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                          The paper by Gadkar, Lu, and colleagues in this issue of 
the  Journal of Lipid Research  offers an opportunity to com-
ment on the intersection of two different philosophies in 
kinetic modeling that are just beginning to join forces in 
the practical worlds of disease modeling and systems phar-
macology. First, some background. 

 In many fi elds of biology, kinetic modeling is a new 
topic; students often think that the idea of applying engi-
neering analysis to biological systems originated in 2002 
when Hiroaki Kitano coined the phrase,  “ systems biology, ”  
as an umbrella for large scale mechanistic modeling of 
biomedical systems ( 1 ,  2 ). Readers of the  Journal , however, 
recognize that studies of lipid and lipoprotein metabolism 
are unique; productive collaborations between experi-
mentalists and modelers have been, for at least 50 years, 
answering central questions in lipid and lipoprotein metab-
olism in the pages of this journal. 

 In some ways, this was a chance occurrence. When Don 
Fredrickson recruited Bob Levy, and DeWitt Stetten re-
cruited Mones Berman to the National Institutes of Health 
in the late 1950s and early 60s, stars aligned. Radioisotopes 
were just becoming available for metabolic research. IBM 
and Univac were building computers that fi lled rooms. 
Together, Berman and Levy and their students attacked 
the pivotal questions of plasma lipoprotein metabolism. 
Berman was an engineer. His vision was simple; linear 
algebra, linear differential equations, and computers com-
prised the ideal set of tools to formulate models of biologi-
cal systems and test them against tracer kinetic data ( 3 ). 
He designed a FORTRAN code called SAAM to make it 
practical. Levy, now a legendary physician-scientist, real-
ized early on that combining ultracentrifugation and ra-
dio-iodinated proteins offered a chance to fi gure out the 
metabolic properties of plasma lipoproteins. 

 What, fundamentally, makes tracer kinetics so powerful? 
Suppose you are confronted with a disease state in which 
LDL-cholesterol (LDL-C) concentration is substantially 
above normal. Is this caused by excessive production of 
LDL-C, or by insuffi cient removal? It is  impossible  to answer 
this query based on measurements of LDL-C alone. Even if 
we can measure the entire time course of an LDL-C increase 
upon, say, infusing a recombinant protein of unknown 
function, it remains  impossible  to identify the cause of the 
observed effect by measuring the transient alone. 

 By introducing LDL with some of its lipid molecules or 
apolipoproteins tagged so that they can be quantifi ed in-
dependently by suitable technology, it becomes a relatively 
simple matter to distinguish between increased production 
and decreased removal. An early example of the Berman-
Levy collaboration, published in the  Journal , applied these 
ideas to apolipoprotein metabolism ( 4 ). Today, the com-
putational tools are even more powerful and comprehen-
sive. Recruiting a population of normal volunteers and a 
population of individuals with the abnormal phenotype 
and then collecting the tracer kinetic data has become, by 
far, the most challenging aspect of answering the pivotal 
question: increased production, or decreased clearance? 

 Because the computational techniques of classical tracer 
kinetics are predicated on an assumption of steady state 
(nothing is changing with time except the abundance of 
the tagged or labeled molecules), experimental designs 
generally consist of steady state experiments in two or 
more groups with statistical tests used to identify those 
production rates or rate constants that distinguish one 
group of subjects from another group. Innumerable pub-
lications attest to the utility of this approach and dem-
onstrate its extension to increasingly complex metabolic 
systems. 

 The power of tracer kinetics, however, comes with a 
price. All the molecular mechanisms that we biologists 
care about are hidden from view. We learn, for example, 
that the molecular defect resulting in above-normal LDL-C 
is caused by impaired LDL removal from plasma (as op-
posed to increased LDL production), but we don ’ t learn 
the mechanistic chain of events that led to this change. 
When modelers fi nd a rate constant that is signifi cantly 
different, we know that the process characterized by that 
rate constant is, in some fundamental way, operating dif-
ferently in the two experimental groups. Investigators who 
understand this know exactly where to focus their mecha-
nistic efforts. 

