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Abstract
Understanding the processes that influence the structure of biotic communities is one of the

major ecological topics, and both stochastic and deterministic processes are expected to be

at work simultaneously in most communities. Here, we investigated the vertical distribution

patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qing-

hai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we

examined the diversity and structure of bacterial communities, and the change in community

composition along the vertical distance (spatial turnover) from both taxonomic and phyloge-

netic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bac-

terial community composition changed continuously along the soil core, and showed a vertical

distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial

alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and

pH but weakly correlated with depth. There was evidence that deterministic and stochastic

processes collectively drived bacterial vertically-structured pattern. Bacterial communities in

five soil horizons (two originated from the active layer and three from permafrost) of the perma-

frost core were phylogenetically random, indicator of stochastic processes. However, we

found a stronger effect of deterministic processes related to soil pH, conductivity, and organic

carbon content that were structuring the bacterial communities. We therefore conclude that

the vertical distribution of bacterial communities was governed primarily by deterministic eco-

logical selection, although stochastic processes were also at work. Furthermore, the strong

impact of environmental conditions (for example, soil physicochemical parameters and sea-

sonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost

microorganisms to climate change and potentially subsequent permafrost thaw.
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Introduction
Characterizing species diversity and its variation, or understanding the forces that structure
ecological communities and their spatial patterns along environmental gradients is a central
theme of ecological research, and both niche-related (deterministic) and neutral (stochastic) pro-
cesses are generally thought to be important [1–4]. Niche-related processes [5] include selection
imposed by the abiotic environment (environmental filtering) and biotic interactions (e.g., com-
petitive exclusion, predation, facilitation, and mutualism), whereas neutral effects are related to
chance or historical events (past evolutionary and ecological events that might influence present-
day assemblages) [6], and include stochastic processes such as unpredictable disturbances, spa-
tially restricted dispersal, mass effects and random fluctuations in population sizes [7]. It has
been widely accepted that deterministic and stochastic processes jointly determine community
assembly and many patterns previously assumed resulting from deterministic effects are also
generated by stochasticity [2–4,7], which raises the question of how the relative contributions of
these two sets of processes to the structure of ecological communities [8–12].

Taxonomic beta diversity (also referred to as taxonomic or species turnover), i.e., the change
in community structure between sampling units along a spatial, temporal or environmental
gradient [1], has provided important insights into the relative roles of deterministic and sto-
chastic processes by relating the amount of turnover to variation in spatial distance and the abi-
otic environment [13–15]. While taxonomic beta diversity effectively quantifies the degree of
similarity or dissimilarity in species composition between sites, it does not consider phyloge-
netic relatedness of species in the study system. Specifically, it can’t provide information about
how deep in evolutionary time these species have been separated, because all species are treated
equally in taxonomic beta diversity [16]. In recognition of the potential limitations of focusing
solely on taxonomic beta diversity, community ecologists have recently extended this species-
based metric to include a phylogenetic component of beta diversity (phylogenetic beta diversity
or phylogenetic turnover) which should permit the inferences of relative roles of deterministic
and stochastic processes that are more directly connected to ecological, historical, and evolu-
tionary processes [11,16–19].

Deterministic and stochastic processes have long been investigated in animal and plant sys-
tems [20]. For example, Rominger et al. [8] and Gilbert and Lechowicz [21] have focused on
assessing the relative importance of deterministic and stochastic processes in structuring grass-
hopper and understory plant communities, respectively. These processes have been explicitly
studied in microbial communities in the past decade, and have been further integrated with
microbial biogeography [3,6,20]. These studies provide overwhelming evidence of spatial pat-
terns of microbial biodiversity, such as the distance-decay relationship and taxa-area relation-
ship, which are similar to those of “macro”-organisms (i.e., plants and animals) [6,22].
Importantly, even though at small spatial scale, these patterns are also observed [23–25]. It
should be noted that although previous microbial work has examined most of Earth’s major
ecosystems [23], terrestrial cryoenvironments have received limited attention. This is a serious
gap in our general knowledge of microbial ecology and diversity, given that the ecology of these
cryoenvironments is largely microbial and vast regions of the planet remain at temperatures
near or below freezing [26].

