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Abstract

Following two decades of design and clinical research on robot-mediated therapy for the shoulder 

and elbow, therapeutic robotic devices for other joints are being proposed: several research groups 

including ours have designed robots for the wrist, either to be used as stand-alone devices or in 

conjunction with shoulder and elbow devices. However, in contrast with robots for the shoulder 

and elbow which were able to take advantage of descriptive kinematic models developed in 

neuroscience for the past 30 years, design of wrist robots controllers cannot rely on similar prior 

art: wrist movement kinematics has been largely unexplored. This study aimed at examining speed 

profiles of fast, visually evoked, visually guided, target-directed human wrist pointing movements. 

One thousand three-hundred ninety-eight (1398) trials were recorded from seven unimpaired 

subjects who performed center-out flexion/extension and abduction/adduction wrist movements 

and fitted with 19 models previously proposed for describing reaching speed profiles. A nonlinear, 

least squares optimization procedure extracted parameters’ sets that minimized error between 

experimental and reconstructed data. Models’ performances were compared based on their ability 

to reconstruct experimental data. Results suggest that the support-bounded log-normal is the best 

model for speed profiles of fast, wrist pointing movements. Applications include design of control 

algorithms for therapeutic wrist robots and quantitative metrics of motor recovery.
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I. Introduction

Stroke is a leading cause of permanent disability worldwide. Every year over 785 000 

persons suffer a stroke in the U.S. and about 70% of stroke survivors lose motor skills of the 

arm and hand [1]. First proposed in the late 1980s, robot-mediated therapy is increasingly 

becoming part of post-stroke rehabilitative care. Several rehabilitation robots for the upper 

extremity have been proposed, including MIT-Manus [2], ARM Guide [3], MIME [4], and 

the more recently developed PLEMO [5], ARMin [6], and MEMOS [7]. Clinical 

effectiveness greater than sham robot-therapy or a matched amount of traditional therapy 

has been reported by several studies [4], [8]–[10], including the recent Veterans 

Administration multicenter, randomized, controlled clinical trials reported in the New 

England Journal of Medicine [11]. While these devices mainly target motor therapy at the 

shoulder and elbow joints, it has long been known that improvements observed at these 

joints do not generalize to wrist and hand [12]. To overcome this limitation, several wrist 

devices have been proposed in the last few years, including the MIT wrist robot [13], 

RiceWrist [14], HWARD [15], the Okayama University pneumatic manipulator [16], and 

the IIT wrist robot [17]. These robots can be used either as standalone therapy devices for 

wrist rehabilitation or coupled with other devices such as MIT-MANUS [18], ARMIN [19], 

HapticMaster [20], and wire-based device from [21] to deliver robot therapy to the whole 

upper limb.

Despite the recent proliferation of hardware for delivering therapy to the upper limb and 

clinical studies reporting on the efficacy of robot-mediated therapies, how to design control 

strategies able to maximize patients’ motor recovery remains a major issue for the field 

regardless of the joint targeted by the therapy. This is arguably due to two factors, i.e., poor 

understanding of mechanisms underlying stroke recovery and of neural control of movement 

[22]. Compared to the design of controllers for therapeutic robots for the shoulder and 

elbow, the design of controllers for wrist therapeutic robots presents an additional major 

challenge: it can draw from results of prior neuroscience studies in only a very limited 

fashion.

Upper limb movements involving shoulder and elbow joints have been intensively studied 

since the 1980s in the motor control and neuroscience community. Early studies aimed at 

characterizing and modeling kinematics of reaching movements [23]. Rapid target-directed 

reaching movements were found to be virtually straight with a bell-shaped, nearly 

symmetric speed profile [24]–[27]. More complex movements, such as drawing and 

handwriting, displayed less smooth speed profiles, which were modeled as a combination of 

elementary movements (submovements) whose shape was identified via optimization 

techniques [28]–[30]. Such results prompted a number of subsequent investigations, which 

led to models of how the Central Nervous System (CNS) controls and learns reaching 

movements (for example, [31]–[33]). These data have found numerous applications in 

rehabilitation robotics, from design of controllers for shoulder and elbow therapeutics robots 

[34], [35] to design of quantitative metrics for patients’ motor recovery and performance 

[36]–[38].
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Compared to arm movements, our current understanding of wrist motion is, however, 

remarkably poor. So far, only a few studies have focused on the wrist joint. Most reported 

on measured data for surgical applications, such as individual carpal bone motions and wrist 

range of motion [39]–[41]. It was just recently that Charles et al. [42], [43] showed that, 

similar to primates [44], wrist movement trajectories in humans are more variable and 

curved than reaching trajectories, exhibiting roughly twice as much curvature. Using 

mechanical perturbations, our group also characterized motor adaptation in the wrist and 

found that adaptation in the wrist is more difficult to detect than motor adaptation in 

reaching, presumably due to the higher variability of wrist trajectories compared to reaching 

[45].