 What is it about tracer kinetics that hides detailed mech-
anisms? In a steady state system, transcriptional, transla-
tional, posttranslational, and allosteric regulation are 
 invisible  because nothing is changing. The complex rate 
law for each process in any biological system potentially 
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includes all of these mechanisms (an example would be a 
Michaelis-Menten process in which the  V   max   is controlled 
by the abundance of a particular protein whose function is 
in turn controlled by an activating kinase and by allosteric 
inhibition). However, in a steady state, all of these regula-
tors are constant, and the full complex  rate law  reduces to 
a  rate constant.  Tracer kinetics extracts this single number, 
the rate constant, that refl ects the net effect of all these 
control mechanisms in  this steady state.  That number tells 
us the fraction of substrate molecules traversing this path-
way per minute, per hour, etc. Thus, tracer kinetics tells us 
only where to look; it cannot tell us what we will fi nd. 
Knowing where to look is vital information, but tracer ki-
netics cannot tell us the molecular mechanism underlying 
an observed experimental result. 

 Fortunately, there is another school of biological mod-
eling, also with a distinguished history, which fi lls the 
mechanistic gap. 

 Practical  mechanistic  modeling, in which experimental 
data are used as constraints, developed in parallel with 
tracer kinetics and was driven by the same availability of suf-
fi cient computing power. In physiology, the main school of 
thought was Arthur Guyton ’ s group at the University of 
Mississippi, and in biochemistry, the main proponents were 
David Garfi nkel and his colleagues at the University of 
Pennsylvania. These investigators and their students assem-
bled very large complex models of cardiovascular physiol-
ogy ( 5 ) and cardiac energy metabolism ( 6 ), respectively, 
based as much as possible on experimental data. These 
models consist of very large systems of  nonlinear  differential 
equations and they were used to analyze physiological non-
steady states such as the transition from rest to exercise, the 
mechanism of hypertension, and metabolic transients in 
cardiac muscle during changes in substrate fuel. 

 These are early examples of what today is called mecha-
nistic systems biology (MSB). MSB models are mechanistic 
in the sense that every rate law explicitly includes known 
or hypothesized control mechanisms so that changes in 
upstream controllers are propagated to the downstream 
controlled processes and multiple feedback mechanisms 
are integrated. Control and regulation are explicit, not 
hidden. Such models incorporate the molecular mecha-
nisms that are the dominant theme of 21 st  century bio-
medical research. 

 In the practical, translational world of pharmaceutical 
research and development, there is an instructive parallel. 
Pharmacokinetic models (what the body does to the drug) 
are almost always linear, just like tracer kinetics, whereas 
pharmacodynamic models (what the drug does to the 
body) are nonlinear but rarely mechanistic. In recent 
years, mechanistic disease modeling and mechanistic 
modeling of drug action have become more prominent, 
and modeling groups at several pharmaceutical fi rms are 
expanding their roles under the umbrella of systems phar-
macology. The paper by Gadkar, Lu, and colleagues is one 
of the fi rst such efforts in cholesterol metabolism, and the 
fi rst to appear in the  Journal . 

 Gadkar, Lu, and colleagues have built on the foundation 
laid by decades of tracer kinetic modeling, but they expand 

our modeling horizons by adding mechanistic and molecular 
detail. The authors formulate an explicit hypothesis and 
test it quantitatively by asking it to account for the responses 
to pharmacological perturbations including upregulation 
of apoA1 synthesis, administration of reconstituted HDL, 
and infusion of delipidated HDL. Moreover, in previous 
work ( 7 ), this model is said to have predicted correctly the 
effects of CETP inhibition and ABCA1 upregulation. 

 Time will tell, of course, whether the particular mecha-
nisms in this model will stand up to further experimental 
test, but by proposing a specifi c mechanistic model, by 
testing it against clinical data, and by acknowledging the 
importance of constraints from tracer kinetic data, the pa-
per by Gadkar, Lu, and colleagues adumbrates a new era 
in lipid and lipoprotein metabolic physiology. They are 
challenging the  status quo  in lipoprotein kinetics by assert-
ing that models must account for the nonsteady state dy-
namics of pharmacological perturbations and, at the same 
time, they accept the counter-challenge that any successful 
nonlinear mechanistic lipoprotein model must be able to 
reproduce the results of tracer kinetic studies. We are on 
the cusp. Linear, steady state, tracer kinetic modeling and 
nonlinear, mechanistic, nonsteady state modeling appear 
poised to merge into a single modeling tradition that 
draws unique strengths from each of its roots. 