Permafrost, defined as ground (including soil, sediment, bedrock, and sand) that has been
continuously frozen for at least two years, underlies about 25% of the Earth’s land area and is
estimated to contain approximately 50% of the global soil carbon [27,28]. Permafrost occurs
mostly in the northern reaches of North America and Eurasia (Alaska, Siberia, and Canada). It
can be also found in the ice-free regions of Antarctica, Greenland, and surrounding Arctic and
Antarctica as offshore permafrost, and in high mountains of Europe, both Americas, and
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western China as alpine permafrost [29]. Although permafrost environment is thought to be
inhospitable, numerous and various microorganisms, including bacteria, archaea, phototrophic
cyanobacteria and green algae, mycelial fungi, yeast, and protozoa, are present in it, and they
play very important role in regulating biogeochemical processes, such as nutrient turnover and
biomass production [30,31]. There has been increasing attention on the microbial ecology of
permafrost recently because the reservoir of permafrost carbon may be susceptible to microbial
decomposition as increasing global temperatures and possible subsequent permafrost thaw
and result in greenhouse-gas (primarily CO2, CH4 and N2O) emissions [27,32–34]. Improved
knowledge of factors that influence the composition and distribution of permafrost microbial
communities is critical to advancing the microbial ecology of permafrost and predicting the
potential consequences of climate change. Advances in characterizing microbial communities
in permafrost commonly lead to inferences regarding whether community composition is sig-
nificantly related to specific abiotic factors, such as nutrient availability [35], soil pH [36],
moisture [37], conductivity [38] and profile depth [39]. Although microbial communities don’t
seem to always vary with permafrost depth [40–42], some studies have indicated that microbial
abundance, alpha diversity and metabolic activity show declines with depth across the transi-
tion from surface active layer soil to underlying permafrost soil, and community composition
is significantly different between these two layers [38,43–45]. These results imply a high level
of microbial turnover along depth or environmental gradients. However, the vertical distribu-
tion patterns of microorganisms in permafrost are still poorly understood, and the degree of β-
diversity has not been strictly examined. In addition, the roles of deterministic and stochastic
processes and their relative influences on vertical variation in permafrost microbial communi-
ties remain unexplored.

Here, we investigated vertical distribution patterns of bacterial communities and the pro-
cesses that drive these patterns in a 10-m-long permafrost core from the Qinghai-Tibet Plateau,
China. Bacterial community composition was analyzed using culture-independent techniques
(cloning—restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA
gene fragment). We employed an integrated approach to characterize bacterial diversity from
both ecological and evolutionary perspectives. Therefore, in addition to evaluating patterns of
taxonomic beta diversity along the soil core, we included several phylogenetic measures, that is,
phylogenetic diversity, community structure, and turnover of bacterial communities. Espe-
cially, coupling the phylogenetic community structure and turnover with randomly generated
null models can contribute to illuminate the relative roles of deterministic and stachostic pro-
cesses in structuring these communities [16,46,47]. The major objectives of this work were to
address the following questions: (1) what are the vertical distribution patterns of bacteria
through the permafrost core profile with regard to taxonomic and phylogenetic beta diversity?
(2) Which ecological processes (deterministic or stochastic processes) is more important to the
vertically-structured shifts in bacterial communities?

Materials and Methods

Ethics statement
The permafrost core was collected in the state-owned land which is open for scientific research.
No specified permissions are required for this sampling site, which is not natural reserve and
did not involve endangered or protected species.

Study area and sampling
The study area was situated in the Kunlun Mountain Pass (N35°39028.6@, E94°03017.3@), Qing-
hai-Tibet Plateau, which is a typical alpine tundra region with an altitude of about 4780 m
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above sea level. The annual mean air temperature and precipitation at this site are -5.0 to
-7.0°C and 400 mm, respectively. The depth of the active layer at the time of sampling is
approximately 260 cm. The sampling site is composed of alpine meadow, and the dominant
vegetation was Oxytropis glacialis, Stipa purpurea and Kobresia alpine. Sampling was carried
out in August 2010; a 10-m-long soil core was taken within permafrost using the coring equip-
ment and protocols described by Hu and colleagues [38]. Core was split at the different depths
using a sterilized chisel, and soil samples were collected from seven depth intervals represent-
ing the upper active layer at 50 ± 5 cm; 100 ± 5 cm; 150 ± 5 cm; 175 ± 5 cm; 200 ± 5 cm;
225 ± 5 cm and 250 ± 5 cm, and at nine depth intervals within the underlying permafrost:
275 ± 5 cm; 300 ± 5 cm; 400 ± 5 cm; 500 ± 5 cm; 600 ± 5 cm; 700 ± 5 cm; 775 ± 5 cm; 900 ± 5 cm
and 975 ± 5 cm. Three replicate samples (~50 g each) were subsampled from the inner portion of
each interval with sterilized scalpels and tweezers. A total of forty-eight soil subsamples (16 × 3)
were immediately put into aseptic aluminium tins, sealed and maintained at -20°C until process-
ing in the lab.

Soil physical and chemical analyses
Physicochemical analyses of soil pH, conductivity, water content, and concentrations of soil
organic carbon (SOC) and total nitrogen (TN) were performed as previously described [38]. In
brief, the soil moisture was determined as the differences in mass of fresh soil dried at 105°C
for 24 h. Air-dried soils were passed through a 100-mesh screen, then concentrations of SOC
and TN were determined using the CHNS-analyzer system (Elementar Vario EL, Elementar
Analysensysteme GmbH, Hanau, Germany) with the burning method at 450 and 1250°C,
respectively. Soil pH was measured using 1M KCl (5 g soil in a 25mL solution), and soil con-
ductivity was determined in 1:2 soil/deionized water slurry.

