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Abstract

Background—Pulmonary arterial hypertension (PAH) worsens clinical outcomes in former 

preterm infants with bronchopulmonary dysplasia (BPD). Oxidant stress disrupts alveolar and 

vascular development in models of BPD. Bleomycin causes oxidative stress and induces BPD and 

PAH in neonatal rats. Disruption in the VEGF and nitric oxide signaling pathways contributes to 

BPD. We hypothesized that loss of EC-SOD would worsen PAH associated with BPD in a 

neonatal mouse model of bleomycin-induced BPD by disrupting the VEGF/NO signaling pathway.

Methods—Neonatal wild-type mice (WT), and mice lacking EC-SOD (EC-SOD KO) received 

intraperitoneal bleomycin (2 units/kg) or PBS three times weekly and were evaluated at week 3 or 

4.

Results—Lack of EC-SOD impaired alveolar development and resulted in PH (elevated right 

ventricular systolic pressures, right ventricular hypertrophy (RVH)), decreased vessel density and 

an increased small vessel muscularization. Exposure to bleomycin further impaired alveolar 

development, worsened RVH and vascular remodeling. Lack of EC-SOD and bleomycin treatment 

decreased lung total and phosphorylated VEGFR2 and eNOS protein expression.

Conclusion—EC-SOD is critical in preserving normal lung development and loss of EC-SOD 

results in disrupted alveolar development, PAH and vascular remodeling at baseline, which is 

further worsened with bleomycin and associated with decreased activation of VEGFR2.

Introduction

Bronchopulmonary dysplasia (BPD) is a common chronic respiratory disease following 

preterm birth in infants who were mechanically ventilated or treated with supplemental 

oxygen. The clinical course of infants with BPD may be complicated by sustained oxygen 
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dependency, prolonged need for ventilator support, frequent hospitalizations and pulmonary 

arterial hypertension (PAH). It is estimated that PAH develops in 14–25% of preterm infants 

with BPD (1,2) and is associated with high mortality (30–48%) (3). Despite advances in 

neonatal medicine, development of BPD complicated by PAH remains a significant cause of 

long-term morbidity and mortality in this patient population, and a better understanding of 

disease pathogenesis is required to improve treatment strategies.

The immature lung is susceptible to oxidative stress due to insufficient antioxidant defenses, 

which contributes to the pathogenesis of BPD and PAH (4,5). One key antioxidant enzyme, 

extracellular superoxide dismutase (EC-SOD) is highly expressed in the lung and 

vasculature and is tightly regulated in the developing lung(6). This antioxidant is one of the 

three mammalian isoforms of the superoxide dismutases (SOD), which catalyze the 

dismutation of superoxide to hydrogen peroxide and oxygen (6). Lung EC-SOD expression 

and activity is impaired in a number of models of BPD and PH, and the level of EC-SOD 

expression modulates severity of lung and vascular disease in adult and neonatal animal 

models, including in hyperoxia-induced BPD, chronic hypoxic PH and bleomycin-induced 

lung fibrosis (4,7–9). While neonatal mice overexpressing EC-SOD are protected from BPD 

seen with chronic hyperoxia, the impact of the loss of EC-SOD on alveolar development, PH 

and vascular growth in the newborn lung is not well understood (4). Collectively, these 

studies provide a strong rationale to further examine the role of EC-SOD in development of 

BPD complicated by PAH.

One robust neonatal rat model of BPD and PAH employs intraperitoneal administration of 

bleomycin to augment the inflammatory response leading to impaired alveolar and vascular 

growth (10). Bleomycin, a chemotherapeutic agent, produces significant oxidative stress and 

inflammation (11,12). It is well established that bleomycin causes lung fibrosis in the mature 

lung of rodents and humans, but in contrast, systemic administration of bleomycin to 

neonatal rats results in BPD and PH, evidenced by impaired alveolar and vascular 

development, increased pulmonary vascular resistance and right ventricular failure 

(4,9,10,13,14). Our study adapted the bleomycin model to mice to enable us to test the 

hypothesis that loss of EC-SOD would worsen PH associated with BPD in a neonatal mouse 

model of bleomycin-induced BPD by disrupting key signaling pathways. We focused on the 

vascular endothelial growth factor (VEGF)/VEGFR2/nitric oxide (NO) pathway, which is 

critical to post-natal alveolar and vascular development (15–18).