 One of the great advantages of modeling is the ability to 
compare a theory ’ s predictions to results of many kinds of 
experiments. Emerging from the Gadkar and Lu study is a 
new quantitative concept of HDL remodeling and recycling 
of apoA1 that was thought by the authors to be possibly 
capable of accounting for the classic biphasic apoA1 kinetics 
reported previously (in the  Journal ) by Ikewaki and col-
leagues ( 8 ). A preliminary test based on calculating the 
effective rate constants from Gadkar and Lu’s reported 
steady state masses and fl uxes, and then simulating the 
Ikewaki radiotracer experiment, suggests that the HDL re-
modeling mechanism and the lipid-poor apoA1 pool may 
be too fast and too small, respectively. Nevertheless, show-
ing how explicit mechanisms can be tested against tracer 
data emphasizes how the two branches of modeling can 
begin to synergize. 

 Because the Gadkar and Lu model purports to account 
for steady and nonsteady states involving both apoA1 and 
lipoprotein cholesteryl esters (CEs), it can also be tested 
against the classic experimental and modeling studies of 
lipoprotein CE kinetics published (again in the  Journal ) by 
Schwartz and colleagues ( 9 ). Based only on reported cho-
lesterol fl uxes, there is remarkable agreement between 
Gadkar et al. and Schwartz et al. Testing the Gadkar and 
Lu model against the Schwartz tracer time course data 
would be a valuable short-term modeling project. 

 Stepping back, the signifi cance of the Gadkar and Lu 
contribution is its recognition that it should be possible for 
a single mechanistic model to account for both nonsteady 
state perturbation data and steady state tracer kinetic data. 
Both schools of modeling have unique capabilities. Effective 
projects that leverage both should be strongly encouraged. 

 The enormity of biological complexity confronts all of bio-
medical science, but investigators working with reconstituted 
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molecular systems or with cells in culture have intention-
ally simplifi ed the object of study. In clinical or transla-
tional pharmaceutical contexts, the full complexity of 
human biology becomes inescapable. It remains possible 
to model a key subsystem as Gadkar, Lu, and colleagues 
have done with HDL, CE, and apoA1 metabolism, but in 
the context of pharmaceutical development there are 
both human and fi nancial incentives to test one ’ s theory 
against as many different experimental protocols as possi-
ble. The more tests a model passes, the more confi dence 
we have in its predictions. The most comprehensive model 
is, ultimately, a boon to patients and a competitive advan-
tage to the fi rm that best understands its value. 

 In addition to enormous complexity, there is today a 
widely discussed concern with the reproducibility of pub-
lished basic science results. This concern is especially 
acute within the pharmaceutical industry. An important 
inference from the Gadkar and Lu paper is that formulat-
ing a theory as a quantitative model and then testing that 
theory against all manner of data is one approach to iden-
tifying data sets that are inconsistent with much of what we 
already know. It is always possible that the inconsistent ex-
periment has uncovered an unanticipated mechanism, 
but even then it is essential to formulate a new theory that 
accounts for old data and new data simultaneously. Includ-
ing previously published work, the Gadkar and Lu model 
has undertaken to account for the results of at least fi ve 
different therapeutic interventions. Moreover, the model 
successfully accounts for the results presented. 

 It behooves all of us to challenge this model with addi-
tional protocols and data sets. The model is surely incom-
plete, and probably some part of it is simply wrong, but it 
represents an explicit and testable mechanistic theory that 
should be tested, modifi ed, and tested again for many 
years to come. To make this feasible, it is desirable to make 
these models available in standard formats and in public 
databases. One such standard format is Systems Biology 
Markup Language (SBML) ( 10 ) and the corresponding 
database of models (models only, no experimental data) is 
at  biomodels.net  ( 11 ). The  Journal  could consider mandat-
ing such uploads for published models. 

 Despite the dynamic nature of the Gadkar and Lu 
model, many of the data sets used to test it are steady state 
experiments. One of the principal lessons of the entire 
biological modeling enterprise is that mechanisms are 
best uncovered and tested by fi tting time course results. 
These can be either steady state tracer kinetics, or nonsteady 

state physiological or pharmacological perturbations. Indeed, 
it is even possible to superimpose tracer experiments on 
physiological perturbations such as meals. 

 There is no single modeling paradigm for biology. Dif-
ferent schools of modeling focus on different goals, differ-
ent tools, and different kinds of experimental data. Where 
modelers agree, however, is on one inescapable truth. Human 
biology is too complex to be understood and therapeuti-
cally manipulated without mathematical and computa-
tional help. Every scientist has a mechanistic model in her 
or his head. What we need to do, as Gadkar, Lu, and colleagues 
have done, is to convert our mental models to mechanistic 
computational models and then test those models against 
as many different kinds of experimental data as possible 
from as many different laboratories as possible. Combin-
ing tracer kinetic modeling with systems pharmacology 
would be an excellent step in that direction.     
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