Soil DNA extraction and amplification
For each soil subsample, total community DNA was extracted using the modified method
described previously [38]. Prior to DNA extraction, soil samples of five grams were thoroughly
ground with liquid nitrogen in a pre-chilled sterile mortar and subjected to successive washes
by vortexing with buffers differing in EDTA concentrations. Samples were then centrifuged for
3 min (3000 × g). The soil pellets were mixed with hexadecyltrimethylammonium bromide
(CTAB) extraction buffer (0.1 M Tris-HCl, 0.1 M sodium EDTA, 0.1 M sodium phosphate, 1.5
M NaCl and 1% CTAB) and proteinase K (10 mg/mL) and shaken at 225 rpm for 30 min.
After shaking treatment, 20% sodium dodecyl sulfate (SDS) was added, and the mixtures were
incubated at 65°C for 2 h. The supernatants were collected by centrifuging and extracted with
chloroform-isoamyl alcohol (24:1). The aqueous phase was precipitated with isopropanol, and
pellets of crude nucleic acids were washed with cold 70% ethanol and resuspended in sterile
deionized water. Extractions from three replicates at each sampling depth were pooled at this
step and analyzed as one sample in the subsequent analyses (resulting in sixteen pooled DNA
samples). Pooled community DNA was purified using the Universal DNA Purification Kit
(Tiangen Biotech, China) according to the manufacturer’s instructions. A negative parallel
control (deionized H2O in place of soil or DNA) underwent identical procedures during
extraction and purification processes to evaluate the potential for contaminations.

Bacterial 16S rRNA genes were amplified from the purified community DNA and negative
parallel control by PCR using the universal primer pair 27F (50-AGAGTTTGATCCTGGCT
CAG-30) and 1492R (50-TACGGTTACCTTGTTACGACTT-30). Amplification reactions were
performed in a total volume of 25 μL containing 0.5 μM of each primer and 3 μL of template
DNA using a Taq PCR Kit (New England Biolabs, MA, USA) with the following thermocycling
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conditions: an initial denaturation step of 5 min at 94°C and then subjected to 35 amplification
cycles of 1 min denaturation at 94°C, 1 min annealing at 58°C, followed by 72°C for 1 min 30 s
and a final extension of 72°C for 10 min. To mitigate individual PCR reaction biases, each
amplification was performed in three replicates and pooled together. All PCR reactions were
carried out on a thermal cycler (Applied Biosystems GeneAmp1 PCR System 2700). The pres-
ence or absence of PCR products was determined on a 1.0% (w/v) agarose gel with ethidium
bromide staining.

Cloning, restriction fragment length polymorphism (RFLP) typing and
sequencing
Ligation and transformation of amplified 16S rRNA genes were performed as previously
described [38], ultimately resulting in 16 bacterial clone libraries. For each clone library, 450
putative positive transformants were picked randomly and immersed in 30 μL of deionized
H2O, and subjected to three cycles of freezing and thawing for the preparation of plasmid tem-
plates. Cloned 16S rRNA genes were re-amplified using the primer pair T7 and SP6. PCR reac-
tions were performed in a 20 μL mixture with 0.4 μM of each primer and 1 μL of template
DNA using a Taq PCR Kit (Tiangen Biotech, China) with the same PCR conditions as amplifi-
cation of community DNA, with the exception that only 30 cycles were performed. Restriction
fragment length polymorphism (RFLP) analysis was used to distinguish and classify cloned
16S rRNA gene sequences. A total of 6753 positive PCR products were restricted using the
enzymes HinfI and Csp6 (Fermentas, Vilnius, Lithuania) at 37°C for 3.5h. Restriction digests
(10μL) were examined on 3.0% (w/v) agarose gels, and unique restriction patterns were identi-
fied visually. Representatives of each restriction pattern were chosen for sequencing using the
vector primer pair T7 and SP6 by the Major Biotech Co., Ltd (Shanghai, China).

Molecular analyses
All DNA sequences were edited and assembled using the CONTIGEXPRESS module of VEC-
TOR NTI Suite 6.0 (InforMax Inc., MD). Sequences were checked for chimeras using the
online CHIMERA CHECK program on the RDP II database (http://rdp.cme.msu.edu/index.
jsp). Identified chimeric sequences were removed from the dataset before further analysis, ulti-
mately resulting in a total of 373 bacterial sequences. The remaining 373 sequences of bacteria
were submitted to the GenBank database under the accession numbers KF494429-KF494801.
Phylogenetic classifications of non-chimeric sequences were carried out using the EzTaxon-e
online database [48]. All bacterial sequences were then multiple aligned using the CLUSTAL
W program [49], and clustered to species-level groups using 97% pairwise identity with the fur-
thest neighbor algorithm in the MOTHUR program [50]. Each species-level group was
regarded as a bacterial phylotype (OTU). Representative sequences from each bacterial phylo-
type were used to construct a phylogenetic tree using General Time Reversible and gamma sub-
stitution models with the RaxML algorithm implemented in TOPALi package ver. 2.5 [51]. A
‘newick’ format of the Bacteria phylogenetic tree was saved to use for subsequent phylogeny-
related analyses.