Recently, we started designing performance-based adaptive controllers for our wrist 

rehabilitation robots [13]. The lack of descriptive models able to characterize wrist 

kinematics makes such performance-based designs challenging. The goal of this study was 

to select a competent model for wrist movement speed profiles. Can we analyze such 

profiles using the same “machinery” that was developed over the past decades for arm 

movements? Specifically, can we model wrist movements’ speed profiles using the models 

developed for arm reaching speed profiles? While arm movements may be defined as points 

in a vector space, wrist movements are defined by finite spatial rotations, which do not form 

a vector space [46]. Such a fundamental difference may entail different computational 

challenges for the CNS and ultimately result in different control strategies and kinematic 

features of movement [45].

In this study, we investigated kinematic models previously proposed to describe reaching 

and handwriting movements. Specifically, we selected the models from the comparative 

studies by Plamondon et al. [30] and Stein et al. [47]. We recorded and analyzed the speed 

profiles of 1398 fast, target-directed wrist movements; for each movement and model, we 

used a nonlinear, least squares optimization procedure to extract a set of parameters that 

minimized the error between the experimental data and the reconstructed speed profiles. We 

then compared the models’ performances in terms of reconstruction errors using a 

reconstruction error threshold from a comparable study for reaching movements by Flash 

and Hogan [26]. Our goal was to determine whether any of the previously proposed models 

for reaching satisfied this bound, or, alternatively, whether new models should be 

investigated.

II. Methods

A. Apparatus

This study used an InMotion3 wrist robot (Interactive Motion Technologies, Watertown, 

MA). The robot had three actuated degrees-of-freedom (DOF), i.e., wrist abduction/

adduction and flexion-extension, and forearm pronation-supination. A complete description 

of the hardware is reported elsewhere but suffice to say that the robot hardware is highly 

“backdrivable,” i.e., it easily gets “out of the way” of the subject [13]. The angular positions 

of encoders located at the joints of the robot were acquired digitally (sampling frequency fs 

= 1kHz, 16-bit quantization).
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B. Subjects

Seven young, healthy subjects (age range 18–35 years) participated in this study. Subjects 

had no history of neurological disorders. Experiments were approved by MIT’s Committee 

on the Use of Humans as Experimental Subjects, and informed consent was obtained from 

all subjects.

C. Experimental Procedure

Subjects were seated in front of a computer monitor and held the handle of the robot in their 

dominant right hand. Their upper arm was restrained by a Velcro-strapped belt and their 

forearm was supported in the horizontal plane and restrained with a Velcro-strapped belt 

(Fig. 1). To have them replicate pointing movements during therapy, the robot pronation/

supination DOF was locked, restricting movement only to flexion/extension and abduction/

adduction plane.

Two experiments were performed. In the first experiment, two outer targets on a circle at 

East and West position and a central target (neutral wrist position) were displayed. Subjects 

were instructed to move the handle of the robot corresponding to a screen cursor between 

the central target and the outer targets (target diameter = 2.5 cm). Outer targets were 

presented in a random order, but each was presented an equal number of times. The central 

target was presented following each of the outer targets. Targets remained lit for 0.8 s. For 

the first 0.4 s of this period, the target was one color and then it turned into a different color. 

Subjects were instructed to reach the target about the time when its color changed. After the 

0.8 s a new target lit up. Subjects were given no explicit instruction regarding the trajectory 

and performed 160 movements per direction (80 movements from the central to the outer 

targets and 80 movements back). The second experiment was similar to the first experiment, 

but the outer targets were displayed at the North and South positions. The motor tasks 

required by the first and second experiment were flexion/extension and abduction/adduction 

of the wrist, which required 30 and 15 degrees, respectively. These movement ranges were 

selected to allow for comfortable movements covering approximately 50% of the ranges of 

motion of a normal wrist (flexion/extension 60/60 degrees, abduction/adduction 30/45 

degrees, pronation/supination 70/70 degrees, see [13]). Prior to starting any recording, 

subjects practiced the motor tasks as needed until they were fully comfortable performing 

them.

D. Speed Profiles Computation and Modeling

Speed profiles for all movements were computed as

where θ and ϕ were the azimuth and zenith coordinates recorded by the robot [48]. The 

radial coordinate was assumed to be constant and equal to 9 cm. The derivatives were 

computed numerically using Savitzky-Golay filters with fourth order polynomial fit and 
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window width of 17 samples. Data segments for modeling were extracted as following. The 

time point tmax was found, at which the maximum value of the speed profile occurred. By 

moving to the left and to the right from tmax by one time point increments, times tlb and tub 

closest to tmax were found such that tlb < tmax < tub, with v(tlb) < 0.05*v(tmax) and v(tub) < 

0.05*v(tmax). The speed profile segments between tlb and tub were extracted and their plots 

were visually inspected to verify that they contained only a single large peak. Data segments 

containing other large peaks, defined as larger than 20% of the higher peak due to corrective 

movements, were discarded. The purpose of such a selection was to ensure that modeled 

speed profiles corresponded to single movements in each direction. On average, 28 and 22 

out of 40 speed profiles per movement direction were selected for center-out and back 

movements respectively (for a total of 1398 profiles).

