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Abstract The ectonucleotide pyrophosphatase/phospho-
diesterase type 2, more commonly known as autotaxin
(ATX), is an ecto-lysophospholipase D encoded by the hu-
man ENNP2 gene. ATX is expressed in multiple tissues and
participates in numerous key physiologic and pathologic
processes, including neural development, obesity, inflam-
mation, and oncogenesis, through the generation of the bio-
active lipid, lysophosphatidic acid. Overwhelming evidence
indicates that altered ATX activity leads to oncogenesis and
cancer progression through the modulation of multiple hall-
marks of cancer pathobiology. Here, we review the struc-
tural and catalytic characteristics of the ectoenzyme, how its
expression and maturation processes are regulated, and
how the systemic integration of its pleomorphic effects on
cells and tissues may contribute to cancer initiation, pro-
gression, and therapy.li Additionally, the up-to-date spec-
trum of the most frequent ATX genomic alterations from
The Cancer Genome Atlas project is reported for a subset
of cancers.—Federico, L., K. J. Jeong, C. P. Vellano, and G.
B. Mills. Autotaxin, a lysophospholipase D with pleomor-
phic effects in oncogenesis and cancer progression. J. Lipid
Res. 2016. 57: 25-35.
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AUTOTAXIN ISOFORMS: THE TIMELINE OF A
DISCOVERY

Autotaxin (ATX) is an ectonucleotide pyrophosphatase /
phosphodiesterase (ENPP) encoded by the ENNP2 gene,
which occupies a 116 kbp-long DNA segment of human
chromosome 8. Five different alternatively spliced iso-
forms of the gene product have been identified (Fig. 1). In
1992, the first alternatively spliced isoform was cloned
from the melanoma cell line, A2058, and characterized as
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a 125 kDa glycoprotein composed of 915 amino acids (1).
Because it promoted chemotaxis on melanoma cells in an
autocrine fashion, the protein was aptly named auto-taxin.
Four years after the discovery of the first variant, now
commonly referred to as ATXa, or melanoma ATX, a sec-
ond isoform was cloned by the same team from the terato-
carcinoma cell line, Ntera2D1. This polypeptide shared
94% identity with the melanoma protein and was immedi-
ately recognized as the alternatively spliced product of the
same gene (2).

The initial characterization of the first isoform revealed
that ATX biological activity was sensitive to pertussis toxin
treatment. Furthermore, not only did the polypeptide
share close homology with the murine pyrophosphatase/
type I phosphodiesterase (PDE) PC-1, including a threo-
nine residue crucial for PDE enzymatic activity, but it was
also able to hydrolyze PDE substrates in vitro (3). The con-
firmation that ATX was an enzyme came when a new PDE,
the PDE1/nucleotide pyrophosphatase (PD-lo./PDNP 2),
was cloned from a cDNA library of human retina and
found to be identical to the sequence of melanoma ATXa
with the exception of a missing stretch of 52 amino acids
encoded by exon 12 in the central region of the open
reading frame. The transcript of this variant, now fre-
quently referred to as ATX, or teratoma ATX, produced
a 863 amino acid polypeptide chain with a mass of 99,034
Da (4), and was independently isolated a few years later in
mouse tissues (5). The third ATX isoform was detected for
the first time in rat brain, but was originally designated as
PD-I «, a brain-specific PDE I/nucleotide pyrophosphatase
(6). Further research showed that PD-I a was identical to
ATX[ teratoma protein, except for the presence of an ad-
ditional stretch of 25 amino acids encoded by an alternatively
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detail in several reviews and research articles (15, 16, 35, 179, 180)