Statistical analyses
The matrix of bacterial community composition was calculated using the clone numbers of
each phylotype in each soil sample. The raw data of soil physicochemical characteristics that
were measured on three replicate subsamples were pooled and calculated, using the means to
represent the status of each variable. All statistical analyses were carried out using SPSS 13.0
(SPSS Inc., Chicago, IL, USA) and R (version 3.0.2; http://www.r-project.org). Before analysis,
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all data were tested for normality; all the soil physicochemical variables met the normality dis-
tribution; further, these variables were standardized at a mean of 0 and a standard deviation of
1. Raw community data for bacteria was Hellinger-transformed in order to make sure the con-
tribution of abundant and rare phylotypes were equally important for the resultant matrix.

Chao1-richness was computed to estimate the community diversity using the MOTHUR
program [50]. Chao1-richness is a non-parametric estimator of phylotype richness that is cal-
culated as Chao1-richness = Sobs + [a2/(2 × b)], where Sobs is the observed number of phylo-
types, and a or b is the number of phylotypes with only one sequence or only two sequences.
Furthermore, Faith’s PD [52] was calculated to estimate phylogenetic community diversity,
which was quantified as the sum of the branch length in a phylogeny that connects all species
within the community and the root.

To characterize phylogenetic community structure within each sample, we calculated the
mean nearest taxon distance (MNTD) [47]. A randomly generated null distribution of MNTD
was computed by the “taxa.labels” null model with 999 iterations using the function ‘ses.mntd’
from the library “picante” [53] of R package. To assess vertical structure in the degree of non-
random phylogenetic community structure, nearest taxon index (NTI) was quantified as the
number of standard deviations that the observed MNTD was from the mean of the MNTD
null distribution [47]. Observed NTI values smaller than 50 or larger than 950 of the randomi-
zations were considered significantly structured (P< 0.05 or P> 0.95). For a single commu-
nity, a significantly positive or negative NTI value indicated that co-occurring species were
more closely or distantly related than expected by chance. Based on the hypothesis that closely
related taxa were more ecologically or functionally similar (phylogenetic niche conservatism),
the obtained NTI measure can be used to infer ecologically similar (phylogenetic clustering) or
ecologically dissimilar (phylogenetic overdispersion) taxa within a given community [47]. A
mean NTI taken across all communities that was significantly different from the expected
value of zero was interpreted as indicating an average trend towards clustering (NTI> 0) or
overdispersion (NTI< 0) [54]. To correlate the depth and environmental variables with the
observed biodiversity patterns, a step-wise multiple regression analysis with forward model
selection was performed for each biodiversity measurement. The model with the lowest Akaike
information criterion (AIC) was selected.

To examine the beta diversity patterns of bacterial communities, the Bray-Curtis metric was
computed to describe the dissimilarity in species community composition (taxonomic beta
diversity) between all pairwise comparisons of bacterial communities [46]. Phylogenetic beta
diversity between a given pair of samples was quantified using beta mean nearest taxon dis-
tance (betaMNTD) and the beta nearest taxon index (betaNTI), which is the between-commu-
nity analogs of MNTD and NTI, respectively [54]. BetaNTI measured the difference between
observed betaMNTD and mean null betaMNTD for a given pair of communities in units of
standard deviations [54]. Variation in beta diversity among bacterial communities was exam-
ined using a distance-based approach [6,13,14]. That is, the variations in beta diversity were
correlated with changes in vertical distance or environmental distance. The resulting vertical
distance-decay relationships (which measure how dissimilarities decay with increasing distance
between pairwise soil horizons) [24,55] were analyzed using Generalized Linear Models
(GLM), and significance levels were determined using Mantel tests (Pearson’s correlation) with
9999 permutations. Environmental distance was measured as Euclidean distance using all the
standardized environmental variables. To facilitate comparisons with previous studies, we also
calculated the distance-decay slope using the Jaccard metric for taxonomic beta diversity. Fur-
thermore, we constructed multiple regression models to evaluate the relationship between beta
diversity metrics and vertical or measured environmental distance after controlling for
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measured environmental distance or vertical distance, and significance was assessed using par-
tial Mantel tests with 9999 permutations.

To estimate the relative importance of deterministic and stochastic processes on bacterial
distributions, variation partitioning was performed for taxonomic and phylogenetic beta diver-
sity. We partitioned beta diversity into spatial and environmental components using both the
distance-based approach and the raw data approach as previously described [13,15,24], as they
may give additional insights into the data, reflecting different aspects of beta diversity [14]. Fur-
ther, in order to elucidate the relationship between environmental variables and community
dissimilarities, we used non-metric multidimensional scaling (NMDS) ordination technique.
Measured environmental variables were fitted as vectors onto the ordination plots, and the sig-
nificance of each variable was assessed. These analyses were implemented in R packages
“picante” [53], “vegan” [56] and “car” [57].

