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Abstract

Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by 

Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of 

language impairment has been one of the concerns of aphasiology. We utilized multivariate 

classification in a cross-validation framework to predict the type of chronic aphasia from the 

spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia 

(Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western 

Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 

months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the 

lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain 

areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five 

brain atlases; our classifier (support vector machine) could differentiate between different kinds of 

aphasia using any of the five parcellations. In our sample, the best classification accuracy was 

obtained when using a novel parcellation that combined two previously published brain atlases, 

with the first atlas providing the segmentation of grey matter, and the second atlas used to segment 

the white matter. For each aphasia type, we computed the relative importance of different brain 

areas for distinguishing it from other aphasia types; our findings were consistent with previously 

published reports of lesion locations implicated in different types of aphasia. Overall, our results 

revealed that automated multivariate classification could distinguish between aphasia types based 

on damage to atlas-defined brain areas.
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1. INTRODUCTION

Aphasia is a language disorder frequently observed after damage to the left hemisphere of 

the brain. Depending on the location of damage in relation to the cortical language regions, 

aphasic patients can demonstrate very different patterns of language impairment. In general, 

patients with similar lesion location and size show somewhat similar aphasic symptoms. 

Nevertheless, there is a fair amount of heterogeneity in patterns of cortical damage across 

patients with similar language impairments (Willmes & Poeck, 1993). Such heterogeneity is 

expected in clinical populations; however, when this variance is too great it suggests that 

group studies might be “useless and harmful” for understanding individual symptoms 

(Caramazza & McCloskey, 1988). On the other hand, it is possible that the relationship 

between symptoms and structural injury reflect specific patterns of injury to a spatially 

distributed network; in this case, multivariate analysis is more sensitive than the more 

traditional univariate approaches that ignore the interactions between spatial locations (see 

e.g. Yourganov et al., 2014). Our objective was to determine whether automated 

multivariate classification algorithms could accurately predict aphasia type based on the 

pattern of brain injury.

Modern aphasia classification largely rests on a model of language localization typically 

referred to as the Wernicke-Lichtheim model. This model was largely developed by 

Wernicke and Lichtheim between 1874 and 1886 (for a comprehensive historical account 

and bibliography, see Tesak & Code, 2008), and brought together previous and concurrent 

ideas about language localization (notably, Dax’s insight on the connection between left-

hemisphere lesions and speech disorders; Broca’s pioneering results on the localization of 

the motor centre within the inferior frontal lobe; Meynert’s idea of the importance of the 

peri-Sylvian region in speech comprehension; Kussmaul’s hypothesis of a concept center in 

the brain, although Kussmaul did not hypothesize its specific location). The Wernicke-

Lichtheim model postulates the existence of three interconnected “language centers”: 

sensory, motor, and concept (the original Wernicke’s model consisted of only the sensory 

and motor centers; Lichtheim added the concept center, without specifying its anatomical 

location; Wernicke revised his model accordingly). Damage to each center and connective 

tract would result in a specific aphasia type, with the exception of damage to the concept 

center, which would cause memory deficits rather than aphasia. According to this model, 

damage to the motor and sensory centers produces impairment in expression and 

comprehension, respectively called motor and sensory aphasia. Damage to the tract that 

connects these two centers, the arcuate fasciculus, results in conduction aphasia, which 

manifests in difficulties repeating others’ speech. When the connections between these two 

centers and the concept center are damaged, it results in two forms of transcortical aphasia 

(Tesak & Code, 2008, p.90–91): transcortical motor aphasia, in which a patient has 

difficulty with expression but repetition is relatively preserved, and transcortical sensory 

aphasia, in which comprehension is impaired, but repetition is preserved. When the damage 

is extensive and covers several loci, it results in what Lichtheim called total aphasia 

(Lichtheim, 1885); a condition that today is typically referred to as global aphasia. Finally, 

amnestic aphasia (now more commonly referred to as ‘anomic aphasia’) is a relatively mild 

language impairment manifested in word-finding difficulties; it is not linked to damage to a 
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specific locus. This model of language localization revolutionized the concept of aphasia 

typology despite resistance from others in the field.