RESULTS

Neonatal mice lacking EC-SOD demonstrate disrupted alveolar development at baseline 
and an exaggerated response to treatment with bleomycin

Alveolar development was evaluated in 4-week old WT and EC-SOD KO mice born and 

raised at Denver altitude and treated in the neonatal period with IP PBS or bleomycin. A 

representative image of a pentachrome stained lung for each group illustrates the differences 

in alveolar development (Figure 1a-d). Alveolar structure was quantified by morphometric 

analysis of the RAC, MLI, NPD and SA (Figure 1e-f). We measured an overall significant 

decrease in alveolar development in the EC-SOD KO mice compared to the WT mice by 

two-way ANOVA for RAC (*p<0.05), MLI (*p<0.05), NPD (*p<0.01) and SA (*p<0.01). 
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Furthermore, we detected a significant impairment in alveolar development in response to 

bleomycin in both strains by two-way ANOVA for RAC (**p<0.001), MLI (**p<0.001), 

NPD (**p<0.001) and SA (**p<0.0001). The EC-SOD KO mouse exposed to bleomycin 

consistently showed the greatest impairment by all four parameters.

Mice lacking EC-SOD exhibited pulmonary hypertension at baseline, which was worsened 
by bleomycin

PH was first evaluated in 4 weeks of age mice, at the same time point in which alveolar 

development was assessed. At 4 weeks, the PBS treated EC-SOD mice showed an increase 

in RV/LV+S weight and an increase in RVSP compared to PBS treated WT mice (Figure 2a 

and 2b, p<0.05). After bleomycin treatment, however, neither strain showed an increase in 

RV/LV+S compared to PBS treated WT mice, and the RVSP was similar to baseline 

measurements for each strain (Figure 2a and 2b). To evaluate whether the lack of change in 

RV/LV+S with bleomycin could be due to left ventricular enlargement, we analyzed the left 

ventricle weights, and observed that both strains showed an increase in LV/body weight, 

following bleomycin (Figure 2c, p<0.05). We then evaluated RVH at 3 weeks, which was the 

time point following the completion of bleomycin injections, prior to any potential recovery 

from bleomycin. At 3 weeks, EC-SOD KO mice tended to have an increase in RV/LV+S 

compared to WT mice (Figure 2d, *p=0.06); bleomycin treatment caused an increase in 

RV/LV+S in both the WT and EC-SOD KO bleomycin treated mice developed RVH. (Figure 

2d, **p< 0.005). Bleomycin did not change LV weight at the 3-week time point (data not 

shown).

Pulmonary vascular structure is abnormal in neonatal mice lacking EC-SOD and treatment 
with bleomycin further impairs vascular development

We detected a decrease in vessel density and an increase in the percent of muscularized 

small vessels in KO mice at baseline and following treatment with bleomycin. We counted 

the number of small vessels (<30 microns) to assess vessel density, as an indicator of 

vascular development. Vessel density tended to decrease at baseline in EC-SOD KO animals 

treated with PBS compared to WT PBS treated animals (*p = 0.1). Treatment with 

bleomycin significantly decreased vessel density in both neonatal WT and EC-SOD KO 

mice, with no strain differences (**p < 0.0001, Figure 3a-e). In addition, the ratio of 

muscularized small vessels/total number of small vessels increased in the PBS treated EC-

SOD KO mice compared to the WT mice, (*p<0.0001, Figure 4a-e). Furthermore, 

bleomycin increased the ratio of muscularized/total vessels in both strains, with a greater 

change in EC-SOD KO compared to WT mice (**p<0.0001, Figure 4a-e).

Lack of EC-SOD and treatment with bleomycin decrease pulmonary expression of VEGFR2 
and eNOS

We evaluated lung VEGF, VEGFR2 and eNOS expression because this pathway is critically 

important in the regulation of normal alveolar and vascular development. Decrease signaling 

through this pathway has been associated with the development of BPD and PAH in 

experimental models and preterm infants. At 3 weeks, we detected a decrease between 

strains at baseline in the protein expression of the VEGF receptor, VEGFR2; and the active 

phosphorylated form of the receptor, pVEGFR2. We found a 58% loss of lung VEGFR2 
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expression in mice lacking EC-SOD at baseline, (*p < 0.05, Figure 5b) and a decrease in 

active pVEGFR2 with bleomycin treatment, (*p<0.01, Figure 5c). VEGF regulates 

pulmonary vascular development in the neonatal lung in part via induction of eNOS and 

NO-dependent signaling; therefore we measured eNOS expression in whole lung 

homogenates. EC-SOD KO mice tended to have a decrease in eNOS expression at baseline, 

(*p < 0.06, Figure 5d). Treatment with bleomycin resulted in a significant decrease in eNOS 

expression in WT animals (**p < 0.0001, Figure 5d). At 3 weeks of age, we detected no 

difference in the expression of VEGF and by 4 weeks, there were no longer changes in the 

expression pattern of eNOS or VEGFR2 (not shown).

Bleomycin treatment did not alter lung EC-SOD expression or activity

We did not observe a change in lung EC-SOD protein expression (Figure 6a and 6b) or 

activity (Figure 6c) in WT mice 3 weeks after treatment with bleomycin compared to control 

mice.