spliced exon located at the 3’ end of the mRNA transcript
(7). This isoform is commonly referred to as ATXy. Re-
cently described fourth and fifth transcript variants named
ATXd and ATXe are identical to the ATXf isoform except
for the excision of four amino acids within the L2 linker
region of both isoforms and the presence of the 52 amino
acid insertion in the PDE domain of ATXe (8, 9) (Fig. 1).
The functional consequence of the four amino acid exci-
sion in ATX3 remains unclear, but it was reported that this
variant was the only ENPP2 gene product detected in some
species, suggesting that the isoform could have been se-
lected due to a potential functional advantage. Although
no specific differences in the core mechanism of catalysis
or physiological activities between the five ATX variants
have yet been reported, differences in enzymatic parame-
ters, tissue expression levels, and isoform stability have
been documented (7). For instance, ATX is the most
abundant isoform found in plasma (10), whereas ATXa is
unstable and less common in peripheral tissues due to a
long polybasic cleavable insert that mediates ATX recruit-
ment to the cell membrane through the interaction with
heparan sulfate proteoglycans (7, 11). The identity and
functional significance of factors regulating alternative
splicing of exons 12 and 21, as well as the deletion of
the VEPK peptide in the lasso loop, remain to be
determined.
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STRUCTURE AND ENZYMATIC ACTIVITY

ATX belongs to the nucleotide pyrophosphatase/PDE
(NPP) family, a group of enzymes that share sequence ho-
mology with the catalytic site of bovine intestinal alkaline
PDE [reviewed in (12-14)]. It contains a short transmem-
brane domain that separates the small N-terminus from the
bulkier region of the polypeptide (Fig. 1). The short N-
terminus interacts with the membrane to help regulate
release of ATX into the extracellular space (see Transcrip-
tional Control and Secretion below). The bulkier portion
of the enzyme is composed of a central PDE catalytic do-
main and a catalytically inactive nuclease-like domain. An
EF hand-like motif is positioned at the center of the nucle-
ase-like domain, whereas two somatomedin-B (SMB)-like
domains (SMB1 and SMB2) are located at the most distal
region of the C terminus. SMBs are short cysteine-rich
peptide sequences that share high structural homology
with the SMB domain of vitronectin (15, 16). The two linker
regions, L1 and L2 (lasso loop), connect the PDE domain
to the SMB2 domain at the N-terminal end of the chain
and to the nuclease-like domain at the C-terminal end.

In vitro substrate specificity of the ATX catalytic core is
broad. ATX hydrolyzes phosphodiester bonds at the 5-end
of various oligonucleotide substrates, acts as an ATPase/
GTPase by catalyzing bilateral hydrolysis of either ATP or



GTP 5’ B-phosphates, hydrolyzes the AMP group from the
NAD molecule, and functions as an ATP pyrophosphatase
by removing the entire pyrophosphate group from nucle-
oside phosphate molecules (3). The threonine residue
(T210) in the middle of the PDE catalytic domain serves as
a point of transient binding of reaction intermediates (17)
and provides a fulcrum for catalytic activity (18). All of the
enzymatic activities of ATX are dependent on the concen-
tration of divalent cations (19).

Ten years after its initial discovery, ATX was purified
from human plasma and shown to have lysophospholipase
D (lysoPLD) enzymatic activity, catalyzing the hydrolysis of
the distal phosphoester bond that connects monoacylglyc-
erol phosphates to the polar head group of lysophospho-
lipids (10, 20). In this respect ATX is an atypical member
of the NPP family, as none of the other paralogs efficiently
hydrolyze lysophospholipids. A particularly low Michaelis
constant for lysophosphatidylcholine (LPC), a lysolipid
present at high concentrations in plasma and other tis-
sues, suggests that the primary physiological function of
ATX in the body is to promote the conversion of LPC to
lysophosphatidic acid (LPA), a bioactive lipid involved in
multiple key physiological and pathological processes
(21-25). Madan et al. (26) have shown that it is possible to
directly assess lysoPLD activity in vivo by measuring the en-
zymatic turnover of a fluorogenic LPClike substrate in
breast cancer xenografts with high ATX expression.

Numerous studies have defined several key biochemical
and structural features responsible for stability, rate of ca-
talysis, and substrate specificity of ATX. For instance, re-
gions located in close proximity of the catalytic cleft (27)
or at the edges of the polypeptide chain (28) were recog-
nized as being critical for both substrate docking and the
dynamic interplay between divalent cations and T210 dur-
ing catalysis. The nuclease-like domain of ATX helps to
stabilize the catalytic reaction via direct calcium binding and
through formation of disulfide bridges with the PDE domain
(29). Although closely related to nonspecific endonucle-
ases, a class of enzymes that cleave internal phosphodies-
ter bonds of polynucleotide chains, the nuclease-like
domain of ATX does not contain any of the key residues
involved in the catalytic reaction and, instead, appears to
be important for protein stabilization and membrane tar-
geting of ATX and other members of the NPP family (30).