These early accounts provided the basis for Norman Geschwind’s seminal writings on the 

classification of aphasia and associated lesion locations (Geschwind & Kaplan, 1962; 

Geschwind, 1965; Geschwind & Fusillo, 1966). He proposed the concept of cortical 

disconnection. Specifically, a brain lesion could affect either a discrete cortical area, the 

connecting fibers between these areas, or both. The symptoms of aphasia were based on the 

specific location of the lesion. Geschwind’s proposal remains relevant today, as researchers 

utilize new neuroimaging techniques to provide a more precise account of the anatomical 

substrate underlying language dysfunction and informing classification of aphasia 

syndromes (Benson & Ardila, 1996). Although classification of aphasia based on clusters of 

symptoms has been criticized on the premise that no two individuals with aphasia present 

with the same clinical symptoms (Caplan, 1987; Carmazza, 1984; Schwartz, 1984), 

syndrome classification, while limiting at times, has remained fairly consistent and 

replicable for over a century.

These historical accounts of aphasia classification form the basis for modern aphasia 

typology and the foundation to current aphasia classification systems. Most aphasia 

typology schemes include such types as Broca’s, Wernicke’s, conduction, transcortical 

motor and sensory, anomic, and global aphasia (Ardila, 2010). A notable exception is the 

system proposed by Luria (1970), with a markedly different definition of aphasia types (it 

should be noted that Luria investigated aphasia in patients suffering from bullet wounds, 

rather than from stroke-related lesions). The type of aphasia is now commonly determined 

based on standardized behavioural testing; for example, the Western Aphasia Battery 

(WAB; Kertesz, 1982; Kertesz, 2006) was developed with the explicit purpose relating 

patterns of language impairment to a particular classical aphasia type.

The aphasia syndromes and associated clinical symptoms are constrained by the underlying 

vasculature. In fact, Hillis discussed the classic aphasia typology as vascular syndromes 

“consisting of frequently associated deficits that reflect damage or dysfunction of regions of 

neural tissue (essential for particular language functions) supplied by a particular artery” 

(Hillis, 2007). Damage to brain regions supplied by the superior division of the middle 

cerebral artery (MCA), such as the left posterior inferior frontal cortex and insula, result in 

Broca’s aphasia symptomatology (e.g., non-fluent speech production, relatively spared 

auditory comprehension, and, in some cases, agrammatic sentence processing). Deficits 

associated with Wernicke’s aphasia (e.g., fluent jargon and poor auditory comprehension) 

are typically related to damage of neural regions supplied by the inferior division of the left 

MCA. Transcortical motor aphasia is thought to be caused by damage to brain regions 

supplied by the anterior cerebral artery (ACA; Masdeu et al., 1979; Rubens, 1976) or 

watershed regions between the ACA and MCA (Hillis, 2007), with lesions occurring 

anterior and superior to Broca’s area (Freedman et al., 1984). Lesions to regions around 

Wernicke’s area that are supplied by the posterior cerebral artery (PCA) and watershed areas 

between the MCA and PCA territory (Alexander et al., 1989) result in symptoms associated 

with transcortical sensory aphasia. Global aphasia is associated with extensive cortical 

damage in the region supplied by the MCA; in most cases, both Broca’s area and 
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Wernicke’s area are damaged (Mazzocchi & Vignolo, 1979). Conduction aphasia, 

characterized by good comprehension, frequent phonemic errors in speech production and 

poor repetition, has historically been associated with lesions of the arcuate fasciculus, a 

white-matter tract connecting Broca’s and Wernicke’s areas (Geschwind, 1965). However, 

more recent evidence indicates this syndrome is related to lesions of the supramarginal 

gyrus, left dorsal superior temporal gyrus, or the temporo-parietal junction (Buchsbaum et 

al., 2011; Hickok et al., 2000; Anderson et al., 1999; Palumbo et al., 1992; Selnes et al., 

1992; Damasio & Damasio, 1980).

Classification of aphasia syndromes has proven useful in both clinical and research settings. 

It remains common to report aphasia types in clinical studies of aphasia because it is 

expected that patients with the same aphasia type present with similar clinical symptoms and 

patterns of brain damage. In addition, it is expected that research and clinical findings are 

potentially applicable to patients with a similar cluster of symptoms. Classification has 

allowed clinicians to predict recovery (Kertesz, 1997) and to select patients for appropriate 

interventions (Chapey, 2001). Importantly, aphasia syndromes classified based on clinical 

assessment has allowed clinicians to make robust predictions about the areas of the brain 

that are damaged, and in particular, hypoperfused (Hillis, 2007). Reineck and colleagues 

(2005) examined how assessment of language function can be useful acutely to estimate the 

site and volume of hypoperfusion in patients with aphasia, and in conjunction with diffusion 

weighted imaging, identify patients who might benefit from reperfusion therapy and 

possibly predict prognosis (Reineck & Hillis, 2004; Reineck et al., 2005).

