain and often specifically in hypothalamic

eating regulatory pathways (15). Physical activity is a second promi-

nent health behavior known to prevent weight gain and promote

weight loss maintenance (72-75). Both eating and physical activity

behaviors have been shown to have substantial genetic underpin-

nings (76,77) and may directly or indirectly mediate the association

between genetic/genomic variation and measures of body mass/size.

Genetics of food preferences and ingestive
behavior
Many of the loci associated with obesity in GWAS are located in or

nearby genes expressed in brain eating regulatory pathways, high-

lighting a potential role in the central nervous system and eating

behavior for these genetic associations (78). Consistent with this

hypothesis, the FTO locus rs9939609, for example, has been shown

to predict preferences for and consumption of palatable, calorie-

dense foods (79,80) and reduced satiety (81) in laboratory para-

digms, and greater total caloric and total fat intake assessed by die-

tary recall (80,82). In recent GWAS of dietary intake, FTO emerged

as associated with a greater percentage of calories from protein

(83,84) and fat (85), although inconsistently so.

Although monogenic obesity is often associated with abnormal appetite

and excessive food consumption, more subtle types of feeding behav-

ior, such as food preferences, have also been shown to have a substan-

tial genetic component (86,87). The TAS2R38 gene is associated with

the perception of the bitter-tasting thiourea compounds, and genotype

at this locus defines three taster groups: supertasters, medium tasters,

and nontasters, with nontasters having a higher BMI compared with

the other taster groups; differences in dietary patterns were also

observed (88). Taster status at another locus, 6-n-propylthiouracil

(PROP), was associated with significantly greater reduction in energy

intake for super-tasters during two randomized control dietary inter-

ventions focused on lowering energy density or changing eating fre-

quency (89). Taken together, these studies suggest that genetic associa-

tions with body weight or BMI may be modulated by more direct links

between food preferences, eating behavior, and genes.

Genetics of physical activity
Multiple studies have demonstrated that physically active individuals

are less likely to gain weight over time (75,90,91), and physical
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exercise has also been shown to facilitate both weight loss and weight

maintenance (92). In studies of twins and other related individuals,

physical activity has been shown to aggregate in families, with

reported heritability estimates for physical activity behavior ranging

from 9% to almost 80% (93-96). In animal models, the strongest

genetic predictors of spontaneous physical activity include the dopa-

mine receptor 1 (Drd1) and nescient helix loop helix 2 (Nhlh2) genes,

which have also been implicated in feeding behavior (97-100). In

humans, variation in the leptin receptor (LEPR) and melanocortin 4

receptor (MC4R) genes was associated with physical inactivity (101-

103), which appears to be driven by genetic pathways that are distinct

from those encoding activity. A limited number of genes have been

identified that may influence exercise adherence and/or exercise toler-

ance, with small effects that await replication (104,105). Change in

body weight, waist circumference, hip circumference, and BMI have

been shown to be significantly associated with adherence status both

before and after an aerobic exercise intervention (105), suggesting a

plausible pathway by which genes that influence adherence may ulti-

mately influence weight change.

Personalizing Weight Loss Interventions
Although ongoing efforts are elucidating the genetic underpinnings of

obesity and weight change, a different question is whether these dis-

coveries can be implemented in the clinical setting to personalize

weight loss interventions. The success of such interventions would

rely not only on an understanding of the pathophysiological mecha-

nisms linking genotype and weight but also on the ability to communi-

cate a personalized strategy to patients and motivate behavior change.

