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Abstract

Plants have evolved a variety of ways to defend themselves against biotic attackers. This
has resulted in the presence of substantial variation in defense mechanisms among plants,
even within a species. Genome-wide association (GWA) mapping is a useful tool to study
the genetic architecture of traits, but has so far only had limited exploitation in studies of
plant defense. Here, we study the genetic architecture of defense against the phloem-feed-
ing insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined
whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 world-
wide selected natural accessions and subsequently performed GWA mapping using
214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number
of eggs laid per female per day) was observed between the accessions. We identified 39
candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small
effects, underpinning the complex architecture of defense traits. Among the corresponding
candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have
previously been identified as a gene playing a role in the interaction between plants and
phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candi-
date genes was significantly affected, validating the potential of GWA mapping for novel
gene discovery in plant-insect interactions. Our results show that GWA analysis is a very
useful tool to gain insight into the genetic architecture of plant defense against herbivorous
insects, i.e. we identified and validated several genes affecting whitefly performance that
have not previously been related to plant defense against herbivorous insects.
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Introduction

In nature, plants are constantly exposed to a wide range of herbivorous insects that can severely
affect their growth and reproduction. Adaptation of plants, driven by differences in herbivore
selection pressure, has resulted in natural variation for defense mechanisms [1,2]. This varia-
tion is thought to be maintained by trade-offs between the benefits of reducing herbivore dam-
age and the costs of defense [3]. Plant traits that serve as an effective defense against herbivores
have been shown to evolve rapidly when herbivores are present, whereas such traits are lost
from the population in the absence of herbivores [4,5]. Certain traits that plants have evolved
to counteract herbivore attack are involved in direct defense, i.e. physical and/or chemical bar-
riers that negatively affect the performance of the attacker [6]. Physical barriers, such as tri-
chomes, hinder or prevent insects from moving or feeding on a plant whereas toxic or anti-
feedant compounds form a chemical barrier to herbivores. These traits can alter the physiology
of herbivorous insects resulting in reduced growth rate, adult size, survival probability and
reproduction success [7].

In several plant species variation for direct defense traits has been found [8,9,10,11,12]. This
variation has been used to develop segregating biparental populations to enable the identifica-
tion of quantitative trait loci (QTLs) [13]. Several QTLs controlling defense against insects
have been mapped, cloned and characterized [14,15,16]. For example, CYP81F2 has been iden-
tified as the gene underlying a metabolic QTL in Arabidopsis thaliana that contributes to
defense against aphids [17]. At present, genome wide association (GWA) mapping has become
a popular approach to study the genetic architecture, i.e. statistically link variation in a specific
trait to polymorphic molecular markers, of both qualitative and quantitative plant traits. In
contrast to traditional QTL mapping in bi-parental populations, GWA mapping is a popula-
tion based method and, as a wide diversity of material is used, it is expected to uncover more
genes and allelic diversity contributing to (polygenic) traits [18,19]. GWA mapping has been
used successfully to identify loci controlling several traits involved in plant-attacker interac-
tions, such as defense against pathogens [20] and defensive secondary metabolites [21].
Recently, Samayoa et al. (2015) were able to identify genomic regions in maize that play a role
in defense against the corn borer, a leaf chewing insect [22]. However, studies that directly
associate genomic regions with the performance of other insect types or species are lacking.
Moreover, validation and characterization of candidate genes explaining observed variation for
defense against insects is lacking.