With the accumulation of neurological findings, determination of aphasia type from brain 

damage has become less clear than the classical Wernicke-Lichtheim model had suggested. 

As mentioned above, conduction aphasia is now considered a result of damage to grey 

matter around the temporo-parietal junction (Damasio, 1982; Hickok et al., 2000), rather 

than exclusively white-matter damage (i.e., arcuate fasciculus) as proposed by the classical 

Wernicke-Lichtheim model. The damage limited to Broca’s area does not lead to Broca’s 

aphasia, and the same can be said about Wernicke’s area and Wernicke’s aphasia (Damasio, 

1982, Fridriksson et al., 2014). Early attempts to predict aphasia type from brain damage 

(Basso et al., 1985; Willmes & Poeck, 1993) have reported poor prediction accuracies. This 

is likely caused by the heterogeneity of brain damage within groups of the same aphasia 

type. Over time, larger sample sizes and better imaging techniques led to a more accurate 

localization of aphasia symptoms (Kreisler et al., 2000; Henseler et al., 2013). However, the 

most common approach to studying the neurological causes of aphasia is voxel-based 

lesion-symptom mapping (Bates et al., 2003), which is a univariate method where the 

impact of each cortical location is evaluated independent of the other locations; this might 

introduce a spatial bias, as reported by Mah et al. (2014).

An alternative (multivariate) approach has recently gained popularity in neuroimaging 

studies (see, for example, Pereira et al., 2009). This approach evaluates the contribution of 

all brain locations (which could be voxels or cortical regions) at once; the interactions 

between the locations are considered as important as the contributions of each specific 

location. It is relevant to stroke studies because stroke usually damages multiple brain areas. 

Schmah and colleagues (2010) analyzed fMRI data from a longitudinal stroke study using 
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several multivariate and univariate algorithms, and evaluated the algorithms on their ability 

to predict the post-stroke onset and the task (e.g., finger tapping versus wrist flexion). Saur 

and colleagues (2010) used a multivariate method called Support Vector Machine (SVM) to 

predict the post-stroke recovery of function. Smith et al. (2013) used SVM to diagnose acute 

spatial neglect. In the current study, we used SVM to predict aphasia type based on patterns 

of brain damage. To our knowledge, this is the first study to classify aphasia using a 

multivariate approach, although the multivariate framework has been applied to the 

diagnosis of such neurological disorders as dementia, schizophrenia and Parkinson’s disease 

(Orru et al., 2012).

The three main components of our approach are: (1) careful spatial normalization of lesions; 

(2) segmentation of the lesioned area using a brain atlas; (3) multivariate prediction of 

aphasia type within a cross-validation framework. The goal of the first step is to lessen the 

impact of individual differences in cortical shape and size; for this purpose, we adapted our 

Clinical Toolbox (Rorden et al., 2012) to support enantiomorphic normalization (Nachev et 

al., 2008) using SPM12. The second step serves to reduce the number of inputs to the 

multivariate analysis. These inputs are called features in the machine learning literature 

(Pereira et al. 2010), and the stability of predictions is often impaired by using a large 

number of features. In our analysis, we used a brain atlas (e.g., the Brodmann atlas) to define 

the brain areas and to compute the amount of damage to each area; the left-hemisphere areas 

are the features for our predictive algorithm. This step transforms a large number of binary 

features (voxels, which are either damaged or not) into a much smaller set of continuous-

valued features (brain areas with an associated proportion of damage). The atlas-based 

approach, combined with multivariate analysis that accounts for simultaneous contribution 

of different brain areas to a given behavioural syndrome, has the potential to diminish the 

spatial bias that was reported by Mah et al. (2014), although it does not eliminate the bias 

completely (that would require functionally homogeneous brain areas, where the 

relationship between the damage and behavioural deficit is uniform across areas). The 

downside of the atlas-based approach is relatively poorer spatial localization because our 

spatial resolution is defined by brain areas rather than by voxels. For our purpose, a brain 

atlas is efficient if it segments the brain into the areas such that aphasia type can be decoded 

from damage to these areas. Lastly, during the third step, SVM estimates the association 

between patterns of brain damage and aphasia types (“training”), and assigns the type to 

previously unseen patients based on their pattern of brain damage (“testing”).