Because the extracted speed profiles segments had different length (time duration), we 

normalized movement duration to a range using the procedure described in [26]. We 

subtracted from all time points values for a given speed profile and then divided resultant 

time points by tub−tlb value. The data was not re-sampled, and each speed profile retained its 

original number of points.

For every speed profile, duration of movement, peak and average speed, skewness, kurtosis 

and “symmetry ratio” were computed. Because skewness and kurtosis are defined only for 

probability distributions [49], the area under the speed profile curve was normalized to 1. 

This was done after the time points range was converted to be from 0 to 1 (although the time 

points range conversion does not affect this calculation). Skewness and kurtosis were then 

evaluated by standard formulae using the normalized speed profile as a probability 

distribution function. Skewness = E[(x − x̄)3]/σ3, Kurtosis = E[(x − x̄)4]/σ4, where x are the 

normalized speed profile values, x̄ is a mean and σ is the standard deviation of the 

normalized speed profile. Symmetry ratio was introduced to serve as an additional estimate 

of data’s asymmetry, in addition to skewness, and was defined as (tmax−tlb)/(tub−tmax). 

When the ratio is equal to 1, the peak is exactly in the middle of the data.

The equations of the models used in this study are listed in the Appendix. The interior-

reflective Newton algorithm, which was implemented in MATLAB function lsqcurvefit 

(Mathworks Inc., Natick, MA), was used to solve a nonlinear, least squares problem of 

optimal selection of parameters in models’ equations [50]. Initialization values (also listed in 

Appendix) were selected by trial and error in order to achieve convergence for each model 

to the recorded speed profile. The optimization algorithm was allowed to run for at least 100 

000 iterations or until the change in squared sum of the residuals became less than 10−9.

To compare different models, the Akaike Information Criterion (AIC) was used as 

performance index. This was given by: AIC = N * ln(SSE/N)+2 * K+2 * K * (K+1)/(N−K

−1), where SSE is the sum of squared errors (residuals) returned by the optimization 

algorithm, is equal to the number of points in the fit, and is equal to the number of model 

parameters plus one [51]. Lower AIC indicates a better fit. We constructed two bar plots to 

afford visualization of the results: 1) for each speed profile, a model was awarded one point 

if its AIC was among the five best performers for that profile (lower AIC). This will be 

referred to as the “Top 5” plot; and 2) for each speed profile, we ranked the models with best 
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performer awarded 18 points, 17 if its AIC was second lowest, etc. We normalized the 

resulting summation of all profiles by dividing the cumulative sum for each model by the 

number of profiles that contributed to the sum. This will be referred to as “Score 18” plot. 

“Top 5” and “Score 18” plots were constructed for each subject and for each movement 

direction separately. Because the results for sets of speed profiles recorded from different 

subjects and different directions were consistent (i.e., the groups of best fitting and worst 

fitting models were essentially the same for all the sets, while other models’ performance 

did not strongly fluctuate among the sets), we grouped all speed profiles together for 

statistical analysis. Fitting accuracy of models was computed as the percent error between 

the area under the modeled speed profile and that under the recorded speed profile.

E. Statistical Analysis

A Kruskal-Wallis 1-way ANOVA followed by multiple comparisons test was performed on 

AIC values for all modeled speed profiles [49]. Nonparametric statistics were used because 

series of AIC values for many models did not have a Gaussian distribution. Tests were 

performed with 5% significance level.

III. Results

Fig. 2 shows a typical set of speed profiles for center-out and back movements. Fig. 3 shows 

histograms, mean and standard deviation values of the parameters extracted from the speed 

profiles. Most movements were about 0.2–0.4 s long, with most peak speeds between 10 and 

50 cm/s, and average speeds between 5 and 30 cm/s. Skewness and symmetry ratio 

histograms show that a larger portion of the data had slightly negative skewness, i.e., longer 

tail to the left, or the peak speed value closer to the end rather than the beginning of 

movement. Kurtosis values mainly ranged between 2 and 3.

Fig. 4(a) shows the cumulative “Top 5” plot. Four models stand out as the top five best fits, 

i.e., their AIC values were most commonly among the five lowest. These are lognormal with 

support bound (LGNB), Morasso Mussa-Ivaldi and Maarse asymmetric (MMMasym), 

asymmetric Gaussian and beta function models. Overall, symmetric models performed 

worse than asymmetric ones with the best of symmetric models, namely Morasso, Mussa-