Because A. thaliana has a worldwide distribution and therefore encounters diverse ecologi-
cal conditions, it is a very appropriate species to study natural variation for adaptive traits [23].
So far, natural variation among A. thaliana accessions has been found for insect behavior and
performance [24,25] as well as for defensive secondary metabolites [12]. Using traditional link-
age mapping or reverse genetics with knock-out or overexpression mutants, several genes have
been identified that affect A. thaliana defense towards insects [14,15,16,26,27,28]. For example,
MAMI has been shown to cause variation in the side-chain length of aliphatic glucosinolates,
which are defensive secondary metabolites in brassicaceous plants [29]. Additionally, PAD4 is
a well-known example of a gene that promotes A. thaliana defense towards aphids [30]. In this
study we focused on the defense of A. thaliana against the cabbage whitefly Aleyrodes proletella.
To date, little is known about the interaction between A. thaliana and this phloem-feeding
insect. Aleyrodes proletella is a pest in Brassica oleracea crops and difficult to control due to its
short generation time and high reproduction rate. Most nymphal stages are immobile and con-
tinuously feed at the same location during their development [31]. The objectives of this study
were to investigate (1) whether there is variation for defense against the cabbage whitefly A.
proletella among a large set of A. thaliana accessions, (2) to obtain information on the genomic
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regions underlying this variation, and (3) to get insight in the effects individual genes may have
on whitefly performance.

Results
Natural variation in whitefly performance

To detect variation for direct defense against A. proletella, whitefly adult survival and oviposi-
tion rate were monitored using a no-choice assay on 360 accessions of A. thaliana grown under
controlled conditions. Four independent experiments were done, each containing the complete
collection of 360 A. thaliana accessions. Each replicate consisted of three incomplete blocks of
120 accessions and additionally five reference accessions (see Materials & Methods). The
broad-sense heritability was estimated at 0.71 for adult survival and 0.74 for oviposition rate.
Variation for adult survival was relatively small as most whiteflies survived on the majority of
accessions (Fig 1; S1 Table). For oviposition rate, substantial variation was observed, ranging
from zero to 6.5 eggs-female"-day ™" (Fig 15 S1 Table). The two whitefly performance parame-
ters were positively correlated with each other (r = 0.64, P < 0.001) but not with latitude or lon-
gitude of the origin of collection of the accessions (-0.045 < r < 0.04, P > 0.4).

GWA mapping

Using a set of 214,051 SNPs available for this collection of 360 accessions [20,32], GWA map-
ping was carried out using a model that corrects for genetic relatedness (EMMAXx). SNPs with
a minor allele frequency (MAF) < 5% were not considered in the model because of possibly
elevated false-discovery rates [20]. Six and 33 SNPs with P < 10~ and MAF > 5% were consid-
ered as candidate SNPs for adult survival and oviposition rate, respectively, explaining 4.4% to
6.7% of the phenotypic variation (Fig 2, Table 1). There was no overlap in associated SNPs
between whitefly adult survival and oviposition rate.

Genes located at or within 10 kb (because LD in A. thaliana extends over 5 to 10 kb [32])
and in sufficient LD (Pearson r* > 0.5) with at least one candidate SNP were considered candi-
date genes causal for the observed SNP effects. Annotations of the 57 candidate genes were
derived from the Gene Ontology tool at The Arabidopsis Information Resource (TAIR; [33]
(S2 Table). Interestingly, none of the 57 candidate genes have previously been associated with
plant-whitefly interactions. Many genes of unknown function were present among the candi-
date genes, i.e. 50% and 32% for respectively adult survival and oviposition rate. Candidate
genes for which a predicted function is available are involved in many different processes.
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Fig 1. Frequency of Arabidopsis thaliana accessions against the performance of Aleyrodes proletella.
Shown is the number of accessions with a certain adult survival (A) or oviposition rate (B) based on the
averages of four replicate experiments. Each replicate consisted of three incomplete blocks of 120
accessions and additionally five reference accessions (see Materials & Methods).

doi:10.1371/journal.pone.0145124.g001
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Several of these genes are potentially involved in processes that have been related to defense
against phloem-feeding insects, such as cell wall modification, secondary metabolism and hor-
mone signaling [34,35] (S2 Table). One of the significant SNPs on chromosome 3, i.e. locus
OR9, is located in CYP82G1 that has been shown to play a role in A. thaliana defense against
caterpillars [36].