Early studies showed that proteins with high carbohy-
drate-binding affinity bind ATX and that N-glycosidase
treatment induces a shift of ATX molecular mass on SDS-
PAGE, indicating the presence of glycosylated posttransla-
tional modifications at asparagine residues (31). The
carbohydrate moiety is important in secretion (see Tran-
scriptional Control and Secretion below) and activity of
the enzyme (32). Among various aminoglycoside chains,
N-acetylglucosamine mannose (Man8/9GIcNAc2), a sugar
moiety rather uncommon in eukaryotes, and N-acetylglu-
cosamine (GlcNAc2) attached to asparagine residues 524
and 53, respectively, are critical for optimal enzyme func-
tion (15, 33). Molecular dynamic simulations of folding
trajectories of engineered ATX lacking either the nuclease-
like domain or the glycans suggested that these structural

elements are essential in maintaining the T210 residue in
the correct position (34).

The crystallization and extensive analysis of rat and
mouse ATX, which exhibits a high degree of sequence ho-
mology with the human protein, provided the first clear
glimpse into the mechanism of substrate recognition and
catalysis of the enzyme (15, 16, 35). These studies showed
that numerous disulfide and hydrogen bonds cooperate to
bring the SMB-like motifs, the central PDE catalytic core,
and nuclease-like domain together to form a lipophilic
pocket adjacent to the catalytic site. It is believed that the
size of the lipophilic pocket underlies the key difference
between ATX and the other NPP members in terms of sub-
strate specificity, whereby the ATX binding pocket ap-
pears to selectively accommodate fatty acid moieties of
lysolipid substrates.

SMB-like domains in ATX do not appear to mediate ho-
modimerization, as previously reported for other NPP
family members (30); but rather, they preserve the char-
acteristic disulfide-bonded knot folds typical of these
structures (15). In addition, SMB2 contains an RGD mo-
tif, a tripeptide (Arg-Gly-Asp) with high binding affinity
for plasminogen activator inhibitor-1 (36, 37), and integ-
rins (38). Because SMB-like domains are in close proxim-
ity to a hydrophobic channel connecting the catalytic site
to the external environment, they are believed to act as a
bridge between ATX and the extracellular space where
enzymatic products can directly interact with their cog-
nate receptors (16). This view is supported by studies in
platelets and mammalian cells showing that both SMB-
like domains and integrins are required for the interac-
tion of ATX with platelets, and that integrin activation
increases ATX-dependent LPA production (39). The
wealth of information available on both enzymatic dynam-
ics and ATX structure is helping to establish new opera-
tive frameworks for inhibitor design which will hopefully
lead to the synthesis of potent and selective molecules ca-
pable of effectively inhibiting ATX function in the context
of cancer and other pathologies where its activity is dys-
regulated (see Role in Physiology and Cancer Pathophysi-
ology below).

TRANSCRIPTIONAL CONTROL AND SECRETION

The regulatory mechanism (s) that controls ENPP2 gene
expression has not been extensively studied. Kawagoe et
al. (40) pinpointed a region of the ATX promoter located
254 nucleotides upstream of the start codon capable of
binding transcription factors. These studies have shown
that the ENPP2 gene is devoid of typical TATA or CAAT
motifs at the 5" region but contains putative binding sites
for at least four transcription factors, including Maxl,
HNF-3B, AP, and Spl, and a probable octamer binding
locus in intron 2. In addition, studies in neuroblastoma
cells showed that AP-1 and Sp3 transcription factors con-
trol ATX expression by binding to CRE/AP-1-like and
GAbox elements at the upstream regulatory regions (41).
A more recent study suggests that ATX gene transcription