Ivaldi and Maarse symmetric model (MMMsym) scoring seventh. Fig. 4(b) shows the 

cumulative “Score 18” plot. This scoring system favors consistent high level of 

performance. It allows a somewhat more balanced comparison between the models. The 

four best models are the same as in the “Top 5” plot. However, some models—in particular 

minimum snap, lognormal without support bound (LGN) and generalized Gutman & 

Gottlieb model (GGgen)—have improved their relative placement because they were 

consistently performing even though they were not that often among the five best fits for 

speed profiles. On the other hand, models like MMMsym and minimum jerk have been 

ranked higher on “Top 5” plot than “Score 18” plots because, although they performed very 

well for some profiles ranking on the “Top 5” plot, they did not have very consistent 

performance for a large number of profiles, and thus were ranked lower overall. The models 

that did not perform well under-performed in both “Top 5” and “Score 18” plots. These 

included Plamondon-Lamarche exponential, Eden and Hollerbach, minimum acceleration 

(Morasso), gamma function, and biexponential models.
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Results of statistical analysis are shown in Fig. 5. The models closer to the left side of the 

plot have lower median ranks and therefore performed better. On the whole, the results 

shown in Fig. 5 are consistent with those shown in the “Score 18” plot: LGNB, MMMasym, 

asymmetric Gaussian, beta function, GGgen and sigmoidal discontinuous models have the 

lowest median AICs. Eight models follow with approximately the same level of median 

ranks, while the remaining five models performed quite poorly.

Analysis of the goodness of a particular model’s fit for each individual direction showed that 

results were essentially independent of the movement direction. Fig. 6 shows “Score 18” 

plots for different directions. Plots are generally very similar to the “Score 18” plot for all 

modeled profiles combined shown in Fig. 4(b), namely the top/worst performing models 

shown in Fig. 4(b) were the top/worst performing models for the different directions.

Table I shows the percent of errors of areas under the modeled and recorded speed profiles. 

For six models, including LGNB, MMMasym, asymmetric Gaussian, beta function, GGgen, 

and sigmoidal discontinuous, the error was below 4% for over 50% of speed profiles.

IV. Discussion

A. Features of Wrist Movements Speed Profiles

In this study we recorded and analyzed speed profiles of fast, visually evoked, visually 

targeted wrist pointing movements involving wrist flexion/extension and abduction/

adduction. Our robot-mediated therapy protocols trains pointing movements in the spherical 

surface determined by these wrist motions and train separately pronation/supination 

movements. As in our robot-mediated therapy and similar to previous psychophysical 

studies [42], [52]–[59], we locked the pronation/supination DOF. Under this setup, the 

robotic device had near isotropic inertia properties in flexion/extension and abduction/

adduction movements with minimal interference in trajectory formation. Note that wrist 

trajectories recorded with the robot were found indistinguishable from those recorded 

without the robot (i.e., with Flock of Birds, Ascension Technologies, VT) for movements of 

the wrist encompassing flexion/extension and abduction/adduction [42] (but not for 

movements involving pronation/supination [60]).

The wrist movement peak speeds obtained in our experiment (10–50 cm/s, or 60–320 

degrees/s) were comparable to the peak wrist movement speed values reported by Yayama 

et al. [61], who measured wrist flexion/extension and abduction/adduction movements in 

five young healthy subjects. This comparison is meaningful because the flexion/extension 

and abduction/adduction cycles in the study of Yayama et al. were performed at a rate of 

one cycle per second, and our extracted portions of speed profiles had movement duration of 

0.1–0.6 s (Fig. 3, top left panel), i.e., movement durations were similar. Our peak values 

were overall greater than those reported by Rosen et al. [62], who measured ranges of 

motion and speed of wrist movements during daily tasks. For example, Rosen et al. reported 

that during the task of eating with a spoon, maximum velocities were 34 degrees/s in the 

direction of flexion, 24.5 degrees/s in the direction of extension, 25.1 degrees/s for radial 

deviation, and 44.7 degrees/s for ulnar deviation.
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Skewness and symmetry ratios analyses yielded similar results (Fig. 3). They showed that 

the larger proportion of data was asymmetric; consistently, asymmetric models of speed 

profiles performed better than symmetric ones. Kurtosis values overall were less than those 

expected for symmetric Gaussian curves (3), i.e., speed profiles mostly appeared to be 

platykurtic, with smaller tails and wider peaks.

B. Models Selection

This study compared the ability of 19 models to describe accurately the speed profiles of 

fast, visually evoked, visually targeted wrist pointing movements. The characterization of 

the best speed profile constitutes a necessary step for developing theories of motor control 

and learning [26], [31]–[33], controllers for therapeutic robots for stroke rehabilitation [35], 

and quantitative metrics of motor recovery from stroke [37], [38], [63] for arm movements.

We selected from the literature speed profiles models for human upper limb movements 

with different complexity, including reaching, drawing, and handwriting. In particular, we 

selected the models from the comparative studies by Plamondon et al. [30] and Stein et al. 

[47]. From their lists we excluded the models that had many more parameters than others 

and were found to have very low performance.