Validation of individual genes associated with whitefly performance

To determine whether genes identified from the GWA analysis actually influence whitefly per-
formance, we tested the knock-out effect of five candidate genes for oviposition rate using
T-DNA insertion mutants (52 Table). These mutants were randomly selected based on their
predicted function and the availability of mutant lines from the Arabidopsis stock center [37].
Whitefly performance was determined on the mutants and compared to that on wild type Col-
0. A T-DNA insertion in PENI (At4g15340), a gene involved in biosynthesis of the secondary
metabolite triterpenoid [38], resulted in a significant reduction of adult survival as well as ovi-
position rate (Fig 3). Similar results were obtained on mutant plants having a T-DNA insertion
in GORK (At5¢37500), a gene involved in transpiration [39] (Fig 3). Functional knock down of

-log,, (P-value)

Fig 2. Manhattan plots for GWA of variation in Aleyrodes proletella performance. Associations between SNPs and adult survival (A) or oviposition rate
(B) are shown. Each SNP is represented by a single dot with the candidate SNPs (-log1o(P) > 4, MAF > 5%; horizontal dashed line) plotted in red. SNPs with
a MAF < 5% were not included in the analysis. Arabidopsis thaliana chromosomes 1-5 are shown in contrasting colors from left to right on the x-axis.

doi:10.1371/journal.pone.0145124.9002
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Table 1. SNPs significantly associated with A. proletella adult survival or oviposition rate.

Chromosome Position (bp) Locus’ -log4o(P value) Explained variance (%)
Survival

1 27445448 S1 4.01 4.4

3 2173384 S2 4.31 4.8

5 5982121 S3 4.49 5.0

5 9120976 S4 412 4.5

5 22804782 S5 415 4.6

5 24055182 S6 4.01 4.4

Oviposition rate

1 2253521 ORf1 4.58 5.1
1 11589257 OR2 4.41 4.9
1 11687888 ORS3 4.05 4.4
1 12109439 OR4 5.42 6.1
2 9820793 OR5 4.04 4.4
2 9838911 OR6 4.02 4.4
2 10544649 OR7 4.57 5.1
3 8316417 OR8 4.07 4.5
3 9169015 OR9 5.62 6.4
3 14680659 OR10 4.40 4.9
3 15602919 OR11 4.59 5.1
3 16587682 OR12 4.05 4.4
3 17895650 OR13 4.45 4.9
3 19981555 OR14 4.85 5.4
4 6432812 OR15 4.90 5.5
4 8757099 OR16 4.30 4.7
4 15998778 OR17 5.03 5.6
4 18054888 OR18 4.28 4.7
4 18058798 OR18 5.00 5.6
4 18106794 OR19 5.35 6.0
4 18115709 OR19 4.81 5.4
4 18149448 OR20 5.87 6.7
4 18158297 OR20 5.04 5.6
5 6424075 OR21 4.05 4.4
5 7469286 OR22 4.16 4.6
5 7469355 OR22 4.16 4.6
5 7470772 OR22 4.71 5.2
5 7472032 OR22 4.09 4.5
5 7479469 OR22 5.06 5.7
5 13926089 OR23 4.69 5.2
5 14894815 OR24 4.58 5.1
5 15897271 OR25 4.07 4.5
5 21435322 OR26 4.03 4.4

SNPs with P < 107, MAF > 5% are shown.
'S, survival; OR, oviposition rate. SNPs located in sufficient LD (Pearson r* > 0.5) were assigned to the same locus.

doi:10.1371/journal.pone.0145124.1001

At4¢33170, a gene of unknown function, also resulted in reduced adult survival and oviposition
rate (Fig 3). Whitefly performance on a knockout mutant of At5¢22540, a protein of unknown
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Fig 3. Aleyrodes proletella performance on mutant and wild type plants. Seven days after infestation, adult survival (A; in percentages) and oviposition
rate (B; expressed as the number of eggs laid per female per day) were monitored on wild type Col-0 (WT; white bar) and T-DNA mutant lines (black bars).
Ten plants per genotype were used. The experiment was repeated independently with similar results. Stars indicate significant differences compared with the
wild type (Mann-Whitney U test; * P <0.05, ** P <0.01, *** P <0.001).