Our cohort is a group of 98 chronic stroke patients with aphasia. We used multivariate 

classification to distinguish between five aphasia types: Broca’s, Wernicke’s, anomic, 

global, and conduction. Unfortunately, our sample did not have any patients with 

transcortical sensory aphasia and only one patient with transcortical motor aphasia, who had 

to be excluded because we needed the absolute minimum of two representatives of each 

aphasia type (one used for training and another for testing). Lesions were defined from the 

structural MRI scans by a neurologist. To segment the lesions, we used a set of brain atlases, 

some containing only white or only grey matter areas, and some containing both. Our study 

shows that, despite patient heterogeneity, there is a correspondence between the spatial 

pattern of brain damage and the resulting language deficit, which has significant 
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implications for diagnosis, prognosis, and therapeutic intervention for the recovery of 

language in individuals with aphasia.

2. MATERIALS AND METHODS

2.1 Participants

Our participant sample was selected from 139 right-handed patients with chronic left 

hemisphere stroke. Recruitment relied on referrals from local neurologists and 

advertisements in print and radio media in the state of South Carolina; the study was 

approved by the local ethics committee. The behavioural assessment of the patients took 

place between May 2007 and October 2014. Out of these patients, 98 persons were included 

in the current study. The exclusion criteria were: absence of aphasia (n=19); MRI scanning 

could not be performed for health concerns (n=15); speech deficits were driven by apraxia 

of speech rather than aphasia (n=2); the stroke lesion was bilateral (n=3); multiple sclerosis 

(n=1). Also, our sample contained only one patient with transcortical motor aphasia; this 

patient had to be excluded because, in our study, each aphasia type has to be represented by, 

at the very least, two people (one for training the classifier, and another for testing it). Of the 

98 participants whose data constituted the final study sample, 5 aphasia types were 

observed:

• Anomic aphasia: 35 patients;

• Broca’s aphasia: 33 patients;

• Wernicke’s aphasia: 7 patients;

• conduction aphasia: 13 patients;

• global aphasia: 10 patients.

Aphasia types were classified according to the Western Aphasia Battery (WAB; Kertesz, 

1982; see Supplementary Table 1). The number of patients differed across aphasia types, 

generally, reflecting the difference in incidence and prevalence of these types of aphasia in 

the population, but more specifically of those who self-refer for participation in research. 

The mean sample age was 58 years (standard deviation = 11.9; range = 31–80), and 36 were 

women. All patients were at least 6 months post-stroke, and the mean time since stroke onset 

was 40.1 months (SD= 49.6; range = 6–276). Supplementary Table 2 lists the demographic 

information for each studied patient.

2.2 MRI data collection and preprocessing

MRI scanning was performed within two days of behavioural testing of language abilities. 

Images were acquired on a Siemens Trio 3T scanner equipped with a 12-element head coil 

located at the University of South Carolina. These images utilized a T1-weighted MP-RAGE 

sequence with 1 mm isotropic voxels, a 256×256 matrix size, and a 9-degree flip angle. For 

the first 25 individuals we used a 160 slice sequence with TR=2250 ms, TI=900 ms, 

TE=4.52 ms. For the latter 72 individuals, we used a 192 slice sequence with TR=2250 ms, 

TI=925 ms, TE=4.15 ms with parallel imaging (GRAPPA=2, 80 reference lines). Each of 

these scans required about 7 minutes to acquire. We also acquired a T2-weighted image 
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using a sampling perfection with application optimized contrasts using a different flip angle 

evolution (3D-SPACE) sequence. This 3D TSE scan uses a TR=2800 ms, a TE of 402 ms, 

variable flip angle, 256×256 matrix scan with 192 1 mm thick slices, using parallel imaging 

(GRAPPA x2, 120 reference lines).

Lesions were manually drawn on the T2 weighted image by a trained neurologist. The T2 

image was then coregistered to match the T1 image, and these parameters were used to 

reslice the lesion into the native T1 space. The resliced lesion maps were smoothed with a 3 

mm full-width half maximum Gaussian kernel to remove jagged edges associated with 

manual drawing. We then performed enantiomorphic normalization (Nachev et al., 2008) 

using SPM12 and Matlab scripts we developed. The enantiomorphic normalization steps 

were as follows. First, a mirrored image of the T1 scan (reflected around the longitudinal 

fissure) was created, and this mirrored image was coregistered to the native T1 image. We 

then created a chimeric image based on the native T1 scan with the lesioned tissue replaced 

by tissue from the mirrored scan (using the smoothed lesion map to modulate this blending, 

feathering the lesion edge). SPM12’s unified segmentation-normalization (Ashburner & 

Friston, 2005) was used to warp this chimeric image to standard space, with the resulting 

spatial transform applied to the actual T1 scan as well as the lesion map. The normalized 

lesion map was then binarized using a 50% probability threshold. Figure 1 shows the 

overlap of lesions for patients of each aphasia type.