The selected models differ for several technical features, including number of parameters 

and differentiability properties. Historically, starting from the 1970s, such models were 

developed by investigators interested in different components of the motor system and 

reflected different views on upper limb motor control and mechanisms of trajectory 

formation. Kinematics-oriented models assume that such mechanisms are independent of the 

actual joint and muscle patterns and depend only on the CNS capability to control the 

trajectory of the hand in space. Conversely, dynamics-based models assume that trajectory 

formation mechanisms are directly related to the geometry and mechanical properties of 

muscles, which can be seen as generators of force, oscillation, or speed [30]. Kinematic-

oriented models include the Morasso model [29] and its modified versions [64], minimum 

jerk [26], minimum snap [65], Gutman and Gottlieb (GG) [66], Gaussian, LGN and LGNB 

[67]–[69], and beta, gamma, and Weibull models [30], [69]. In the Morasso model [29], 

movement is described as a sequence of basic strokes of given length, tilt angle and angular 

change; each basic stroke is described as a symmetric continuous bell-shape (cubic spline 

function). The Morasso, Mussa-Ivaldi and Maarse models [64] represent bell-shaped 

profiles with cosine functions instead of splines. The minimum jerk [26] and minimum snap 

[65] models consider trajectories of movement to be obtained by minimizing the jerk and the 

snap, i.e., the third- and fourth-time derivative of displacement which can be described by 

fifth- and seventh- order polynomials respectively. The GG model [66] describes trajectories 

with an exponential function, whose specific shape depends on two parameters, distance and 

a movement time constant. Plamondon and colleagues’ models mostly aimed at 

investigating the role of shape symmetry. They include: Gaussian models, which use 

Gaussian functions and can produce symmetric continuous as well as asymmetric 

discontinuous profiles [30], [70]; LGN and LGNB models, which are derived as converging 

behavior of a system of a sequentially acting cascade of velocity generators [30], [67], [69], 

[71] and can produce asymmetric and continuous profiles; GGgen model (asymmetric 
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continuous); sigmoidal models (asymmetric continuous and discontinuous); gamma model 

(asymmetric continuous); beta model (asymmetric continuous); and Weibull model 

(asymmetric continuous). Note that the discontinuous models were originally proposed for 

handwriting, and handwriting velocity consists of curvilinear and angular components, 

where angular component can be discontinuous [70].

Dynamic-oriented models include Eden-Hollerbach [72], and Plamondon and Lamarche 

[73] models. The Eden-Hollerbach model [72] considers muscles as harmonic oscillators 

and handwriting as generated by orthogonal oscillations horizontal and vertical in the plane 

of the writing surface. This model produces symmetric continuous profiles. Plamondon and 

Lamarche [73] model assumes that the whole nerve muscle system behaves as speed 

generators, which can be described with transfer functions that generate bell-shaped 

curvilinear speed profiles given a rectangular pulse as input and can work in parallel. This 

model yields to asymmetric discontinuous profiles. Our list of models also included the 

biexponential model, which was proposed by Stein et al. [47] to describe wrist movements 

along with the symmetric Gaussian, minimum jerk, and Morasso model. To the best of our 

knowledge, the mechanisms underlying wrist motor control and trajectory formation have 

not been investigated. However, similar to Plamondon et al. [30], we analyzed these models 

with the point of interest fixed on their performance in reproducing speed profiles of simple, 

fast target-directed wrist movements. This focus is consistent with our goal, which is to 

identify suitable mathematical descriptions of wrist speed profiles to be used in the design of 

robotic tools for neurorehabilitation and of quantitative metrics of motor recovery after brain 

injury.

C. Comparison With Reaching

Our result that asymmetric models performed better than symmetric models is consistent 

with the findings of the work of Plamondon et al. [30] that investigated drawing movements. 

Plamondon and colleagues also found that the LGNB model strongly outperformed the other 

models. Asymmetric Gaussian and discontinuous sigmoidal models were in the top six 

performing models both for Plamondon’s data as well as for our wrist data (Figs. 4 and 5). 

Poorly performing models in our data (Eden-Hollerbach, gamma function, Morasso, 

biexponential and Plamondon-Lamarche exponential models) were also among the poorly 

performing models in Plamondon et al. However, MMMasym and MMMsym models, 

which in our data were in top two best asymmetric and symmetric models respectively, did 

not perform well in Plamondon’s data. Such a discrepancy might be explained by 

differences in the nature of performed tasks. Morasso, Mussa Ivaldi and Maarse models 

were originally proposed for modeling handwriting, which mainly consists of curved 

elements: they assumed that the segment between the points of minimum speed was an arc 

of a circle [29]. The wrist movements we recorded, which required wrist flexion/extension 

and abduction/adduction, may have been closer to the arc of the circle shape [42] than the 

pen-tip fast straight strokes of Plamondon et al. That wrist movement trajectories are not 

straight but are curved, with a curvature higher than that displayed by reaching trajectories, 

was shown by Charles and Hogan [74]. To verify the presence of nonzero curvature in the 

recorded wrist movement trajectories, we estimated the curvature as the area bounded by the 

path and a straight line connecting the start and end points of the path [43]. Thirty-two out of 
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56 groups of trajectories (seven subjects, four directions from center to target and four 

directions back) displayed median trajectory curvature significantly different statistically 

from 0 (corresponding to the curvature of a straight line). The Wilcoxon signed-rank test at 

5% significance level was used for hypothesis testing [49].