Results

Physical and chemical characterization of permafrost
Our soil samples were collected from different depth intervals within a 10-m-long permafrost
core, which progresses from surface active layer soil into a layer of permafrost soil. The strati-
graphic profile and soil physicochemical characteristics across depths are shown in Fig 1. The
soils of the surface layer (approximately surface to 0.6 m in depth) were dominated by humus
soil, with variable amounts of gravel. In the range 0.6–4.8 m, the zone was composed of coarse
and fine sandy soil, containing ground ice. Below 4.8 m, the soils were typically grey and dark
grey in colour, with the exception for a black layer at 9.6–10.0 m. This zone consisted of clay
and also contained ground ice. The soils throughout the permafrost core profile were alkaline
and had low SOC and TN contents. The soil pH ranged from 7.88 to 9.00 (mean = 8.71,
SE = 0.04, n = 48). The concentrations of SOC and TN varied from 0.36 to 0.84% (dry weight)
(mean = 0.50%; SE = 0.02; n = 48) and 0.025 to 0.068% (dry weight) (mean = 0.039%;
SE = 0.002; n = 48), respectively. Pearson correlation analyses showed that soil moisture

Fig 1. Schematic diagram of the permafrost core and the associated physiochemical characteristics of different-depth samples. Error bars
represent means ± the standard error (n = 3).

doi:10.1371/journal.pone.0145747.g001
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(r = 0.769, P< 0.001) and conductivity (r = 0.696, P = 0.003) increase significantly with depth.
No observable correlations were found between the other variables and depth.

The soil characteristics at the very bottom of the permafrost core (9.75 m) were completely
different from those of the other soil horizons (Fig 1). This horizon contained higher conduc-
tivity, SOC and TN contents, and lower soil pH because it primarily consisted of organic soils
rather than mineral soils which composed the other horizons.

Analyses of bacterial 16S rRNA gene clone libraries
Nothing was recovered from the negative parallel controls, suggesting that contamination was
not introduced during extraction and purification processes. To yield enough DNA for PCR
amplification and minimize individual extraction biases, DNA extractions from three replicate
subsamples were combined for each sampling depth and used as one sample for the construc-
tion of clone library (also see Materials and Methods). A total of 373 bacterial sequences
(82.9% of raw sequences), based on 6753 bacterial clones, were obtained in this study. These
sequences could be delimited into 191 phylotypes with sequence identity� 97% (S1 Fig). Of
these phylotypes, 139 corresponded to unique sequence and 52 to clusters of similar sequences.

These phylotypes belonged to 17 phyla and 52 orders (S1 Fig). The dominant phyla were
Alphaproteobacteria and Actinobacteria, which showed the highest diversity, consisting of 46
phylotypes, respectively. Sequences related to Betaproteobacteria, Gammaproteobacteria, Fir-
micutes, Acidobacteria and Bacteroidetes were also frequently detected. In addition, phylotypes
of Deltaproteobacteria, Gemmatimonadetes, Planctomycetes, Verrucomicrobia, Saccharibacteria
(former candidate division TM7), Armatimonadetes (former candidate division OP10), Cyano-
bacteria, Chloroflexi, and Nitrospirae were identified at relatively low diversity, as well as mem-
bers of an unclassified phylum (S1 Fig).

Vertical distance-decay relationships, phylogenetic structure, and
variation partitioning of bacterial community
The taxonomic dissimilarity and betaMNTD significantly increased with spatial distance and
environmental distance which showed obvious vertical distance-decay relationships for the
whole core (S2 Fig). The slope of the distance-decay relationship based on the Jaccard metric
for taxonomic beta diversity was -0.0132 In(Jaccard) per m of distance. According to the partial
mantel tests, the pure effect of spatial distance was not significant for all three beta diversity
metrics after controlling for environmental distance (P> 0.200 for all), while the pure effect of
environmental distance was significant for all metrics after controlling for spatial distance
(P< 0.030 for all; Fig 2).

The analysis of phylogenetic structure revealed the phylogenetic patterns of bacterial com-
munities through the permafrost core profile. The MNTD of 11 bacterial communities was sig-
nificantly different from the null communities (significant values of NTI), whereas it was not
significantly different from the null communities (non-significant values of NTI) in the other
five communities, of which two (at depths of 150 and 225 cm) originated from the active layer
and three (at depths of 300, 775, and 975 cm) from permafrost (Fig 3). All the NTI was greater
than zero and the mean value of NTI (1.51) across all bacterial communities was significantly
higher than the expected value of zero (P< 0.001; two-tailed T test at 95% confidence level).
These results suggest that bacterial communities in 11 soil horizons were phylogenetically clus-
tered and the other five communities were phylogenetically random, whereas there was an
average trend towards clustering across all communities.