A few studies have examined whether communicating genetic risk

information to patients motivates weight-related health behavior

change. In a recent trial, 1,016 university students were randomized

to receive simple weight control advice with and without their FTO
rs9939609 genotype (106). Of the 279 participants who completed

the 1-month follow-up survey, those in the genotyped group were

more likely to be in a contemplation or action stage of readiness to

control weight, compared with those receiving advice only (odds

ratio 1.77, 95% CI, 1.08-2.89, P 5 0.023). The researchers observed

an interaction of study group with body weight; the effect of FTO
genotype information on readiness for change was greater among

individuals with overweight/obesity (only 9% of the respondents)

than among those of normal weight (106). Perhaps most relevant to

the present discussion, the researchers also observed an interaction

between study group and genotype; compared with control partici-

pants, participants learning they carried the higher-risk AT or AA

FTO genotype, but not those learning they carried the low-risk TT

genotype, were more likely to be in an advanced stage of change

after 1 month (106). The groups did not differ, however, in the pro-

portions reporting they had actually followed any of the weight con-

trol advice, suggesting that additional information may need to be

given to motivate actual behavior change.

Two trials in the field of T2D have assessed weight change in

response to genetic testing. In the Genetic Counseling and Lifestyle

Change for Diabetes Prevention Study (107), 177 patients with met-

abolic syndrome were randomized to receive genetic testing for T2D

susceptibility based on 36 T2D-associated SNPs plus brief genetic

counseling versus no genetic testing. Diabetes risk for genotypedTA
B
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participants was summarized with a risk score categorizing their

genetic risk as low, average, or high. All patients were then enrolled

in a 12-week lifestyle medication program modeled on the evidence-

based DPP (108). The lifestyle intervention was effective: the group

overall lost a mean of 8.5 6 10.1 pounds, with 31% losing at least

5% of their body weight. Communicating genetic risk did not

change this effectiveness, however. The genotyped and control arms

did not differ with respect to weight loss, attendance at the 12 DPP

sessions, or motivation or confidence to make health behavior

changes (107). In a second randomized trial, 601 patients with obe-

sity or overweight received T2D risk estimates based on family his-

tory, BMI, and fasting plasma glucose, followed by either T2D

genetic susceptibility results from four T2D-associated SNPs or eye

disease counseling as a control (109). All participants received brief

lifestyle counseling but were not otherwise enrolled in a weight loss

program. Although the group receiving genetic risk information

reported lower calorie and fat intake after 3 months, the two groups

did not differ in these behaviors or in physical activity, weight loss,

insulin resistance, or perceived risk after 6 months.

Personalizing genetic risk information is only one component of a

genotype-informed approach to weight loss. A clear deficit of the

trials to date is that the genetic risk information provided to partici-

pants was not connected to personalized weight loss strategies but,

rather, to uniform interventions, be they simple advice or an inten-

sive 12-week program. To advance the field of precision weight

loss, the combination of an individual’s genotype, along with the

unique underlying pathophysiology it suggests, should be used to

develop dietary and physical activity recommendations that target

the metabolic derangements specific to each person.

Future Directions
Although a genetic basis for obesity and even response to alterations

in energy balance has been clearly established, few studies (24,110)

have examined whether the same genes and/or processes that influ-

ence obesity when assessed cross-sectionally also influence weight

loss, weight maintenance, and/or weight regain following weight

loss interventions. By taking into account the influence of genetic

variation on these disease processes, precision medicine in behav-

ioral weight loss may present several new avenues to tackle the obe-

sity epidemic. For example, identifying subgroups of populations

with obesity who are genetically prone to respond well to a given

weight loss intervention might be targeted accordingly. Similarly,

genetic information might prove valuable when seeking to identify

people who are unlikely to respond well to a given weight loss ther-

apy or who might experience adverse events. There are many com-

pelling examples of the use of genomic data in clinical settings,

such as screening for BRCA1/BRCA2 gene mutations to aid treat-

ment decisions for familial breast cancer and genetic screening for

drug metabolizing genes like CYP2D6 to inform the prescription

and dosing of codeine for pain relief. To optimize the use of genetic

information, clinicians, patients, and their relatives would all benefit

from an improved level of medical literacy when exchanging genetic

information (111).