2.3 Segmentation

To segment the brain and compute the damage to each brain area, we used five different 

atlases:

1. Speculative Brodmann atlas; 82 areas (provided by Professor Krish Singh of 

Cardiff University)

2. An atlas containing both grey and white matter developed by Faria et al., (2012), 

which we refer to as John Hopkins University (JHU) atlas; 189 areas

3. AAL atlas: 116 grey-matter areas (Tzourio-Mazoyer et al., 2001)

4. An atlas of white-matter tracts (Catani & Thiebaut de Schotten, 2008), which we 

refer to as CTS (Catani - Thiebaut de Schotten) atlas for the sake of brevity; 34 

areas

5. A union of AAL and CTS atlases (AALCTS); 150 areas. This novel atlas was made 

by combining the AAL and CTS atlases (in cases of spatial overlap between the 

atlases, we used the labels from the CTS atlas)

We decided to use Brodmann’s atlas for its historical importance in behavioural 

neuroscience and neurology, and the AAL atlas for its popularity in the field (according to 

Google Scholar, the paper by Tzourio-Mazoyer et al., 2001 has been referenced more than 

5,000 times). The CTS atlas was selected because it is well-established in the field (it has 

been cited more than 500 times according to Google Scholar), and because it has been 

developed for a general, not age-specific population. Compared to these atlases, the JHU 

atlas is relatively new; it was created using a more powerful MRI scanner (3T compared to 
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1.5T used in Catani & Thiebaut de Schotten, 2008), and Tzourio-Mazoyer et al., 2001) and a 

larger sample of patients (20 patients; in contrast, 12 patients were used by CTS et al., and a 

single patient was used by Tzourio-Mazoyer et al., 2001); the authors (Faria et al., 2012) 

have extensively evaluated its across-subject reproducibility and applicability to different 

modalities (anatomical and functional MRI and DTI).

Supplementary Table 3 lists the names of the brain areas used in each atlas. Since damage 

was constrained to the left hemisphere, right-hemisphere areas were excluded from the 

analysis. Furthermore, areas that were not damaged in any patients were excluded as well. 

For the remaining areas, we computed the percentage of damage as the ratio of lesioned 

voxels to the total number of voxels in the area.

2.4 Classification

Support vector machines (SVMs) were used to predict the aphasia type from brain damage. 

The percentage of damage to the brain areas served as the input to a classifier, and the 

aphasia type was the output. We used the implementation provided by LIBSVM Matlab 

library (Chang & Lin, 2011). We used the radial-basis-function kernel, which is the default 

in LIBSVM (the kernel width was set to its default level, which is 1/number of features). 

The penalty parameter C was optimized (during training, we ran the classification using 

different values of C, to determine the optimal value). Aphasia type was predicted in a series 

of binary (two-class) problems; for 5 aphasia types, there are 10 ways of pairing one type 

versus another. In addition, we ran a multi-class classification, where all 5 aphasia types 

were used in one classification problem.

2.5 Training and testing the classifier

The different patient groups, representing different aphasia types, were not balanced in size. 

If we used the leave-one-out procedure, the groups would be represented with a different 

number of training examples, and this could bias the classification towards larger groups 

(Pereira et al., 2009). Overall average classification accuracy might be well above chance 

because test examples from larger groups would be classified accurately, but this would be 

at the expense of inaccurate prediction for the smaller group. To avoid this bias, we used a 

resampling procedure whereby the classes were represented with the same number of 

training examples. At each resampling iteration, one patient from the smaller group was held 

out, and the remaining patients were used for training. In the larger group, the number of 

training examples was the same as for the smaller group, and the remaining patients were 

used for testing. For example, we have 30 patients with anomic aphasia, and only 9 patients 

with global aphasia. To train the classifier, we randomly select 8 patients with global 

aphasia, and the same number of patients with anomic aphasia; our test set is composed of 

one patient with global aphasia, and 22 patients with anomic aphasia. Because the groups 

are balanced during training, there is no bias toward either group.

This resampling procedure was done repeatedly, creating a unique training-test split at each 

repetition. If the size of the larger group is N and the size of the smaller group is M, there are 

unique training-test splits. The resampling procedure was repeated either Nsplits or 500 
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times, whichever number was smaller. At each iteration, we checked the uniqueness of the 

training-test splits by making sure this split had not been used before.