The observation that asymmetric models perform better than the symmetric ones is also 

consistent with prior work that showed that single-joint movements often have asymmetric 

speed profiles [75]–[78]. A plausible neurophysiological argument for explaining 

asymmetry was proposed by Jaric et al. [79], who suggested that asymmetry may be caused 

by either muscle viscosity or patterns of muscle activation. Further work, including a 

characterization of asymmetry as a function of movement velocity, is required to identify 

possible sources of asymmetry in wrist movements’ speed profiles. Our results are 

consistent with the work of Stein et al. [47], who investigated four models for speed profiles 

of wrist movements, i.e., minimum jerk, Morasso, biexponential and symmetric Gaussian 

models. They found that symmetric, Gaussian fitted wrist movement speed profiles 

performed better than minimum jerk, which in turn performed better than two other models. 

This result is consistent with the results shown in the “Score 18” and Kruskal-Wallis plots 

(Figs. 4 and 5).

Of notice, several models were able to fit most speed profiles with an error below 4%. This 

error threshold is the same used in the seminal paper by Flash and Hogan [26] to assess the 

performance of their model in fitting speed profiles of reaching movements. These models 

included LGNB, MMMasym, asymmetric Gaussian, beta function, GGgen and sigmoidal 

discontinuous models. Not surprisingly, these models were also the top performers when 

goodness of fit was assessed by means of the AIC criterion on “Top 5” and “Score 18” 

histograms. Of course, we cannot accept or reject models purely on the ground of the 

mathematical goodness of their fits. Several important physical factors are also to be 

considered. One such factor is continuity of the speed profiles. This is important because a 

discontinuous model of the speed profile results in infinite acceleration at the point of 

discontinuity, which is not achievable in wrist pointing. As mentioned earlier, discontinuous 

models were originally proposed for handwriting where angular component can be 

discontinuous [70]. Three of the best performing models (namely discontinuous sigmoidal, 

asymmetric Gaussian, and MMMasym) are discontinuous at the peak of the speed profile. 

Fig. 7 shows a sample of the behavior of these models at the speed profile peak. This means 

that, in spite of superior mathematical fits, the piecewise-defined discontinuous functions are 

not realistic models of speed profile for wrist pointing movements. Imposing the conditions 

to ensure continuity and differentiability of these models at the peak may make these 

functions plausible models for speed profiles. However, these constraints are likely to 

significantly worsen goodness of fit in the least squares sense.

Among the investigated models, the LGNB function displayed the best fitting performance. 

This function was previously used successfully to model drawing movements of unimpaired 

subjects [30] and also reaching and drawing movements of subjects recovering from stroke 

[38], [63]. Besides continuity, there are two properties that make LGNB a good modeling 

function: 1) its physiological grounding: As suggested by Plamondon, such function can be 

produced by convergence of actions of sets of linear neuromuscular subsystems operating in 
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a cascade [67]–[69]. 2) Its flexibility: LGNB function’s asymmetry can be inverted by the 

change of a single parameter [30]. This is a valuable property since our experimental speed 

profiles exhibited both positive and negative skewness.

The beta function also displayed a good fitting performance. It was fourth overall on 

cumulative “Score 18” plot in Fig. 4(b), and second overall among continuous models. The 

good performance is consistent with the work of Krebs et al. [37], in which the beta function 

was successfully used to model speed profiles of submovements in shoulder and elbow 

movements of recovering stroke patients. Its properties make it particularly appealing for 

modeling submovements: by adjusting two parameters, its shape can be modulated to fit 

both symmetric and asymmetric speed profiles, as well as unimodal and bimodal profiles.1 

We also note that the mean values of skewness and kurtosis for the beta function models 

reported by Krebs et al. were similar to those for the speed profiles data recorded for our 

experiment: skewness = 0.07, kurtosis = 2.38 versus skewness = −0.07, kurtosis = 2.49.

Finally, our results provide a few insights on neural control of wrist pointing movements. 