DISCUSSION

In this study, we hypothesized that loss of EC-SOD would worsen PH associated with BPD 

in a neonatal mouse model of bleomycin-induced BPD by disrupting the VEGF/

VEGFR2/NO pathway. We tested this hypothesis in neonatal mice lacking EC-SOD 

compared to WT control mice. We demonstrated that EC-SOD KO mice exhibit disrupted 

alveolar development, PH and pulmonary vascular remodeling at baseline; in a bleomycin 

model of BPD and PH mice lacking EC-SOD displayed more severe alveolar simplification, 

PH and disrupted pulmonary vascularization compared to WT mice; and the augmented 

injury was associated with significant decreases in the VEGF/VEGFR2/NO pathway. These 

data demonstrate the key role for EC-SOD in neonatal alveolar and vascular development 

and response to neonatal injury.

The first novel finding in this study is that mice lacking EC-SOD have abnormal lung 

development at baseline and worsened BPD in response to neonatal treatment with 

bleomycin. This is the first detailed morphometric analysis of alveolar development in 

immature EC-SOD KO mice, although this strain has been used in numerous adult mouse 

studies without any description of abnormal lung structure under control conditions (15,19). 

It is possible that the impaired alveolar development in EC-SOD KO mice is due to a slower 

rate of alveolar growth that is no longer apparent in fully mature mice, or that the changes 

result from the mild hypoxia in Denver ambient air. We also observed that EC-SOD KO 

mice developed more injury compared to WT mice in response to bleomycin. This supports 

the premise that a genetic predisposition or “two-hit” process can contribute to the severity 

of BPD.

Interestingly, it is well established that bleomycin causes lung fibrosis in adult rodents, 

while, consistent with our findings, two laboratories have now shown that treatment of rats 

with bleomycin in the neonatal period instead causes abrupted lung development(10,14). A 

similar discrepancy is also observed in adult versus neonatal mice in response to hyperoxia, 

with epithelial injury and early death in adults and, in contrast, abrupted lung development 

in neonates (9,20). The level of EC-SOD has been shown to modulate bleomycin-induced 
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lung fibrosis; lack of EC-SOD worsens bleomycin-induced lung fibrosis in adult mice, while 

overexpression of EC-SOD attenuates injury (7,21). This is the first report to test the impact 

of decreased EC-SOD expression on bleomycin-induced BPD, although we previously 

reported that overexpression of lung EC-SOD protected against hyperoxia-induced BPD as 

evidenced by decreased alveolar leukocyte counts, improved alveolar volume and surface 

density, and restored bronchiolar and alveolar epithelial proliferation in type II alveolar cells 

(4,9). Since the development of PH in infants with BPD worsens clinical outcome we next 

tested whether the severe alveolar injury seen with bleomycin was accompanied by PH and 

whether the PH was augmented by loss of EC-SOD.

The second major finding of our study is that mice lacking EC-SOD, in addition to 

displaying disrupted alveolar development, have evidence of PH at baseline, which worsens 

with injury. This is in contrast to the report by Xu et al that adult EC-SOD KO mice do not 

exhibit PH at baseline (22). However similar to our report, these authors did find that EC-

SOD KO adult mice develop worse PH in response to chronic hypoxia. There are several 

possible explanations for the discrepancy seen in PH at baseline in the EC-SOD KO mice 

between our studies. The neonatal mice in our study were raised at Denver altitude, they 

were younger, and included both genders, each of which could have impacted baseline 

pulmonary artery pressures. We initially evaluated PH at 4 weeks of age, at the same time 

point in which we had demonstrated abrupted alveolar development. At 4 weeks, we did not 

find evidence for bleomycin-induced PH by RVH or RVSP, unlike the studies using the 

neonatal rat model of bleomycin that demonstrated BPD associated with PH, shown by 

pulmonary artery pulse wave Doppler measurements and RVH (10,14). We considered two 

important factors that could have accounted for these differences; our dosing strategy and 

the potential impact of bleomycin on cardiac function. We adapted the published rat model 

to use a similar cumulative dose of bleomycin for body weight in the mice, but to deliver it 

over a longer period of time, with a 1 week period of rest to allow for sufficient growth for 

the planned studies. Bleomycin-induced fibrosis in adult mice resolves with time, therefore, 

we speculated that the pulmonary hypertension may have also begun to resolve during that 1 

week rest period, so we repeated the RV/LV+S measurements at 3 weeks upon completion 

of the bleomycin treatments. In support of this idea, bleomycin did cause RVH, which was 

more severe in the mice lacking EC-SOD. It is also possible that bleomycin caused a 

decrease in cardiac function, which could lead to lower pulmonary artery pressures despite 

elevated pulmonary vascular resistance. RVSP measurements do not provide information on 

either vascular resistance or cardiac output, though the LV hypertrophy observed in the 4 

week old mice suggests that cardiac dysfunction was present in the neonatal mouse treated 

with bleomycin. Infants with BPD may develop a spectrum of pulmonary vascular disease 

that may not lead to echocardiographic evidence of PH, yet likely contributes to their 

morbidity and survival (1). Thus in addition to testing established measures of PH, we also 

examined vessel density and muscularization of small vessels in the lung. We found that 

vessel density is decreased and that the portion of muscularized small vessels is increased in 