doi:10.1371/journal.pone.0145124.9003

function containing a duf247 domain probably involved in ethylene biosynthesis, was similar
to that on the wild type. Knocking out FARI (At5¢22500), which is in LD with At5¢22540, did
show a significant effect on oviposition rate (Fig 3). Female whiteflies laid significantly more
eggs on mutants having a T-DNA insertion in FARI, a gene involved in the generation of fatty
alcohols [40], than on wild type plants. Adult survival was not affected on this mutant (Fig 3).

Discussion

Variation in whitefly performance is predominantly based on minor effect
genes

Arabidopsis thaliana has a world-wide distribution and faces many biotic and abiotic chal-
lenges during its life cycle. We show, for the first time, variation for performance of the cabbage
whitefly, A. proletella, on a large set of A. thaliana accessions originating from different geo-
graphical locations. The high heritability found for both whitefly adult survival and oviposition
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rate (0.71 and 0.74 respectively) indicates that the observed variation is mainly caused by
genetic factors. It also reflects the reliability and reproducibility of our experiments.

GWA mapping resulted in the identification of six and 33 candidate SNPs for whitefly adult
survival and oviposition rate, respectively. The relatively low number of SNPs associated with
adult survival may be due to the skewed distribution towards susceptibility, i.e. on most of the
accessions all adult whiteflies could survive for seven days. Despite the correlation between
adult survival and oviposition rate, there was no overlap in associated SNPs between the two
parameters. These data suggest that certain traits can affect oviposition rate without influenc-
ing adult survival, a phenomenon that has previously been shown for the silverleaf whitefly
Bemisia tabaci on wild tomato plants [41]. It is conceivable that certain plant traits negatively
affect the reproduction of whitefly adults but are not lethal to them. For example, high levels of
glucosinolates have been shown to negatively affect whitefly oviposition rate but did not affect
adult survival on A. thaliana [42].

Arabidopsis thaliana genes involved in plant-insect interactions have mainly been identified
in a few common laboratory accessions [24,26,43]. This limits the possibility to study genetic
variation and the identification of genes that are absent or not functional in these laboratory
accessions. Using a large collection of accessions, we identified 39 SNPs associated with white-
fly performance. In spite of the high heritability of the two traits, each individual SNP only
explains between 4.4% and 7.6% of the observed phenotypic variation, suggesting that the
genetic architecture of defense is complex, with many contributing loci. Such quantitative traits
for defense against insects are quite commonly found in different plant species [8] and difficult
to dissect genetically [44]. Additionally, it is possible that low frequency functional alleles that
have little influence on the population as a whole are present in some accessions [44]. Such
genes or alleles are not detected in our GWA analysis as we used a 5% minor allele frequency
cut-off. This also implies that although we did not identify genes with a major effect on whitefly
performance in our GWA analysis, such genes may be present in A. thaliana. This is supported
by the observation that adult survival and/or oviposition rate was strongly reduced on a small
number of accessions. Further studies using populations derived from bi-parental crosses with
these accessions may be used to identify low frequency functional alleles.