The ectoenzyme autotaxin: an overview 27



may be upregulated by c-Jun activity in dedifferentiated
soft tissue liposarcomas, an event which has been associ-
ated with increased disease aggressiveness (42). In addi-
tion, the ATX gene promoter contains two consensus
binding sites for nuclear factor of activated T-cells (NFAT)
proteins (43), a family of transcription factors implicated
in immune response and metastasis (44-47). Bracuer et al.
(48) reported that inhibition of galectin-3 (LGALS3), a
B-galactoside binding protein involved in metastatic
spread (49), represses ATX expression in human mela-
noma cells in an NFATC2-dependent manner. NFATC1
controls cell motility by regulating ATX expression in
breast cancer cells in response to the activation of aryl hy-
drocarbon receptor (AhR) (50) and o634 integrins (43).
Additionally, recent work from Benesch et al. (51) sug-
gests that both LPA and S1P inhibit ENPP2 gene expres-
sion via a PI3K-dependent inhibitory feedback loop and
that treatment with pro-inflammatory cytokines rescues
this inhibition.

Currently, the process that leads to ATX secretion is
considerably better understood than the dynamics of its
expression. Sequence similarity between ATX and NPP1,
the closest related member of the NPP family, led to the
initial idea that ATX is a type II transmembrane protein
firmly anchored at the plasma membrane from which it is
released into the extracellular space via proteolytic cleav-
age (52). On the contrary, careful molecular studies re-
vealed that ATX localizes to the Golgi-apparatus and
contains both a consensus-sequence for furin-dependent
cleavage and a 27-amino acid residue signal peptide at the
N-terminus, suggesting that the protein is synthetized as a
prepro-enzyme that is proteolytically cleaved in the endo-
membrane system before secretion (53, 54). Interestingly,
current evidence indicates that N-glycosylation and the
nuclease-like domain (29) are two important factors medi-
ating ATX secretion (32).

ATX is detected in various biological fluids and tis-
sues, including plasma, placenta, ovary, small intestine
(2), platelets (55), adipose tissue (56-59), nervous sys-
tem (4, 60-63), and cerebrospinal fluid (64). In mice,
both conditional gene knockout in adipose tissue and
global Enpp2 heterozygosity result in a 50% decrease in
ATX levels or activity in plasma (57), indicating that cir-
culating ATX is predominately produced in adipose tis-
sue, and further, thatitis the primary enzyme responsible
for maintaining circulating LPA levels.

Although it has been shown in mice that ATX can be
rapidly eliminated from the circulation through a poten-
tial scavenger receptor-mediated process taking place in
liver sinusoidal endothelial cells (65), the mechanisms
that control ATX clearance remain poorly understood.
Nonetheless, the multiorgan origin and complex regula-
tory dynamics controlling ATX concentration in tissues
strongly suggest that aberrant ATX homeostasis may foster
conditions that lead to pathological states. As discussed in
the next section, there is overwhelming evidence that
anomalous ATX activity leads to oncogenesis and cancer
progression.
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ROLE IN PHYSIOLOGY AND CANCER
PATHOPHYSIOLOGY

All crucial residues and structural elements of ATX
are conserved between humans and mice (35), which is
arguably a testament to the fundamental importance of this
gene in mammalian physiology. Although ATX can also act
on sphingosylphosphorylcholine to produce sphingosine-
1-phosphate, a modulator of cell motility and other biologi-
cal functions (66), it is broadly accepted that the majority
of biological effects are mediated through the production
of the bioactive lipid mediator LPA. Although ATX is not
the only source of LPA production (67), measurements in
mice with either systemic or targeted heterozygous dele-
tion of the Enpp2 gene or transgenic overexpression of the
human ENPP2 gene established that ATX is a dominant
physiological source of circulating bioactive LPA (68). For
this reason, ATX-mediated LPA production and signal
transduction through LPA-specific G protein-coupled re-
ceptors is commonly referred to as the ATX/LPA-signaling
axis (69-71).

