Skip to main content
. Author manuscript; available in PMC: 2017 Jan 1.
Published in final edited form as: J Expo Sci Environ Epidemiol. 2015 Sep 2;26(1):78–85. doi: 10.1038/jes.2015.52

Table 5. Predictors of Mercury (Hg) Biomarkers: Hair, Blood, and Urine.

Parameter estimates (SE) and their respective p-values (below, in bold if p<0.05) are reported for the best models predicting natural log-transformed biomarker levels. Urine Hg is specific gravity adjusted. Modeling non-adjusted urine Hg resulted in the same predictors with a worse fit (adjusted r2=0.18).

Dependent N Adj. r2 β0 β1 β2 β3 β4 β5
Hair Hg1 396 0.23 −1.79 (0.23) 0.02 (0.004) 4.70 (0.46)
<0.0001 0.0002 <0.0001

Blood Hg2 404 0.12 −0.33 (0.49) 0.005 (0.004) 2.79 (0.40) 0.22 (0.09)
0.50 0.14 <0.0001 0.02

Urine Hg3 318 0.25 −0.46 (0.20) 0.01 (0.004) −0.24 (0.08) 0.08 (0.01) 0.01 (0.004) 0.005 (0.002)
0.02 0.0009 0.004 <0.0001 0.05 0.03
1

Hair Hg model: β0=intercept, β1= age (years), β2= estimated Hg intake from fish consumption (log-transformed, µg Hg/kg body weight/day)

2

Blood Hg model: β0=intercept, β1=age (years), β2=estimated Hg intake from fish consumption (log-transformed, µg Hg/kg body weight/day), β3=red blood cell count (X 106/µL)

3

Urine Hg model: β0=intercept, β1= total years in dental practice, β2=female (vs. male reference), β3=amalgams in mouth, β4=hours worked per week, β5=amalgams handled in the dental office per week (placed + removed)