Novel genes affecting whitefly performance

Using GWA mapping, we have identified several candidate SNPs for adult survival and ovipo-
sition rate of A. proletella. Interestingly, only one of the corresponding candidate genes for ovi-
position rate, CYP82G1, has previously been related to defense against insects. CYP82G1 is
known to be involved in the production of the caterpillar-induced homoterpene volatile TMTT
[36] and volatile blends containing TMTT have been shown to attract the parasitic wasp Cote-
sia rubecula that parasitizes Pieris rapae larvae [45]. Well known genes that have been shown
to affect the performance of phloem-feeding aphids or whiteflies [26,46] were not detected in
our GWA analysis. Some of the previously identified genes are JA or SA regulatory genes
involved in the biosynthesis of these hormones, e.g. CEVI [47], or playing a role in unlocking
the down-stream responses, e.g. NPRI [48]. Possibly, there is very little variation for these
genes among the accessions and therefore they were not identified using GWA mapping. Addi-
tionally, some previously identified defense genes have been shown to affect aphid performance
but have no influence on the behavior of B. tabaci whiteflies, such as COII and PAD4 [46,49],
and may similarly also not affect the performance of A. proletella. Finally, it should be noted
that some of the previously identified genes may affect other A. proletella performance parame-
ters that we did not take into account in our study.

PLOS ONE | DOI:10.1371/journal.pone.0145124 December 23, 2015 7/14



@'PLOS ‘ ONE

Association Mapping for Plant-Whitefly Interaction

One way to validate the identified candidate genes is to use knockout mutants. As T-DNA
insertion lines in the Col-0 background are readily available for many genes [37], they are a
useful resource for preliminary identification/validation. Because oviposition rate on Col-0 was
average compared with all the other accessions (1.8 eggs-female '-day™"), using such lines may
quickly provide valuable information on the possible effect that individual candidate genes
may have on whitefly performance. Five mutants having a T-DNA in a candidate gene for ovi-
position rate were tested and four of them significantly affected whitefly performance. Oviposi-
tion rate and, interestingly, adult survival was reduced on these mutants while these genes were
not identified in the GWA analysis for the latter parameter. Additionally, the effect of the
T-DNA insertion was much larger than expected based on the explained variation of the corre-
sponding candidate SNPs. This suggests that complete silencing of a gene has a much bigger
effect on whitefly performance than a single or a few point mutations. The explained variance
of a candidate SNP identified using GWA mapping is probably low due to the fact that there
are many loci with an effect on whitefly performance, all contributing to the variance to some
extent. Conversely, in the mutant lines there are no interfering effects of genes other than the
one containing the T-DNA, meaning that all the variation is due to this one locus and the resid-
ual variance.

The reduced oviposition rate on these four mutants indicates that the functional copy of the
gene in question acts as a repressor of defenses or contributes to susceptibility. Such genes have
been identified before in A. thaliana affecting aphids [43,49] and whiteflies [46]. Among the
tested genes was PEN1I, a gene previously shown to promote fungal penetration resistance, i.e.
silencing this gene in A. thaliana leads to increased susceptibility to certain fungi [50,51]. How-
ever, we found the opposite effect for whitefly performance on a mutant containing a T-DNA
in PENI, suggesting a trade-off between resistance to different attackers. The mutant contain-
ing a T-DNA insertion in FARI positively affected oviposition rate and had no effect on adult
survival. The increased susceptibility on this mutant indicates that FARI contributes to plant
defense. This gene is induced upon pathogen attack or mechanical wounding thereby activat-
ing suberization of primary cell walls, a process that likely serves to seal off the tissue to prevent
turther damage [40], and may thus be related to defense against herbivorous insects. The exact
role of PENI and FARI as well as GORK and At4¢33170 in the plant-whitefly interaction
remains to be established. Additionally, it will be interesting to investigate whether the ortholo-
gues of these genes in a crop plant, e.g. cabbage, also affect whitefly performance and whether
or not this is accompanied by a yield penalty.