EC-SOD KO mice at baseline compared to WT mice. While bleomycin decreases vessel 

density in both WT and EC-SOD KO strains, vascular remodeling is worse in response to 

bleomycin in EC-SOD KO mice. This is consistent with published data showing protection 

against hyperoxia induced decreases in vessel density in mice overexpressing EC-SOD (4). 
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These findings implicate insufficient EC-SOD as a mechanism contributing to pulmonary 

hypertension, vascular development and vascular remodeling in neonatal BPD.

Diverse growth factors contribute to normal lung development and blood vessel formation, 

including fibroblast growth factor, transforming growth factor, hepatocyte growth factor, and 

VEGF. VEGF signaling is essential for normal alveolar and vascular growth; VEGF and 

VEGFR2 are decreased in infants who died with BPD; and, in models of BPD and PH, 

disruption of VEGF signaling contributes to pathogenesis (23–26). Therefore, we chose to 

investigate whether loss of EC-SOD and/or treatment with bleomycin affected the 

expression of the key molecules in this pathway. We found no alterations in VEGF/NO 

signaling at 4 weeks of age, following a one-week period of recovery, therefore chose to 

repeat our experiments and measure VEGF/NO signaling at 3 weeks. We found that the lack 

of EC-SOD at baseline or treatment with bleomycin decreased lung expression of active 

VEGFR2 though did not impact VEGF expression. These findings are consistent with other 

studies in which EC-SOD content impacts VEGF signaling and angiogenesis in other 

settings. In hindlimb ischemia, impaired angiogenesis is worsened in EC-SOD KO mice (27) 

and improved in mice overexpressing EC-SOD (28). Conversely, proliferative diabetic 

retinopathy is associated with elevated EC-SOD and VEGF levels, indicating that elevated 

VEGF production enhanced by high EC-SOD levels can also increase pathologic 

angiogenesis (29). Altered EC-SOD can impact VEGF signaling through several different 

mechanisms. Overexpression of lung EC-SOD in hyperoxia-induced BPD has been shown 

to increase VEGF, which can then increase VEGFR2 expression (4), though we do not 

observe low VEGF expression in this study. Oshikawa et al identified a mechanism that 

could account for the impaired activation of VEGFR2 in EC-SOD KO mice independent of 

VEGF (27). They showed that EC-SOD-dependent production of hydrogen peroxide led to 

oxidation and activation of two tyrosine phosphatases, PTP1 and DEP-1, which 

phosphorylate VEGFR2 (27). Though decreased eNOS expression or enhanced NO 

scavenging by excess superoxide could contribute to elevated vascular tone, this does not 

likely account for low VEGFR2 in this model since eNOS-derived NO has been shown to 

regulate VEGFR2 by decreasing VEGF expression. Our future research will interrogate 

specifically how loss of EC-SOD can regulate VEGFR activation in the developing lung.

In several studies, EC-SOD activity is decreased in immature lungs, or decreases in response 

to injury, contributing to the imbalance in superoxide production and antioxidant 

scavenging. In this study, bleomycin did not decrease lung EC-SOD expression or activity at 

the 3-week time point. We previously reported that in chronic hypoxia, EC-SOD increases 

early in the course, at 3 days, despite evidence of increased oxidative stress, but then over 

longer periods of exposure, activity levels (35 days of hypoxia) decrease. It is possible that 

EC-SOD activity is decreased at other time points or that it decreases in the pulmonary 

artery without changes in the total lung content. Further studies are needed to establish what 

effects of bleomycin-induced injury are reversible by restoring or increasing EC-SOD 

activity. This will be important both to better understand the pathogenesis of BPD and PH as 

well as develop new therapeutic strategies.

We chose to use bleomycin for our model of BPD and PH instead of other established 

models such as hyperoxia and hypoxia because of inconsistent reports of both BPD and PH 
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with these models and the recent studies using bleomycin as a robust model of both alveolar 

and vascular disruption in neonatal rats. We acknowledge two limitations of our study, 

which include the potent but non-specific effects of bleomycin on inflammation and 

oxidative stress, and current technical limitations in measuring RVSP or utilizing 

echocardiography in younger mice. We also recognize the complexity of the interactions, as 

we note discrepant findings in both a model of skin inflammation and with melanoma-

associated angiogenesis in which treatment with EC-SOD blunts VEGF-mediated pathologic 

angiogenesis (30,31). It is not clear why loss of EC-SOD impairs physiologic VEGF 

signaling while enhancing pathologic VEGF expression, and this remains an important area 

of investigation.