The ATX polypeptide chain contains multiple domains
that could potentially modulate biological activities inde-
pendent of enzymatic function. For instance, the struc-
tural homology of SMB-like domains with SMB, a short
peptide derived from the proteolytic cleavage of vitronec-
tin, suggests that these motifs may be able to regulate cell
adhesion and extracellular matrix dynamics similarly to
vitronectin (72, 73). In support of this hypothesis, it has
been shown that SMB binds to the urokinase receptor and
the plasminogen activator inhibitor-1 (36), and that SMB-
like-dependent ATX binding to integrins modulates moto-
genic activity of both cancer and mouse aortic vascular
smooth muscle cells (74).

Similarly to morphogens that modulate key aspects of
both development and cancer progression as a conse-
quence of spatiotemporal regulation (75), properly regu-
lated expression and activity of ATX is crucial for
embryogenesis (76). A number of studies have shown that
ATX controls embryonic development by regulating vas-
culature maturation and angiogenesis. Homozygous dele-
tion of the Enpp2 gene in mice results in embryonic
lethality due to defective blood vessel formation and
growth (68, 77). The effect is dependent on the integrity
of the PDE domain because embryonic lethality is still ob-
served in mice expressing ATX (T210A), a catalytically in-
active version of the enzyme generated by substituting an
alanine in place of the central threonine (78). It has been
shown that ATX regulates both prenatal lymphatic vessel
formation in mice and zebrafish (79, 80) and generates
directional cues that direct primitive hematopoiesis and
hemangioblast formation (81). Importantly, ATX can
drive either vessel regression (82) or maturation (80) de-
pending on the experimental context. It is likely that com-
partmentalization of ATX and its lipid substrates greatly
influences biological function and activity because it gen-
erates high concentrations of lipid substrate in proximity
to the membrane. For example, localized LPA production
in plasma lipoproteins, nerves, or tissue stroma has been



implicated in driving the progression of atherosclerosis
(83), neuropathic pain (84-86), and T cell homing (87),
respectively. In contrast to ATX, there is no evidence indi-
cating that lipid phosphate phosphatases, the main en-
zymes mediating LPA degradation (88-91), have an
equivalent mechanism for local action through binding to
integrins or other extracellular receptors. Like other fac-
tors involved in development, fine spatiotemporal regula-
tion of ATX expression and activity is essential not only for
proper vasculogenesis but also for other key biological
functions. For instance, the effects of ATX on develop-
ment arise from direct regulation of mesenchymal cell mi-
gration. Ryu and Han (92) have shown that the PKC/
GSK3[3/B-catenin and PKC/Rho GTPase pathways are ac-
tivated by the ATX/LPA axis through LPA receptor signal-
ing, which is also required for proper nervous system
growth (93) and craniofacial morphogenesis (94).

Initially cloned from melanoma and teratocarcinoma
cell lines and characterized as a potent pro-migratory fac-
tor, ATX was immediately recognized as a key player in
cancer pathophysiology. The first report showing ATX up-
regulation in a primary human cancer was published 5
years after the discovery of the gene (40). In this study,
tissue samples from neuroblastoma patients showed vari-
able expression of both ATXa and ATXf isoforms. Since
then, multiple studies have confirmed that ATX is fre-
quently upregulated in various cancer types, including
glioblastoma multiforme (95), non-small cell lung cancer
(96), thyroid cancer (97, 98), follicular lymphoma (99),
and peritoneal fluids of patients with either ovarian can-
cer, dermoid cyst, or mucinous cystadenoma (100). With
the exception of non-small cell lung cancer, in which
ATX} is the most highly expressed gene variant, the tissue
expression patterns of other isoforms remains largely
unknown.

In two seminal papers, Robert Weinberg and Douglas
Hanahan have outlined the hallmark processes that dif-
ferentiate normal from dysregulated cellular growth (101,
102). Over the course of two decades of research, a large
number of studies have established that in addition to cell-
autonomous cancer hallmarks such as differentiation (58,
103-106), survival (107-112), proliferation (58, 113-116),
and migration/metastatic behavior (50, 74, 92, 117-122),
the aberrant expression/amplification of ATX activity can
also dysregulate multiple cancer pathobiology systemic
hallmarks including angiogenesis (119, 123), metabolic
homeostasis (56-59, 104, 124, 125), and immune system
function (126).