Evolution of genetic variation for whitefly performance

Apart from identifying genes involved in the plant-whitefly interaction, studying genetic varia-
tion may also help to understand how resistance has evolved, e.g. if it is shaped by co-evolu-
tionary processes or that the observed variation is a side effect of adaptation to other
environmental factors [52]. A hallmark of co-evolution can be a geographic cline of certain
genotypes that follow the distribution pattern of pests or pathogens. In this case one would
expect that the occurrence of resistance traits is geographically structured, e.g. resistance is
found in areas where whitefly and plant have occurred together for a long time [53]. In our
study, there was no correlation between whitefly performance and the geographic coordinates
latitude or longitude of the origin of collection of the accessions, suggesting that co-evolution
between A. thaliana and whitefly did not occur on a global scale. However, it should be noted
that insects can have very patchy distributions and studying geographic location on a large
scale may overlook co-evolution that occurred in smaller patches of habitat [54]. Additionally,
all accessions were grown under the same environmental conditions while they originate from
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different areas with different environmental conditions. It is therefore possible that certain
accessions do not perform optimally under our experimental conditions, which may have con-
sequences for the expression of defenses and obscure correlations with geographic coordinates.
In nature, plants are exposed to a wide range of biotic and abiotic factors that can all modify
defense characteristics [55]. For example, environmental stresses such as temperature fluctua-
tions, nutrient deficiency or other abiotic factors may result in selections that also affect patho-
gen/herbivorous insect interactions, e.g. via different patterns of resource allocation in plants
causing spatial variation in defense traits [56]. This is supported by the observation that knock-
ing-out GORK, a gene involved in transpiration, has an effect on whitefly performance. Further
studies are needed to investigate whether the observed natural variation is due to co-evolution
between A. thaliana and A. proletella or whether it is a side effect of adaptation to other envi-
ronmental factors.

Conclusion

GWA mapping has been shown to be powerful for dissecting the genetic network of quantita-
tive traits as well as identifying novel genes related to those traits [20]. In this study, we show
that GWA mapping is an excellent tool to gain insight into the genetic architecture of plant
defense against herbivorous insects. Thirty-eight candidate SNPs for natural variation in
defense against the cabbage whitefly were identified that had so far not been related to the
interaction between plant and phloem-feeding insects. Functional validation showed that four
candidate genes affect whitefly performance indicating the reliability of our study.

Materials and Methods
Plant material and cultivation

For this study we used a set of 360 Arabidopsis thaliana accessions [57,58]. Stock numbers and
detailed information for accessions are listed in S1 Table. Seeds of T-DNA insertion mutants
were obtained from the European Arabidopsis Stock Center (NASC; http://arabidopsis.info/;
[37]. Mutant plants were checked for the homozygous presence of the T-DNA insertion by per-
forming a PCR reaction on genomic DNA using a left border primer of the T-DNA insertion
(LBb1.3 5’-ATT TTG CCG ATT TCG GAA C-3’) and gene specific primers (S3 Table).
Cultivation and experiments were conducted in a climate chamber (20 + 1°C) with 10 hours
of light (200 pE.m*.sec™") at a relative humidity of 65%. Before germination, seeds were strati-
fied on wet filter paper for three days at 10°C in the dark. For GWA mapping experiments,
seeds were sown on 4x4 cm Rockwool plugs (MM40/40, Grodan B.V.) and watered daily with
1 g/l Hyponex fertilizer (NPK = 7:6:19) using a flooding system. For experiments with T-DNA
mutants, seeds were sown in 60 ml pots containing soil sterilized by gamma irradiation con-
taining vermiculite (Horticoop®). Plants were watered every other day. No chemical control
for pests or diseases was applied.

Insect rearing

Cabbage whiteflies, Aleyrodes proletella, were reared on Brussels sprouts (B. oleracea var. gem-
mifera cv. Cyrus). The whitefly population originated from adults collected in 2008 from a
white cabbage field in Wageningen, the Netherlands (N 51° 57°, E 5° 38’) and the rearing was
situated in a climate chamber at 20+2°C with an L16:D8 photoperiod and 40-60% RH [59].
Insects were reared under conditions in which there was always sufficient foliage for feeding
and oviposition.
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Whitefly performance

Five week old plants were used to examine whitefly performance. One clip cage (@ 2 cm, height
2x1.2 cm) containing five females was placed on a young leaf of each plant. Whiteflies were
briefly (< 30 min) anaesthetized with carbon dioxide (80% N,:10% H,:10% CO,; Linde Gas
Benelux) to enable selection and transfer of females. Seven days after infestation, the number
of living and dead females as well as the number of eggs was counted. Subsequently, adult sur-
vival and oviposition rate (eggs-female™-day™') were calculated per plant.