Although complex diseases and outcomes pose the biggest challenge

for precision medicine, improving treatment for such outcomes also

has the potential to impact the greatest number of people. Technol-

ogy exists today to characterize individuals in a highly comprehen-

sive manner that includes 24-h assessment of heart and respiratory

rate, physical movement, exposure to changes in light/sound/temper-

ature, sleeping patterns, eating patterns, and a host of other meas-

ures. Portable, wearable monitors can be used to upload patient data

remotely and automatically, and Web-based, computerized devices,

like scales and bioimpedance instruments, can monitor fluid balance

and body composition without the need for the participant or patient

to interact directly with researchers or health care providers. These

devices can be linked to environmental monitors in the home, and

GPS tracking systems can document the location and physical set-

ting of the wearer. In addition to monitoring devices, it is now feasi-

ble and affordable to sequence an entire genome in as little as 10

days. Next-generation sequencing and advanced mass spectrometry

have paved the way for the fast and complete characterization of the

transcriptome, proteome, epigenome, and metabolome. Classic infor-

mation about family and medical history can be combined with a

TABLE 2 Future directions

Research needed Examples

Discovery research Leverage genome-wide genetic and genomic technologies to explore novel genetic loci for intentional weight loss or weight change

Develop advanced statistical approaches designed to concurrently examine the effects of phenotypic and genotypic data from multiple sources

Genetic variation Design large randomized control trials of behavioral weight loss interventions designed to examine genetic variation in weight

loss/maintenance/regain

Convene behavior weight loss intervention consortia to leverage resources

Replication of smaller studies examining genetic variation

Measurement Examine measures of body composition, other than BMI (e.g., functional vs. static phenotypes, visceral and subcutaneous

fat using computed tomography or magnetic resonance imaging)

Mechanisms Examine epigenetic and microbiome mechanisms involved in controlling energy homeostasis and weight management

Examine indirect and direct genetic pathways of health behaviors (diet, physical activity) on weight loss/maintenance/regain

Personalized
weight loss

Examine whether genetic discoveries and technological advances can be implemented in a clinical setting to motivate behavior

change/adherence to weight loss interventions

Examine whether baseline characteristics, including genetics and genomics, predict change in weight, weight loss maintenance,

or change in obesity-related comorbidities with sufficient precision to permit tailored treatment guidelines
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host of behavioral, psychological, and demographic data to com-

pletely account for a multitude of factors that may influence both

disease processes and response to treatment.

Acquiring data is the easy part. What is direly needed are innovative

approaches for mining multiple levels of “omics” and other data to

discern patterns of data-disease relationships that may then be used

for decision-making in clinical treatment. Although the statistical

approaches lag behind the technology and our ability to gather data,

the potential is great to make substantial progress in this area. This

article highlights the importance of developing a model that com-

bines genes with established phenotypes in order to bring us closer

to personalized treatment. Table 2 outlines future research directions

to advance the science and potentially inform personalized gene-

based interventions for successful weight loss, maintenance, and re-

gain.

With advances in technology comes a demand for more innovative

studies. There are several large, multimillion-dollar prospective stud-

ies that have been recently initiated in Europe and the United States,

including the Innovative Medicines Initiative DIRECT Study in

Europe (112) and the Google Baseline Study in the United States

(https://www.dtmi.duke.edu/news/duke-and-stanford-assist-google-x-

defining-health); both studies involve repeated intensive phenotyping

and objective long-term measures of behavior assessed with weara-

ble devices, from which much will be learned about the genetic and

environmental influences on weight change and metabolic health.

Although interrogating existing trials for gene-intervention interac-

tions is pragmatic and should be done, new trials that are specifi-

cally designed to assess the combined effects of genotypes and inter-

ventions are needed. Genotype-based recall trials, in which the

power to detect differences in response to treatment between partici-

pants with a high and low degree of genetic burden is maximized,

provide one such opportunity. With innovation at every level, from

data acquisition to statistical analysis to study design, recent and

future scientific discoveries may help move obesity prevention and

treatment from universal to precision approaches.O
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