In summary, we report that neonatal mice lacking EC-SOD have disrupted alveolar 

development, pulmonary hypertension and pulmonary vascular remodeling at baseline. In 

addition we have established a novel model of experimental BPD and PH induced by 

neonatal systemic treatment with bleomycin. PH and alveolar and vascular remodeling in the 

EC-SOD KO mice was associated with a marked decrease in the key growth factor receptor, 

VEGFR2 and eNOS. These studies demonstrate a key role for EC-SOD in normal lung 

development and response to neonatal injury and provide new insight into pathways 

amenable to therapeutic intervention for this lethal lung disease.

Methods

Mouse Model

The University of Colorado Denver Institutional Animal Care and Use Committee (IACUC) 

approved all animal studies. Beginning on day 2 of life, C57/BL6 wild-type mice (Jackson 

Laboratory, Bar Harbor, ME) or EC-SOD knock-out mice (15) were injected with 

intraperitoneal bleomycin (2 units per kilogram) (APP Pharmaceuticals, Schaumburg, IL) 

dissolved in PBS or PBS alone 3 times weekly for 3 weeks (total 9 injections, 10 µl). 

Bleomycin dose was adjusted for body weight at each injection. Mice were euthanized for 

tissue harvesting, at 3 weeks or recovered for 1 week to enable sufficient growth to perform 

hemodynamic measurements at 4 weeks of age. At harvest, animals were euthanized with 

intramuscular ketamine (50 mg/kg, Vedco, St. Joseph, MO) and xylazine (10 mg/kg, 

Hospira, Lake Forest, IL) followed by exsanguination.

Hemodynamic Measurements and Tissue Harvesting

Right ventricular systolic pressures (RVSPs) were obtained by direct RV puncture via closed 

chest as described (16). Lungs were flash-frozen for protein isolation or inflation-fixed at 25 

cm H2O with 4% paraformaldehyde for paraffin embedding.

Evaluation of Alveolar Structure

Radial alveolar counts (RACs) were performed on pentachrome stained sections as 

previously described (17). Additional morphometric measurements were performed using 

computer-assisted image analysis, including mean linear intercept (MLI) as a measure of 

intra-alveolar distance (µm), nodal point density (NPD)(NP/mm3) as a measure of alveolar 

Delaney et al. Page 7

Pediatr Res. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



complexity, and internal lung surface area (SA)(mm2/HPF) (18). Fields with large airways 

or vessels were excluded from analysis. At least 6 images were processed per mouse.

Evaluation of Right and Left Ventricular Hypertrophy

Hearts were removed at 3 and 4 weeks of life and dissected to isolate the free wall of the 

right ventricle (RV) from the left ventricle (LV) and septum (S). The ratio of RV weight over 

LV+S weight (RV/LV+S) was used as an index of RV hypertrophy resulting from PH. Left 

ventricle weight/body weight ratio (LV/BW) were analyzed as a measure of left ventricular 

enlargement.

Immunohistochemistry

Immunohistochemistry was performed using the mouse monoclonal α-smooth muscle actin 

(α-SMA) antibody (1:1000, clone1A4; Sigma, St. Louis, MO) and MOM kit with 

biotinylated anti-mouse secondary IgG antibody, per instructions (Vector Laboratories, 

Burlingame, CA), as well as rabbit anti-human/mouse Factor VIII) (1:1000, Sigma), with 

biotinylated anti-rabbit secondary IgG antibody (1:100; Vector Laboratories). Slides were 

developed with ImmPact DAB diluent (Vector Laboratories) and counterstained with 

hematoxylin.

Evaluation of Vascular Structure

Vessel density was assessed by counting the number of vessels <30 microns staining positive 

for Factor VIII per high-power field (20×). Lung fields containing large vessels or airways 

were excluded, and greater than 6 fields were included per mouse. In order to quantify the 

number of muscularized small vessels, the number of vessels (<30 microns) that stained 

positive for α-SMA were counted and divided by the number of vessels <30 microns that 

stained positive for Factor VIII. An investigator blinded to the experimental group 

performed the analysis.

Protein expression

Western blot was performed on total lung homogenates prepared in lysis buffer containing 

protease and phosphatase inhibitors as previously described (19) using the following 

antibodies: rabbit polyclonal EC-SOD antibody (1:1000, Santa Cruz Biotechnology, Santa 

Cruz, CA), mouse monoclonal mouse endothelial nitric oxide synthase (eNOS) antibody (1: 

500, BD Biosciences, San Jose CA), rabbit polyclonal VEGF antibody (1:500, Santa Cruz 

Biotechnology), rabbit monoclonal Anti-human VEGF receptor 2 and phospho-VEGF 

receptor 2 (1:1000, Cell Signaling, Danvers, MA), EC-SOD ( 1:1000, Santa Cruz 

Biotechnology) and B-actin mouse monoclonal antibody (Sigma). The species-appropriate 

secondary IgG antibody was used (1:10,000, Millipore, Billerica, MA).