Neoplastic diseases often arise at sites of persistent in-
flammation and several inflammatory conditions are
known to predispose to cancer (127, 128). Many studies
have established ATX as a key regulator of inflammatory
response at multiple levels that is required for proper
maintenance of immune system homeostasis (129-131).
For example, ATX binding to chemokine-activated lym-
phocytes is associated with increased immune cell homing
to lymphoid vessels, and intravenous injection of enzymat-
ically inactive ATX attenuates this process (132). Similarly,
it has been reported that ATX both controls lymphocyte

migration across the basal lamina of lymphatic high endo-
thelial venules through a myosin II-dependent mechanism
(133), and regulates the rate of in vivo T-cell transendo-
thelial migration through lymph node vessels by localizing
at the leading edge of arrested T-cells (121).

ATX activity is implicated in multiple signaling path-
ways linking inflammation and cancerogenesis (69). Me-
tabolism and adipogenesis studies in mice indicate that
ATX and its product, LPA, participate in energy homeo-
stasis and obesity control (56-59, 104, 124, 125), which
when dysregulated can lead to inflammation and cancero-
genesis. In addition to data showing association of ATX
activity with rheumatoid arthritis (134), liver inflamma-
tion (135, 136), fibrosis development (137-141), and in-
flammatory bowel disease (142), it has been proposed that
ATX is mechanistically involved in linking both hepatitis C
to hepatocellular carcinoma (143) and Epstein-Barr virus
positivity to anaplastic large-cell and Hodgkin lymphoma
development (107). MMTV-driven transgenic overexpres-
sion of either ATX or each of the three major LPA recep-
tors (LPA1, -2, and -3) causes late-onset, invasive, and
metastatic breast cancer development in mammary glands
of mice (144). High plasma concentrations of MIP-3a and
VEGF found in presymptomatic transgenic female mice
lend support to the hypothesis that malignant growth in
this model could be driven by a proinflammatory environ-
ment created by the amplified activity of ATX, an idea in
line with previous studies showing that ATX stimulates cy-
tokine production in multiple cell types (145, 146).

ATX hyperactivation not only predisposes to cancero-
gensis but also contributes to other key aspects of tumor
biology, including metastatic progression. A number of
studies have demonstrated that ATX activity promotes in
vitro motogenic activity in ovarian (119, 147), hepatocel-
lular (148), breast, and melanoma cell lines (118), among
others, while pharmacological and genetic inhibition of
ATX decreases lung metastasis in a murine orthotopic
model of breast cancer (103, 149). Available evidence sug-
gests that metastasis to bone can be promoted by ATX
through multiple mechanisms, including regulation of os-
teoclast differentiation (103), interaction with integrin
aVB3 expressed on the surface of tumor cells (150), and
bone resorption through the induction of IL6 and IL8 ex-
pression (151).

Further evidence indicates that ATX acts synergistically
with other oncogenes to promote tumor progression, ag-
gressiveness, and resistance to chemotherapeutics. Multi-
ple genes involved in drug resistance and cellular stress
response are upregulated by ATX/LPA axis activity
through the stabilization of nuclear factor (erythroid-de-
rived 2)-like 2, a basic leucine zipper transcription factor
that controls the expression of genes involved in oxidative
damage protection (152). In addition to synergizing with
RAS signaling to promote tumor migration and metastatic
dissemination in RAS-transformed cells (153), lysoPLD ac-
tivity, likely mediated by ATX, has been proposed as one
of the contributing factors in developing acquired resis-
tance to the receptor tyrosine kinase inhibitor, sunitinib,
in renal cell carcinoma (154) and carboplatin-induced
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apoptosis in ovarian cancer cells (112). Several known sig-
naling networks implicated in ovarian cancer progression,
including the Hippo-YAP axis (155), the amphiregulin/Y-box
binding protein-1 positive feed-back loop (156), and
EGFR signaling (157), have been shown to be regulated
through LPA signaling, likely in coordination with ATX
activity.