During training, we performed another round of cross-validation to determine the optimal 

value for the C (penalty) parameter. This was done with 8-fold cross-validation: the training 

set was separated into 8 subsets of roughly equal size (the difference in size between any 

two subsets was at most 1 patient). We tested 10 different values for C (0.0001, 0.001, 0.01, 

0.1, 1, 2, 10, 100, 1000, 10000). For each tested value, we iterated 8 times: one subset was 

held out to test the classifier, and the remaining 7 subsets were merged and used for training 

with a specific setting of C. Thus, we computed the average classification accuracy for each 

value of C, and identified the value that optimized the accuracy. This value of C was then 

used to classify the test set (which was disjoint from the training set, in order to prevent 

overfitting).

2.6 Evaluation of significance

When group sizes are unequal, one could suggest two levels for ‘chance’ performance: 

either 50% (as there are two choices) or the more stringent incidence of the more frequent 

class. We chose the latter. For example, consider a symptom present in 80% of the 

population. In this case, one can perform at 80% classification accuracy by simply guessing 

that everyone has the symptom. Given this, significance of test-set classification accuracy 

was evaluated with a binomial distribution (Pereira et al., 2009). Let us consider a two-class 

problem with classes of size N and M (where N≥M); we want to know whether the observed 

classification accuracy is better than chance. Because of unbalanced group sizes, a classifier 

operating at chance level assigns the test example to the larger group with N/(N+M) 

frequency, and to the smaller group with M/(N+M) frequency. The probability of correctly 

guessing k test examples out of n is given by the density function of the binomial 

distribution (Freund & Walpole, 1980):

(1)

where p= N/(N+M). The p value (the probability of obtaining at least k successes out of n 

trials under the null hypothesis of the classifier operating at chance) is P(X≥k), where X is a 

binomial random variable with distribution defined by (1). To compute these p values for the 

observed classification accuracy y, we used n=500 and k=500*y (in practice, any large 

number could be used for n because y was an accurate estimate of classification accuracy 

obtained on a large number of training-test splits). False discovery rate (Genovese et al., 

2002) was used to correct for multiple comparisons.

2.7 Classification maps

For binary classification, we created brain maps where the loading on each brain area 

reflected its importance in classification. In the case of a linear classifier, these loadings are 

given by the angle of the hyperplane that separates the two classes (see Kjems et al., 2002 

for a general discussion, and LaConte et al., 2005 for application to SVM). Since our 

number of features (brain areas) is large relative to the number of training examples, radial 

Yourganov et al. Page 9

Cortex. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



basis function (RBF) kernel is approximately equivalent to linear kernel with an adjusted 

penalty parameter (Keerthi & Lin, 2003). Therefore, the brain loadings can be approximated 

using a weighted product of support vectors:

(2)

where Nsv is the number of support vectors, and xi and ci are the support vectors and their 

associated coefficients, computed by LIBSVM for a particular training set. The jth element 

of w is the loading for the jth brain area. The absolute value of the loading indicates the 

relevance of this brain area to aphasia type prediction, and the sign of the loading indicates 

the “preference” of the area; for a particular two-class contrast, the area has a preference for 

a given class if larger damage to this area increases the chance of the patient to be assigned 

to that class (Rasmussen et al., 2012; Yourganov et al., 2014).

When classifying a particular contrast, we computed the brain loadings for each training-test 

split, computed the mean loading of each area across splits, and normalized the loading by 

dividing by the standard deviation of the loadings of this area across splits. In addition, for 

each aphasia type, we computed the predictive relevance of each brain area, which indicated 

the relevance of this brain area in distinguishing a particular aphasia type from all other 

types. To compute the predictive relevance, we calculated the normalized brain loadings for 

all pairings of the particular aphasia type with the other 4 aphasia types. Then, we identified 

the areas that had positive loadings (that is, increased damage to these areas would increase 

the chance of the patient to be categorized as having the particular aphasia type), and 

computed the weighted average of these positive loadings across 4 pairings of aphasia types. 

The weights were the ratios of the number of patients in the contrasted aphasia type to the 

total number of patients. The purpose of the weighting was to give more influence to the 

pairings of aphasia groups with greater number of patients because these groups are more 

representative of the general patient population.