Analysis of variation partitioning between spatial and environmental components (Fig 4)
was used to tease apart the relative influences of deterministic and stochastic factors on
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bacterial distributions and beta diversity. When the abundance-based method was used (Fig 4B),
the pure effect of environment accounted for larger parts of the variation in bacterial community
composition (47.73%; pseudo-F = 2.12, P = 0.006) than the pure effect of space (depth) (5.74%;
pseudo-F = 2.86, P = 0.015). When the distance-based method was employed, variation partition-
ing showed that the pure environmental distance explained 9.53% and 22.91% of the variation in
taxonomic dissimilarity and betaMNTD, respectively, while the pure spatial distances explained
less than 0.32% for the both metrics (Fig 4C and 4D). Furthermore, the fraction that was left
unexplained was high, especially for taxonomic beta diversity (84.77%; Fig 4C).

Relationships between diversity measurements and potential
explanatory variables
The correlations between bacterial biodiversity and the environmental variables or depth were
determined by step-wise multiple regressions. Environmental variables and depth explained a
substantial fraction of variation in biodiversity (all r> 0.753; Table 1). The soil conductivity
showed the strongest correlations with Chao1-richness and Faith’s PD. The soil pH was the
most important correlate for MNTD and NTI. The depth was only relatively weak correlated
with Chao1-richness and Faith’s PD.

The dissimilarity in species community composition of bacteria was significantly related
with conductivity, C/N ratio, SOC, pH and TN (P< 0.05 for all); of which, the soil conductivity
(r = 0.885, P = 0.002) was the most significant variable (Fig 5A). Similarly, these variables were
strongly correlated with phylogenetic dissimilarity (P< 0.05 for all; Fig 5B), and the SOC
(r = 0.807, P = 0.002) was the most relevant variable, followed by the soil conductivity
(r = 0.770, P = 0.004).

Discussion
Recent studies on an extensive range of different permafrost ecosystems have showed the pres-
ence of diverse forms of microorganisms [27,30,58]. And also, several reports have demon-
strated the ecological drivers governing the microbial assemblage in such unique environment
along a latitudinal [59] or elevational [60] gradient. Here we aimed to examine the vertical dis-
tribution of bacterial communities along a permafrost core in the context of both taxonomic

Fig 2. Partial correlation between environmental heterogeneity (environmental distance) and taxonomic dissimilarity (a); and betaMNTD (b); and
betaNTI (c). Residuals of the x and y variables are plotted in order to account for the effects of vertical distance and spatial autocorrelation. Solid lines
represent linear regressions and the significance levels are determined by partail Mantel tests (9999 permutations).

doi:10.1371/journal.pone.0145747.g002
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Fig 3. Mean nearest taxon distance (MNTD; a) and nearest taxon index (NTI; b) of different-depth bacterial communities.Observed community
phylogenetic structures unlikely to arise by chance (P < 0.05 or P > 0.95) are depicted by solid symbols (b).

doi:10.1371/journal.pone.0145747.g003
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and phylogenetic patterns, and further to assess the relative roles of deterministic and stochas-
tic processes in structuring these communities. Although the number of samples used in our
study prevents inference of the results to the wider Qinghai-Tibet Plateau permafrost environ-
ments, our data do provide evidence that bacterial communities are not randomly distributed
through the permafrost core profile and their assembly is determined by ecological processes.

In the present study, the predominant bacterial phyla in the alkaline permafrost soils of the
Kunlun Mountain Pass were Proteobacteria, Actinobacteria, Firmicutes, Acidobacteria, and
Bacteroidetes. This is in agreement with some other studies [61–63] that were conducted in var-
ious permafrost regions in China, such as the Qilian Mountains, the Tianshan Mountains, and
the Da and Xiao Xing’an Mountains. These results are also generally agree with the community
composition reported from Arctic soils [27], suggesting these bacterial groups are well adapted
to the extreme conditions of permafrost habitats. The dominance of Actinobacteria in perma-
frost environments could be largely attributed to their metabolic activity and DNA repair

Fig 4. The proportion of variance in community composition explained by environmental components (E) and spatial components (S). (a) General
outline. Each diagram represents variation in a given beta diversity metric partitioned into the relative effects of each component or combination of
components. The edges of the triangle depict the variation explained by each component alone (i.e. when removing the variation because of other
components). Percentage of variation explained by the vertically-structured environment is indicated by S*E. UD represents the variation unexplained; (b)
abundance-based partition; (c) and (d) distance-based partition for taxonomic dissimilarity and betaMNTD, respectively.

doi:10.1371/journal.pone.0145747.g004

Table 1. Relationships between the bacterial diversity and potential explanatory variables that were modelled using step-wise multiple
regressions.

r Explanatory variables

Chao1 Conductivity*** Depth*

0.982 -0.814a -0.167

Faith’s PD Conductivity*** pH** Depth*

0.968 -0.898 0.553 -0.175

NTI pH* Conductivity*

0.753 1.983 -1.218

MNTD pH***

0.874 0.980

The best models were identified using Akaike’s information criterion (AIC).