SOD Activity Assay

Neonate lung tissues (20–30mg) were homogenized in 5 volumes of ice-cold SOD assay 

buffer (50 mM potassium phosphate, ph 7.4, with 0.3M potassium bromide (KBr), 50 mM 

phenylmethylsulfonyl flouride, and 3 mM diethylene-triaminepentaacetic acid), and 

centrifuged to remove cellular debris. Total SOD activity was measured in the lung 
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homogenates and intracellular SOD was measured in lung homogenates after concavalin A 

(Con A) sepharose 4B bead pull down of EC-SOD. Briefly, total lung homogenates were 

adjusted to a protein concentration of 1µg/µl. Control sepharose 4B beads and concavalin A 

(Con A) sepharose 4B beads (Sigma) were washed with equilibration buffer (50 mM 

HEPES, ph 7.0, with 0.25 M NaCl) three times and excess buffer removed. 100µl (100µg) 

lung homogenate was added to 75 µl of either control sepharose 4B beads or Con A 

sepharose 4B beads, and incubated for 30 minutes at 4°C, followed by centrifugation at 600g 

for 5 minutes. SOD activity was measured in the supernatants using a SOD Assay kit-WST 

(Dojindo Molecular Technologies) according to instructions, reflecting total SOD activity 

and intracellular SOD activity. The separation of EC-SOD by Con A bead incubation was 

confirmed by Western blot analysis showing lack of EC-SOD in the intracellular SOD 

sample. EC-SOD activity was determined by total SOD minus intracellular SOD 

measurements. The standard curve was performed using bovine erythrocyte SOD1 (Sigma). 

The standard curve was linear between SOD1 concentrations of 0.1 to 5 U/mL. SOD activity 

data were expressed as units of SOD activity per mg of protein.

Statistical Analysis

Data were analyzed by two-way ANOVA, or unpaired t-test, using Prism (GraphPad 

Software, La Jolla, CA). Data were expressed as mean ± SE and significance was defined as 

p< 0.05.

Acknowledgments

Funding: National Institute Health (NIH)/National Heart Lung Blood Institute (NHLBI) HL086680 Bethesda, MD 
(ENG), NIH/K12 HD 068372 Bethesda, MD (CD) and Ikaria Neonatal Fellow Research Grant Hampton, NJ (RW)

References

1. Mourani PM, Abman SH. Pulmonary vascular disease in bronchopulmonary dysplasia: pulmonary 
hypertension and beyond. Curr Opin Pediatr. 2013; 25:329–337. [PubMed: 23615175] 

2. Bhat R, Salas AA, Foster C, Carlo WA, Ambalavanan N. Prospective analysis of pulmonary 
hypertension in extremely low birth weight infants. Pediatrics. 2012; 129:e682–e689. [PubMed: 
22311993] 

3. Khemani E, McElhinney DB, Rhein L, et al. Pulmonary artery hypertension in formerly premature 
infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. 
Pediatrics. 2007; 120:1260–1269. [PubMed: 18055675] 

4. Ahmed MN, Suliman HB, Folz RJ, et al. Extracellular superoxide dismutase protects lung 
development in hyperoxia-exposed newborn mice. Am J Respir Crit Care Med. 2003; 167:400–405. 
[PubMed: 12406846] 

5. Wedgwood S, Steinhorn RH. Role of reactive oxygen species in neonatal pulmonary vascular 
disease. Antioxid Redox Signal. 2014; 21:1926–1942. [PubMed: 24350610] 

6. Nozik-Grayck E, Suliman HB, Piantadosi CA. Extracellular superoxide dismutase. Int J Biochem 
Cell Biol. 2005; 37:2466–2471. [PubMed: 16087389] 

7. Van Rheen Z, Fattman C, Domarski S, et al. Lung extracellular superoxide dismutase 
overexpression lessens bleomycin-induced pulmonary hypertension and vascular remodeling. Am J 
Respir Cell Mol Biol. 2011; 44:500–508. [PubMed: 20539010] 

8. Nozik-Grayck E, Suliman HB, Majka S, et al. Lung EC-SOD overexpression attenuates hypoxic 
induction of Egr-1 and chronic hypoxic pulmonary vascular remodeling. Am J Physiol Lung Cell 
Mol Physiol. 2008; 295:L422–L430. [PubMed: 18599502] 

Delaney et al. Page 9

Pediatr Res. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Auten RL, O'Reilly MA, Oury TD, Nozik-Grayck E, Whorton MH. Transgenic extracellular 
superoxide dismutase protects postnatal alveolar epithelial proliferation and development during 
hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2006; 290:L32–L40. [PubMed: 16100289] 

10. McNamara PJ, Murthy P, Kantores C, et al. Acute vasodilator effects of Rho-kinase inhibitors in 
neonatal rats with pulmonary hypertension unresponsive to nitric oxide. Am J Physiol Lung Cell 
Mol Physiol. 2008; 294:L205–L213. [PubMed: 18032699] 