Analysis of movement kinematic features has traditionally been used to infer control 

principles and variables used by the CNS to plan and generate movement. Specifically, the 

hypothesis that reaching movements is controlled in a hierarchical fashion with the 

kinematics on the top of this hierarchy has spurred from the analysis of movement 

“invariants” [26], [29] and, in particular, from the finding that trajectories are straight with 

bell-shaped profiles independent of the movement workspace. While the literature on wrist 

movement kinematics is still sparse, our results taken together with the recent findings by 

Charles and Hogan [74] afford some speculation on how the CNS may control wrist 

movements. Contrary to reaching, wrist trajectories are highly variable, consistent with the 

negligible role of interaction torques and the predominant role of stiffness in wrist dynamics 

[42]. Our results on speed profiles of wrist pointing movements showed, however, that these 

can be modeled in a similar way to highly stereotyped arm reaching movements; we were 

able to determine that the same models previously proposed for speed profiles of reaching or 

handwriting movements, including LGNB and beta, were also able to adequately model 

speed profiles of wrist movements (error within 4%). This result suggests that speed profile 

may be a key invariant for both arm and wrist movements. While human control of speed is 

known to be rather poor [28], we speculate that both arm and wrist movements may be 

instead generated under smoothness control, based on our findings that kurtosis of most of 

the normalized wrist speed profiles is > 2 with peak values around 2.3–2.5 (Fig. 3), i.e., 

kurtosis values are close to those associated with minimum-jerk speed profile (which is 7/3 

or 2.33). While it is unclear which variables should be targeted by robot-mediated therapy to 

maximize motor recovery (e.g., accuracy, speed, smoothness), this finding suggests that 

therapy should be designed to maximize movement smoothness.

D. Applications to Rehabilitation Robotics

Applications of our results include design of control algorithms for therapeutic wrist robots 

for stroke treatment [35] and quantitative metrics of motor recovery including 

1With reference to Appendix, parameters and determine the shape of the beta model.
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submovements [36], [37], [63], [80]. Our previous results suggest that sensorimotor training 

should target motions as opposed to muscles [22]. Building on this idea, for robot-mediated 

therapy of the shoulder and elbow [2] we achieved best clinical outcomes with “adaptive” 

therapies, where the robot assisted-as-needed subjects to meet kinematic specifications [35], 

[81]. During therapy, the performance-based adaptive controller guides the hand of the 

patient who aims poorly without holding him/her back and assists the other patient in 

making faster movements using a minimum-jerk profile of variable duration from the 

starting position to the ending position [35]. As we are expanding the performance-based 

algorithm to include therapies involving the distal limb segments, we have to determine 

whether the minimum-jerk profile is still appropriate or whether we should select a different 

model for the wrist movement kinematics. Specifically, our results will help us select 

reference models for wrist movement kinematics.

Taken together with state-of-the-art knowledge on neurorehabilitation of reaching 

movements, our results also suggest that upper limb robot-assisted therapies should target 

movement smoothness (see Section IV-C). Consistently, we recently found that, of the 20 

robot-based metrics that were considered, smoothness was among the metrics that best 

correlated with therapy outcomes as measured by Fugl-Meyer and Motor Status scores [36]. 

Whether a robot-assisted therapy designed to maximize movement smoothness could yield 

to better results than therapies designed to target other variables is a testable hypothesis that 

could not only enhance stroke treatments efficacy but also improve our understanding of 

how the brain controls movement and recovers from injury.

V. Conclusion

This study aimed at identifying a model for speed profiles of fast, visually evoked, and 

visually guided wrist pointing movements. The performances of 19 models were assessed in 

terms of their ability to reconstruct our experimental data. The best fitting performances 

were obtained with continuous LGNB and beta functions and asymmetric, discontinuous 

models. In particular, the MMMasym model scored very high, probably due to its ability to 

describe curved trajectories. However, such models led to reconstructed profiles that were 

physiologically implausible. The strong performances of LGNB (best fitting), which has 

been highly used to model reaching movements and was found to be the best fitting model 

also in drawing movements, and beta function show that they may be suitable for wrist 

speed profiles modeling. While our most recent studies suggested that there may be 

significant differences between wrist pointing and arm reaching movements in terms of 

kinematics and motor control, this study showed that, at least for their speed profiles, they 

can be analyzed and modeled using similar tools. Applications of this study include the 

design of adaptive wrist robot controllers. Similar to reaching and handwriting modeling 

results, other applications include design of humanoid robots [82] and of robots that 

cooperate with humans [83], as well as systems for automatic signature verification [84], 

[85].
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Appendix

Equations of Functions Used for Modeling

For all models P1 … Pn are parameters, t0 is the time movement started, t1 is the time 

movement ended and tm is the time when maximum velocity occurred. Abbreviations used 

in the plots and initial conditions are also shown.

Eden and Hollerbach Model (edhol) [30], [72] (P1 = 9, P2 = 1, P3 = 0.5, P4 = 1, P5 = 4, P6 = 

3, P7 = 0)

Minimum Jerk Model (minjerk) [26], [30] (P1 = 90, P2 = 0, P3 = 1)
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Minimum Snap Model (minsnap) [30], [65] (P1 = −9, P2 = 0, P3 = 1)

Morasso and Mussa-Ivaldi Minimum Acceleration Model (morasso) [29], [30] (P1 = −90, P2 

= 0, P3 = 1)

Plamondon and Lamarche Model (expo) [30], [73] (P1 = 180, P2 = 0.5, P3 = 0, P4 = 9, P5 = 

5, P6 = 1)