3. RESULTS

The accuracy of predicting the aphasia type is summarized in Tables 1 and 2 and 

Supplementary Table 4. The prediction was framed as a two-class problem (i.e., we tried to 

differentiate between two aphasia types). Table 1 lists the accuracy of predicting one aphasia 

type versus another, that is, the ratio of patients with aphasia type correctly predicted. Table 

2 lists, for each pairing of types, the prediction accuracy per each class (this would be 

analogous to sensitivity/specificity if the two classes were defined according to presence/

absence of a symptom). Supplementary Table 4 lists the values of balanced accuracy for 

each contrast (computed as the average of the two per-class accuracies). Our sample 

contained patients with 5 aphasia types, which yielded 10 pairings of classes. For each 

pairing, we trained the classifier on the damage to brain areas defined using 5 different brain 

atlases. The accuracies that are significantly better than chance (after correcting for multiple 

comparisons controlling the false discovery rate) are noted with asterisks in Tables 1 and 2. 

There was a pronounced difference in the number of patients per aphasia type; because of 

this, some seemingly high accuracies are not significantly better than chance. For example, 
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the prediction of anomic versus Wernicke’s aphasia (represented with 35 and 7 patients, 

respectively) was never significantly better than chance, regardless of brain atlas used to 

define the brain areas. For this contrast, the most accurate prediction (81.28%) was obtained 

with the CTS atlas; however, if we simply assumed that a patient has anomic aphasia 

without looking at the underlying brain damage, we would be accurate 35/(35+7)=83.33% 

percent of the time.

Overall, the AALCTS atlas was the most successful: it could resolve 7 out of 10 contrasts. 

The JHU atlas could resolve 5 contrasts, and the other atlases could resolve 6 contrasts. The 

average performance of AALCTS was the highest, and the average performance of the CTS 

white-matter atlas was the lowest; however, the differences in classification accuracy 

between atlases were not significant (Friedman test for column effects: p = 0.355; Wilcoxon 

signed-rank test between CTS and AALCTS atlases: p = 0.106). AALCTS was the only 

atlas that could successfully classify Broca’s versus Wernicke’s aphasia. Three contrasts 

could not be resolved using any atlas: anomic versus Wernicke’s, Broca’s versus global, and 

conduction versus Wernicke’s aphasia.

Figures 2 and 3 illustrate the importance of various brain areas (defined with AALCTS) to 

two-class prediction of aphasia type. For each pairing of aphasia types, we computed the 

loading of each brain area that indicated its contribution to classification. The sign of the 

loading indicated the aphasia-type preference of the area. Formally speaking, a preference of 

area X for aphasia type Y means that increased damage to the area X in a random patient 

would increase the chance of assigning this patient to aphasia type Y. The loadings 

presented in Figures 2 and 3 are normalized (each loading is divided by the standard 

deviation across all loadings for a given contrast). The maps are not thresholded.

Each row in Figures 2 and 3 represent a contrast of one aphasia type (“type #1”) versus 

another (“type #2”). For example in the bottom row of Figure 2, type #1 is Broca’s aphasia 

and type #2 is conduction aphasia. Areas shown in blue and green have preference for 

Broca’s aphasia, with green areas being the most relevant and blue being least relevant to 

classification. Similarly, yellow areas are most relevant with preference for conduction 

aphasia, and red areas are the least relevant.

Examining the brain area loadings on Figure 2, we see that no brain areas are strongly 

predictive of anomic aphasia in our set of patients. Although anomic aphasia can be easily 

distinguished from most other aphasia types (Table 1), there appears to be no spatial pattern 

of brain damage specific for anomic aphasia (and distinguishing it from all other aphasia 

types). However, all other aphasia types have stronger associations with particular brain 

areas. Table 3 lists the brain areas for each of these aphasia types. The number alongside 

each area is its predictive relevance, computed as a weighted average of Z-scores across 

pairings of aphasia types (see section 2.7; a higher value indicates a more relevant area). 

Areas with predictive relevance less than 1 are not listed. Figure 4 shows the corresponding 

brain maps where the colour of each brain area indicates the predictive relevance for a 

particular aphasia type (again, only areas with predictive relevance of at least 1 are 

displayed).
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As shown in Table 3 and Figure 4 (top row), Broca’s aphasia is strongly associated with 

damage to pars opercularis of the inferior frontal gyrus, corresponding to Brodmann area 44 

and generally considered a part of Broca’s area. Its posterior neighbour, rolandic operculum, 

also has high predictive relevance. The most relevant white-matter tract is the arcuate 

fasciculus, particularly the long and anterior segments. Conduction aphasia is associated 

with damage to the posterior segment of the arcuate fasciculus, Heschl’s gyrus, and optical 

tracts. Global aphasia is associated with extensive cortical damage. Middle and inferior 

frontal gyri, temporal regions (temporal pole; Heschl’s and superior temporal gyri), insula 

and rolandic operculum, pre- and postcentral gyri, and putamen all had high predictive 

relevance for global aphasia. Among the white-matter tracts, uncinate and arcuate fasciculi, 

particularly the long and anterior segments of the latter, were also found to be predictive of 

global aphasia. Finally, Wernicke’s aphasia can be predicted from damage to angular, 

Heschl’s, and superior temporal gyri, as well as temporal pole and putamen.