11. Sausville EA, Peisach J, Horwitz SB. A role for ferrous ion and oxygen in the degradation of DNA 
by bleomycin. Biochem Biophys Res Commun. 1976; 73:814–822. [PubMed: 64249] 

12. Hecht SM. DNA strand scission by activated bleomycin group antibiotics. Fed Proc. 1986; 
45:2784–2791. [PubMed: 2429877] 

13. Perveen S, Patel H, Arif A, Younis S, Codipilly CN, Ahmed M. Role of EC-SOD overexpression in 
preserving pulmonary angiogenesis inhibited by oxidative stress. PLoS One. 2012; 7:e51945. 
[PubMed: 23284826] 

14. Tourneux P, Markham N, Seedorf G, Balasubramaniam V, Abman SH. Inhaled nitric oxide 
improves lung structure and pulmonary hypertension in a model of bleomycin-induced 
bronchopulmonary dysplasia in neonatal rats. Am J Physiol Lung Cell Mol Physiol. 2009; 
297:L1103–L1111. [PubMed: 19837849] 

15. Carlsson LM, Jonsson J, Edlund T, Marklund SL. Mice lacking extracellular superoxide dismutase 
are more sensitive to hyperoxia. Proc Natl Acad Sci U S A. 1995; 92:6264–6268. [PubMed: 
7603981] 

16. Lizotte PP, Hanford LE, Enghild JJ, Nozik-Grayck E, Giles BL, Oury TD. Developmental 
expression of the receptor for advanced glycation end-products (RAGE) and its response to 
hyperoxia in the neonatal rat lung. BMC Dev Biol. 2007; 7:15. [PubMed: 17343756] 

17. Cooney TP, Thurlbeck WM. The radial alveolar count method of Emery and Mithal: a reappraisal 
1--postnatal lung growth. Thorax. 1982; 37:572–579. [PubMed: 7179185] 

18. Tang JR, Karumanchi SA, Seedorf G, Markham N, Abman SH. Excess soluble vascular endothelial 
growth factor receptor-1 in amniotic fluid impairs lung growth in rats: linking preeclampsia with 
bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2012; 302:L36–L46. 
[PubMed: 22003089] 

19. Nozik-Grayck E, Woods C, Taylor JM, et al. Selective depletion of vascular EC-SOD augments 
chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2014; 307:L868–
L876. [PubMed: 25326578] 

20. Folz RJ, Abushamaa AM, Suliman HB. Extracellular superoxide dismutase in the airways of 
transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia. J Clin 
Invest. 1999; 103:1055–1066. [PubMed: 10194479] 

21. Bowler RP, Crapo JD. Oxidative stress in airways: is there a role for extracellular superoxide 
dismutase? Am J Respir Crit Care Med. 2002; 166:S38–S43. [PubMed: 12471087] 

22. Xu D, Guo H, Xu X, et al. Exacerbated pulmonary arterial hypertension and right ventricular 
hypertrophy in animals with loss of function of extracellular superoxide dismutase. Hypertension. 
2011; 58:303–309. [PubMed: 21730301] 

23. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted 
pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in 
human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001; 
164:1971–1980. [PubMed: 11734454] 

24. Le Cras TD, Markham NE, Tuder RM, Voelkel NF, Abman SH. Treatment of newborn rats with a 
VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J 
Physiol Lung Cell Mol Physiol. 2002; 283:L555–L562. [PubMed: 12169575] 

25. Jakkula M, Le Cras TD, Gebb S, et al. Inhibition of angiogenesis decreases alveolarization in the 
developing rat lung. Am J Physiol Lung Cell Mol Physiol. 2000; 279:L600–L607. [PubMed: 
10956636] 

26. Muehlethaler V, Kunig AM, Seedorf G, Balasubramaniam V, Abman SH. Impaired VEGF and 
nitric oxide signaling after nitrofen exposure in rat fetal lung explants. Am J Physiol Lung Cell 
Mol Physiol. 2008; 294:L110–L120. [PubMed: 17993583] 

Delaney et al. Page 10

Pediatr Res. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Oshikawa J, Urao N, Kim HW, et al. Extracellular SOD-derived H2O2 promotes VEGF signaling 
in caveolae/lipid rafts and post-ischemic angiogenesis in mice. PLoS One. 2010; 5:e10189. 
[PubMed: 20422004] 

28. Saqib A, Prasad KM, Katwal AB, et al. Adeno-associated virus serotype 9-mediated 
overexpression of extracellular superoxide dismutase improves recovery from surgical hind-limb 
ischemia in BALB/c mice. J Vasc Surg. 2011; 54:810–818. [PubMed: 21723687] 

29. Izuta H, Chikaraishi Y, Adachi T, et al. Extracellular SOD and VEGF are increased in vitreous 
bodies from proliferative diabetic retinopathy patients. Mol Vis. 2009; 15:2663–2672. [PubMed: 
20011081] 