Chao1, Chao1-richness; Faith’s PD, Faith’s phylogenetic diversity; NTI, nearest taxon index; MNTD, mean nearest taxon distance.
*** P < 0.001
** P < 0.01
* P < 0.05.
a Standardized partial regression coefficients.

doi:10.1371/journal.pone.0145747.t001
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mechanism at low temperature [64]. Firmicutes are known to form endospores for resistance
against long-term exposure to low temperature, desiccation and limited nutrient availability
[44]. Bacteria belonging to the phylum Acidobacteria were reported to be abundant in perma-
frost potentially because of their oligotrophic attributes [65]. Several recent studies have
showed that permafrost soils are dominated by representatives of uncharacterized bacterial
phyla. For example, permafrost bacterial communities in a littoral wetland of Lake Namco,
Qinghai-Tibet Plateau revealed different community composition which was mainly com-
prised of the sequences related to Actinobacteria, Proteobacteria, and Chloroflexi [66]. Because
the members of Chloroflexi are adapted to survive in water-saturated soils, the high number of
Chloroflexi in permafrost wetland of Lake Namco can be due to almost saturated water content
in this area [66]. In Antarctic terrestrial ecosystem, in addition to the bacterial phyla mentioned
above, sequences related to Deinococuss-Thermus and Cyanobacteria were often found with
high levels [67]. Members of the phylum Deinococuss-Thermus are known for their ability in
resisting to both low water availability and constant background radiation [68] to ensure their
survival in extreme Antarctic soils. The cyanobacteria are generally thought to act as the pri-
mary producers of carbon and nitrogen in Antarctic soil system, in where environmental
harshness precludes the survival of higher eukaryotic phototrophs [67]. Collectively, these
results demonstrate that permafrost from different geographical locations could share a core
set of microorganisms, however, some compositional differences are also observed. These dif-
ferences may reflect the unique and extreme conditions of the permafrost environments [27].

Across the soil core, both species compositional dissimilarity and betaMNTD increased sig-
nificantly with increasing spatial distance. These distance-decay relationships indicated that
community composition changed continuously with increasing depth, from the active layer
into permafrost. Previous studies have also found significant distance-decay relationships in
microbial communities [69] and suggested that turnover rates in both taxonomic and

Fig 5. Non-metric multidimensional scaling (NMDS) plots of bacterial communities based on taxonomic dissimilarity (a) and betaMNTD (b) matrix,
respectively. The stress value reflects how well the ordination summarizes the observed distances among samples (lower than 20% can be ecologically
interpretable and useful). Soil variables were fitted as vectors onto each ordination plot, and significant vectors at 95% confidence level (P� 0.05) were
displayed.

doi:10.1371/journal.pone.0145747.g005
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phylogenetic community composition are obviously high for bacteria in the shallow terrestrial
subsurface environments [23,24]. To compare with previous studies, we computed distance-
decay slope using the Jaccard metric for taxonomic beta diversity. The resulting slope [-0.0132
In(Jaccard) per m of distance for the whole core] was much lower than the reported slope for
bacteria in the shallow terrestrial subsurface (-0.304) [24] but was much higher than for tropi-
cal trees [70]. The relatively shallow slope—with respect to other bacterial communities—
found here for taxonomic beta diversity was due in part to relatively high compositional dis-
similarity between the most closely located sample pairs. It would be interesting to include
community comparisons across shorter spatial distances to evaluate whether a steeper dis-
tance-decay slope would emerge due to greater compositional similarity across short distances.
In contrast to taxonomic distance-decay, the slope of the phylogenetic distance-decay relation-
ship (using betaMNTD) was 0.010 per m. This slope is similar to previous observations of high
phylogenetic turnover rates for bacteria in terrestrial subsurface sediments from Kusai Lake
(0.025 per m) or Lugu Lake (0.006 per m), and much larger than slopes from other habitat
types [23]. Our distance-decay results collectively show strong vertical structure of bacterial
communities along depth profile sampled here. In addition, although taxonomic and phyloge-
netic beta diversity co-varies, comparison of distance-decay slopes to previous work [23,24,70]
suggests that these metrics are not redundant and likely provide complementary information
[46]. Patterns found here specifically suggest that—relative to other bacterial systems—increas-
ing spatial distances lead to relatively modest increases in the degree of taxonomic turnover but
relatively large increases in phylogenetic turnover.

Upon observing significant vertical structure we evaluated whether the vertical patterns of
the sampled bacterial communities were governed primarily by deterministic or stochastic pro-
cesses. Analyses of phylogenetic structure can complement analyses of taxonomic structure,
potentially providing additional insights into the factors that shape local communities [5,47].
Our correlation analyses indicated that phylogenetic structure was strongly correlated with the
measured environmental variables. This observation is consistent with the significant mean
value of NTI across all bacterial communities, highlighting the importance of deterministic
ecological selection in driving the community assembly of bacteria. This also agrees with sev-
eral previous studies in a wide range of environments [11,71,72], which showed that microbial
communities had a tendency to be more phylogenetically clustered than expected by chance.
Observed phylogenetic clustering in bacterial communities could also be the result of biotic
interactions (e.g. facilitation and competitive exclusion) [73] as well as ecological diversification
of closely related species [74]. However, given the significant mean NTI value and the strong
correlation between the environmental variables and phylogenetic structure, it is unlikely that
these processes primarily influence the bacterial communities in our system.