Biexponential Model (biexpo) [47] (P1 = 4.5, P2 = 0.5, P3 = 0.5)

Plamondon Lognormal Model (lgn) [30] (P1 = 9, P2 = −1, P3 = 10, P4 = 1)

Plamondon Lognormal Model with Support Bound (lgnb) [30], [67] (P1 = 45, P2 = −1.5, P3 

= 1.5, P4 = 2, P5 = 0.5)

Beta Function Model (beta) [30] (P1 = 18, P2 = −1, P3 = 8, P4 = 2, P5 = 7)
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Gamma Function Model (gamma) [30] (P1 = 3.6, P2 = −0.05, P3 = 5, P4 = 8)

Weibull Model (weibull) [30] (P1 = 108, P2 = −0.25, P3 = 5)

Sigmoidal Continuous Model (sigcont) [30] (P1 = 90, P2 = 0, P3 = 2, P4 = 4)

Sigmoidal Discontinuous Model (sigdiscont) [30] (P1 = 18, P2 = 0, P3 = 1, P4 = 7, P5 = 54, 

P6 = −0.2, P7 = 1, P8 = 8)

Gutman and Gottlieb Original Model (gg) [30] (P1 = 180, P2 = 0, P3 = 0.5)

Gutman and Gottlieb Generalized Model (gggen) [30] (P1 = 180, P2 = −0.5, P3 = 3, P4 = 1)

Symmetric Plamondon Gaussian Model [30], [47] (symgauss) (P1 = 27, P2 = 0.5, P3 = 0.5)
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Asymmetric Plamondon Gaussian Model (asymgauss) [30] (P1 = 27, P2 = 0.5, P3 = 0.5, P4 = 

27, P5 = 0.5, P6 = 0.5)

Symmetric Morasso, Mussa-Ivaldi and Maarse Model (mmmsym) [30], [64] (P1 = 18, P2 = 

−5, P3 = −1)

Asymmetric Morasso, Mussa-Ivaldi and Maarse Model (mmmasym) [30] (P1 = 9, P2 = −4, 

P3 = 0, P4 = 18, P5 = −7, P6 = −1)
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Fig. 1. 
InMotion3 wrist robot.
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Fig. 2. 
Sample set of speed profiles for all directions of movement. Legend: 1: Center to East target, 

2: Center to West target, 3: Center to North target, 4: Center to South target, 5: East target to 

Center, 6: West target to Center, 7: North target to Center, 8: South target to Center. All 

horizontal axis are normalized time and all vertical axis are speed in centimeters per second.
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Fig. 3. 
Histograms of parameters extracted from speed profiles and their mean and standard 

deviation values.
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Fig. 4. 
A) Cumulative “top 5” plot based on 1398 speed profiles. Four models—LGNB, 

MMMasym, asymmetric Gaussian and beta function—were most consistently among top 5 

best fits based on AIC for speed profiles. B) Cumulative “score 18” plot based on 1398 

speed profiles. The same four models as on the “top 5” plot were the top performers.
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Fig. 5. 
Results of Kruskal-Wallis ANOVA and multiple comparisons’ test on AIC for different 

models for 1398 speed profiles. LGNB model’s median ranks are in black as the top 

performer, other models’ median ranks are in dark-gray if statistically significantly different 

from it to 5% significance level and in light-gray if not. Overall, the results of this plot are 

consistent with the ranking of models in “score 18” plot.
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Fig. 6. 
“Score 18” plots computed based on movements in specific directions from center to targets. 

MMMasym, asymmetric Gaussian, beta function, and LGNB model are consistently among 

the top performers. Panels A, B, C, and D show performance of models for movements in 

East, North, West, and South direction, respectively.
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Fig. 7. 
Sample fits for discontinuous models. Most fits of MMMasym, asymmetric Gaussian and 

discontinuous sigmoidal models show a discontinuity at the peak, which is not 

physiologically plausible for wrist pointing tasks.
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Vaisman et al. Page 28

TABLE I

Percent Errors Between Areas Under Modeled and Recorded Speed Profiles for Different Models

Model Mean % error Standard Deviation of % error % of Speed Profiles with Error <=4%

LGNB 3.26 2.99 77.25

MMMasym 3.37 2.66 74.89

Asymgauss 3.72 2.7 74.17

Beta 4.25 3.38 66.95

GGgen 4.97 4.3 57.87

LGN 6.11 3.34 25.18

Sigdiscont 6.16 8.92 58.01

Symgauss 7.06 5.68 20.46

Weibull 7.19 5.38 23.75

GG 7.24 4.85 25.18

Minsnap 7.34 5.97 34.55

MMMsym 7.35 5.86 32.83

Sigcont 7.59 7.07 13.73

Minjerk 8.24 6.58 26.39

Gamma 9.86 4.4 4.22

Edhol 10.43 7.55 16.17

Expo 11.07 2.83 0.07

Biexpo 15.3 2.13 0

Morasso 16.91 9.21 0.57
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