30. Wheeler MD, Smutney OM, Samulski RJ. Secretion of extracellular superoxide dismutase from 
muscle transduced with recombinant adenovirus inhibits the growth of B16 melanomas in mice. 
Mol Cancer Res. 2003; 1:871–881. [PubMed: 14573788] 

31. Kim HJ, Ham SA, Kim MY, et al. PPARdelta coordinates angiotensin II-induced senescence in 
vascular smooth muscle cells through PTEN-mediated inhibition of superoxide generation. J Biol 
Chem. 2011; 286:44585–44593. [PubMed: 22072715] 

Delaney et al. Page 11

Pediatr Res. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Loss of EC-SOD impairs alveolar development at baseline and worsens bleomycin-induced 

BPD. Figure 1a-d. Representative image of pentachrome stain of lung sections from 4 week 

old WT and EC-SOD KO mice exposed to IP PBS or bleomycin. (a) WT PBS, (b) WT Bleo, 

(c) KO PBS, (d) KO Bleo, scale bar = 200 microns. Figure 1e-f. Morphometric analysis, 

radial alveolar counts (RAC), mean linear intercept (MLI), nodal point density (NPD), and 

surface area (SA) of WT and EC-SOD KO mice exposed to IP PBS or Bleomycin. *p < 0.05 

for strain, **p < 0.01 for treatment by 2-way ANOVA, n=4–9.
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Figure 2. 
Loss of EC-SOD causes pulmonary hypertension at baseline in neonatal mice, which is 

worsened by treatment with bleomycin. Figure 2a. RV/LV +S weight at 4 weeks in WT and 

EC-SOD KO mice following IP PBS or bleomycin treatment, *p < 0.05 for strain by 2 -way 

ANOVA. Figure 2b. RVSP by direct RV puncture at 4 weeks of age in WT and EC-SOD KO 

mice following IP PBS or bleomycin treatment, * p < 0.01 for strain by 2-way ANOVA. 

Figure 2c. LV/body weight at 4 weeks of age in WT and EC-SOD KO mice following IP 

PBS or bleomycin, * p < 0.05 for treatment by 2-way ANOVA. Figure 2d. RV/LV+S weight 

at 3 weeks in WT and EC-SOD KO mice following IP PBS or bleomycin treatment, * p = 

0.06 for strain, ** p < 0.005 for treatment by 2-way ANOVA, n=3–8.
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Figure 3. 
Pulmonary vascular density is decreased in neonatal mice lacking EC-SOD. Treatment with 

bleomycin further decreases vessel density. Figure 3a-d. Representative factor VIII staining 

in 4-week old WT and EC-SOD KO mice treated with IP PBS or bleomycin, (a) WT PBS, 

(b) WT Bleo, (c) KO PBS, (d) KO Bleo, scale bar = 200 microns. Figure 3e. Vessel density 

in WT and EC-SOD KO mice following IP PBS or bleomycin treatment, *p=0.1 for strain, 

**p < 0.0001 for treatment by 2-way ANOVA, n=3–5.
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Figure 4. 
Muscularization of small vessels is increased in neonatal mice lacking EC-SOD and with 

bleomycin treatment. Figure 4a-d. Representative α-SMA staining in 4-week old WT and 

EC-SOD KO mice treated with IP PBS or bleomycin, (a) WT PBS, (b) WT Bleo, (c) KO 

PBS, (d) KO Bleo, scale bar = 200 microns. Figure 4e. Muscularization of small vessels 

(<30 microns) expressed as ratio of muscularized vessels/total number vessels, *p < 0.0001 

for strain and **p <0.0001 for treatment by 2- way ANOVA, n=3–5.
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Figure 5. 
Lack of EC-SOD and treatment with bleomycin decrease pulmonary expression of total and 

active VEGRFR2 and eNOS. Figure 5a. Western blot analysis for total VEGFR2, 

pVEGFR2, eNOS and β-actin. Figure 5b. Analysis of protein expression for total VEGFR2 

standardized to β-actin *p < 0.05 for strain and **p < 0.05 for treatment by 2-way ANOVA. 

Figure 5c. Active phosphorylated VEGFR2 relative to β-actin, *p < 0.01 for treatment by 2-

way ANOVA. Figure 5d. eNOS expression relative to β-actin, *p < 0.06 for strain, **p < 

0.0001 for treatment by 2-way ANOVA, n=3–6.
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Figure 6. 
No change in lung EC-SOD expression or activity in WT mice treated with IP bleomycin. 

Figure 6a. Western blot analysis for EC-SOD and β-actin. Figure 6b. No change in EC-SOD 

expression in WT mice treated with bleomycin. Figure 6c. No change in EC-SOD activity in 

WT mice treated with bleomycin, n=3–9.
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