On the other hand, we observed that 5 of 16 bacterial communities were phylogenetically
random, which suggested that the bacterial community assembly in these soil horizons of the
permafrost core was mainly determined by stochastic processes. According to neutral theory
[7], these results imply that random but spatially limited dispersal could be occurring. Previous
studies have also emphasized the role of historical factors in the assembly of microbial commu-
nities, and revealed that spatial patterns of microorganisms can be attributed to the effects of
historical factors [6,20]. This is especially true in our permafrost system given that historical
colonization events may influence the present-day bacterial composition and distribution pat-
terns. That is, the sequence information obtained in this study would be derived primarily
from dead or inactive cells, many of which may have been deposited before the soil was peren-
nially frozen, although a low level of bacterial activity may also exist [27,45]. Furthermore, the
past depositional environments may also have an effect on the present-day bacterial communi-
ties, because the Qinghai-Tibet Plateau is characterized by the complex geological evolution
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processes, and formed by land uplift in the order of 3000 m over the past 2 million years [75].
In general, our results confirm previous findings [6,8–10,24], and indicate that stochastic and
deterministic processes are together responsible for the assembly of permafrost bacterial com-
munities. In our case, however, the analysis of variation partitioning showed a stronger influ-
ence of environmental component on the bacterial community composition, suggesting that
the vertical structure of bacterial communities studied here was governed primarily by deter-
ministic ecological selection imposed by physicochemical environmental conditions. Similar
results were also found using partial regression analysis, in which partial correlation coeffi-
cients for both taxonomic and phylogenetic beta diversity metrics were significant for environ-
mental distance but not for spatial distance.

Although the main aim of this study was not to examine the specific environmental factors
that determine the biodiversity patterns, our results do suggest that they show potential in
affecting the bacterial alpha diversity, phylogenetic structure, and spatial turnover across the
permafrost core. Multiple stepwise regression analysis revealed that soil conductivity and pH
were the most important explanatory variables for bacterial alpha diversity and phylogenetic
structure, respectively. The change in taxonomic and phylogenetic community composition
was significantly correlated with most measured soil variables, especially the soil conductivity
and organic carbon content. These results accord with many previous findings, emphasizing
the importance of pH in explaining phylogenetic structures of lacustrine bacterioplankton
communities [76], as well as electrical conductivity salinity [77] and soil carbon content [60] in
structuring microbial communities. Other factors, such as extreme temperature, low water
activity and background radiation in permafrost system, may cause environmental stresses for
indigenous microorganisms, and in part contribute to the deterministic assembly process
observed in this study. Moreover, seasonal freeze–thaw cycles prevailing in active layer of per-
mafrost core may have a direct connection with soil physicochemical disturbances [78], and
will also be a major factor that imposes deterministic influence on the bacterial communities.
This inference is supported by a previous finding suggesting that ecosystem disturbances can
result in community assembly of closely related crustacean zooplankton species in freshwater
environments [79], and is in agreement with a report that environmental instability leads to
the prevalence of significant phylogenetic clustering in bacterial communities [80].

In conclusion, our study reveals the vertically-structured patterns of bacterial communities
and infers the ecological processes driving these patterns in a permafrost core. We observed
that the bacterial communities were not randomly distributed along the soil core, but rather
showed a vertical distance-decay relationship. The vertical distribution of bacterial communi-
ties was mainly driven by deterministic processes such that the observed distance-decay rela-
tionship was most likely the result of physicochemical environmental conditions (primarily
soil pH, conductivity, and organic carbon content), although stochastic processes were also
involved. Our findings highlight the importance of considering information on both the taxo-
nomic and phylogenetic structure of microbial communities and of using multiple lines of evi-
dence to carefully evaluate whether distance-decay relationships indicate a strong influence of
deterministic or stochastic processes. Our study further contributes to the emerging body of lit-
erature aimed at understanding the microbial ecology of permafrost [27], a key reservoir of soil
carbon stocks.

Supporting Information
S1 Fig. Neighbor-joining phylogenetic tree inferred from representative 16S rRNA gene
sequences of permafrost bacterial phylotypes. Bootstrap values above 50% are shown as a
percentage of 1000 replicates. The scale represents the number of mutations per nucleotide
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position. Numbers in parenthesis represent the number of phylotypes and orders assigned to
each division respectively.
(TIF)

S2 Fig. The relationships of taxonomic dissimilarity (a and b) and betaMNTD (c and d)
versus vertical distance and environmental heterogeneity (environmental distance), respec-
tively. Solid lines represent linear regressions and the significance levels are determined by
Mantel test (9999 permutations).
(TIF)
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