From a clinical standpoint, genomic alterations in ATX
have been observed across multiple cancers. Information
obtained from the cBio Cancer Genomics Portal shows
that copy number alterations and mutations in ATX are pres-
ent in ovarian serous cystadenocarcinoma (33% altered),
breast invasive carcinoma (20% altered), liver hepatocel-
lular carcinoma (20% altered), lung adenocarcinoma
(11% altered), bladder urothelial carcinoma (10% al-
tered), and head and neck squamous cell carcinoma (10%
altered) patient tumors (Fig. 2) collected and analyzed by
The Cancer Genome Atlas project (158-163). Most of
these alterations are ENPP2 amplifications, which could
potentially underlie dysregulation of ATX/LPA-mediated
signaling pathways in these diseases. Mutations are rare
and usually nonrecurrent. The greatest frequency of
ENPP2 mutations is seen in lung adenocarcinoma (4.7%
of all patient tumors have at least one ENPP2 mutation),
followed by head and neck squamous cell carcinoma
(2%), ovarian serous cystadenocarcinoma (1%), breast
invasive carcinoma (0.8%), bladder urothelial carcinoma
(0.8%), and liver hepatocellular carcinoma (0.5%). Fol-
low-up studies are warranted to determine whether these
mutations induce functional changes that may promote
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tumor development and growth. Further, additional anal-
ysis is needed to determine whether other pathway altera-
tions may serve compensatory roles in the small set of
patients with ENPP2 deletions. Together, these results in-
dicate that the ATX/LPA signaling axis may be dysregu-
lated in specific cancer subtypes, and that patients could
potentially benefit from targeted therapies blocking ATX/
LPA signaling

Due to the pleiotropic connection of ATX in cancer pa-
thology, considerable effort has been made to generate
small molecule inhibitors that target its enzymatic activity
(120, 164-173). Using sensitive fluorescence probes, such
as TG-mTMP, Kawaguchi et al. (174) identified several
novel ATX inhibitor scaffolds and solved the crystal struc-
tures of ATX-compound complexes at high resolution
(1.75-1.95 A). Docking experiments with molecular iso-
mers and high-throughput screening with compound li-
braries provided additional details on enzyme-inhibitor
interaction mechanisms (167, 175, 176). The availability
of more selective, potent, and bioavailable ATX inhibitors
will expand our mechanistic understanding of ATX func-
tions in both cellular and preclinical models of cancer. In
addition to direct inhibitors of ATX function, multiple
pan and selective LPA receptor inhibitors as well as immu-
noneutralizing antibodies to LPA are available (177).
Where and how these will impact human disease either alone
or in the context of ATX inhibition remains to be determined.
The ultimate goal in the field is to generate a new class of
anticancer molecules that either alone or in combination
with traditional chemotherapeutics can complement the

[ | Truncating Mutation
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[ | Amplification

Fig. 2. ATX copy number alterations and muta-
tions in a subset of cancers from The Cancer Genome
Atlas project database. Information was obtained
from the cBio Cancer Genomics Portal using provi-
sional datasets (181).



pharmacological tools available in the clinic and have a
positive impact on patients (178).

CONCLUSIONS AND PERSPECTIVES

Overwhelming evidence suggests that anomalous ATX
activity contributes to the development of favorable condi-
tions for neoplastic disease initiation and progression.
The significance of ATX in mammalian physiology is high-
lighted by the fact that embryos cannot develop in the ab-
sence of ENPP2 and that all key biochemical/structural
features required for optimal enzymatic activity remained
evolutionarily conserved since human and mouse species
diverged from their common ancestor. Although much
has been discovered regarding ATX structure and its
pathophysiological significance, several questions remain
to be answered. For example, how is the steady-state level
of both ATX and LPA maintained in plasma and what is
the precise role that substrate/enzyme compartmentaliza-
tion dynamics play in ATX function, especially in the con-
text of stroma-tumor interactions? Further, what are the
key physiological functions that the ectoenzyme regulates?
It is conceivable that the answers will come from new ex-
perimental approaches that investigate the effect of ATX
on cancer biology as an emerging feature of complex sys-
tems. A mechanistic understanding of ATX enzyme func-
tion ata systems biology level will allow for the identification
of genomic and proteomic network changes and signa-
tures associated with ATX/LPA axis alteration and activity,
ultimately leading to direct translation of findings into po-
tential therapeutic opportunities. Bl
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