Experimental design

In the GWA mapping experiments, four independent replicates were performed, each contain-
ing a single plant of every accession. Each replicate consisted of three incomplete blocks of 120
accessions. Five accessions (Col-0, Ler-1, WS-0, Cvi-0 and Kin-0) were additionally present in
each block to serve as controls, but the data obtained for these plants were not used in further
analyses. Prior to estimation of heritability and GWA mapping, the individual plant observa-
tions were transformed, using the arcsine-square root-transformation for adult survival and a
log10 (x + 1) transformation for oviposition rate. Pearson correlation tests were used to deter-
mine the relatedness between whitefly performance parameters as well as between whitefly per-
formance parameters and longitude/latitude.

T-DNA mutants were tested with their corresponding wild type Columbia-0 in a random-
ized complete block design with 10 plants per genotype. Mann-Whitney U tests was used to
test the significance of differences between whitefly performance on mutant and wild type
plants. The experiment was repeated once to obtain data from two independent experiments.

Heritability

We used the R-package ‘heritability’ [60] to estimate broad-sense heritability. The estimate is

given by
H — L’ with Vg — MS(accession) — MS(error)

Vg + Ve r

and Ve = MS(error),

where Vg and Ve represent the genetic and residual variance, and r is the average number of
replicates (slightly less than 4, due to missing values). The terms MS(accession) and MS(error)
are the mean sums of squares for respectively accession and error, obtained from an analysis of
variance, including (fixed) effects for replicate and accession.

Genome-wide association mapping

The A. thaliana accessions have previously been genotyped using a 250K SNP chip [20] and
this data was used for GWA mapping using the software scan_GLS [60]. For both traits, we
first analyzed the phenotypic data from all replicated by fitting the mixed model

Yij = Mean + Accession(i) + Replicate(j) + Block(within replicate j) + error(ij),
with fixed effects for accession (i = 1,. . .,360) and replicate (j = 1,2,3,4) and a random effect for
incomplete blocks within replicates. GWA mapping was performed on the accession means,

i.e. the best linear unbiased estimator (BLUE) for Accession in the mixed model above. For
these we assumed the mixed model

Yi = u + xiff + Gi + Ei,

where p is the population mean, x; is the SNP-score of accession i (zero or one), B is the SNP
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effect, and G; and E; are random effects. The vector of genetic effects (Gy,. . .,G3gp) has a multi-
variate normal distribution with zero mean and covariance 6> K, where K is a genetic related-
ness matrix derived from all SNPs and 6,” > 0 is the additive genetic variance. The residual
effects E; are assumed to have independent normal distributions, with variance o>, As in Kang
[61], we first estimated the parameters ¢ A2 and o> using a model without a SNP (ie. Yi=p +
G; + E;). Next, to estimate the SNP-effect §, we fitted model (1) for each SNP in turn, given the
estimates for 0,2 and o5 obtained in the first step. The relatedness matrix K was defined as the
identity by state matrix derived from all SNP markers.

From the GWAS analysis, SNPs with P < 10~* and MAF > 5% were considered as candi-
date SNPs for adult survival and oviposition rate. Next, the set of candidate SNPs was extended
with SNPs located within 10 kb (based on the observation that LD in A. thaliana decays over
5-10 kb) and in sufficient LD (Pearson r* > 0.5) with at least one of the candidate SNPs. Genes
located at or near the candidate SNPs were considered as candidate genes playing a role in the
interaction between the cabbage whitefly and A. thaliana.
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