4. DISCUSSION

We have demonstrated that the aphasia types found in our sample (Broca’s, Wernicke’s, 

conduction, global, and anomic) could be, in most cases, distinguished from each other on 

the basis of damage to atlas-defined brain areas. In particular, the fluent aphasia types 

(Wernicke’s, conduction, and anomic aphasia) could be distinguished from non-fluent types 

(Broca’s and global aphasia), if the novel AALCTS atlas was used to define the brain areas. 

The classification accuracy for the pairings of fluent versus non-fluent types was 87% and 

higher, and was significantly above chance for all such pairings. We had less success with 

pairings of fluent aphasia types: of the three such pairings, only conduction versus anomic 

aphasia could be resolved at a level of accuracy significantly better than chance. Also, the 

classification accuracy for the pairing of the two non-fluent aphasia types (global versus 

Broca’s aphasia) was at chance level. This poor result could be driven by the similarity in 

the patterns of brain damage in non-fluent aphasia (see Figure 1, second and fourth row). 

Also, if we look at the areas that are predictive of Broca’s and global aphasia (Table 3), we 

see that the vast majority of the brain areas that are predictive of Broca’s aphasia are also 

predictive of global aphasia. Finally, global aphasia often resolves into Broca’s aphasia 

(Pedersen, 2003), indicating that, for some patients, we are perhaps dealing with two stages 

of the same process rather than two phenomenologically different neurological conditions.

The areas where the damage is predictive of the aphasia type (listed in Table 3) are largely 

consistent with the previous aphasia research (see, for example, reviews by Damasio, 1992; 

Marshall et al., 1998; and chapter 2 in Davis, 2007). We found that Broca’s aphasia could be 

predicted from damage to pars opercularis, adjacent white-matter tracts, and globus pallidus. 

Damage to these areas has previously been reported as critical lesion locations associated 

with Broca’s aphasia; moreover, Broca’s aphasia is not present when damage is limited to 

Broca’s area or to the basal ganglia (Damasio, 1992; Alexander et al., 1987, Mohr et al., 

1978). In addition, we found that damage to supramarginal and Heschl’s gyri predicts 

Broca’s aphasia, consistent with Fridriksson et al. (2014).

The group of patients with Wernicke’s aphasia was the smallest (n=7) patient group in our 

sample. Despite the sample size limitation, the brain areas that we found to predict 
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Wernicke’s aphasia include the classical Wernicke’s area and its neighbourhood, which is 

consistent with the existing literature (Marshall et al., 1998; Lieberman, 2002). In addition, 

the damage to the temporal poles and the putamen was also associated with Wernicke’s 

aphasia, which may reflect the idiosyncrasies of our small sample (see the lesion overlay 

map in Figure 1). Conduction aphasia is thought to be linked to damage of regions in the 

neighbourhood of temporo-parietal junction (Damasio, 1992; Hickok et al., 2000; Dick & 

Tremblay, 2012). Our results are consistent with this picture: in our sample, conduction 

aphasia is associated with damage to Heschl’s gyrus and the adjacent white-matter tracts 

(posterior segment of the arcuate fasciculus; optic radiations). Global aphasia is the most 

severe form of aphasia, and has long been associated with extensive cortical damage in the 

region supplied by the middle cerebral artery. Consistent with previous reports (Damasio, 

1992; Marshall et al., 1998), we have found this type of aphasia to be associated with 

damage to areas predictive for Broca’s and Wernicke’s aphasia, as well as insular regions. 

Finally, anomic aphasia, the least severe of aphasia types, could be easily distinguished, but 

no brain areas were found to be strongly predictive (a similar result was reported in a voxel-

based lesion symptoms mapping study of Henseler et al., 2014).

We achieved the numerically best prediction accuracy with the novel AALCTS atlas, which 

includes both grey and white matter areas. Interestingly, the CTS atlas, composed solely of 

white-matter tracts, provided reasonably effective features for aphasia-type prediction, and 

predicted aphasia type above chance in 6 out of 10 pairings of aphasia types. This suggests 

that the behavioural deficiencies captured by the WAB scores are to some extent driven by 

damage to white matter tracts. A similar level of accuracy was achieved with the Brodmann 

atlas; however, we do not recommend this parcellation because it does not include some 

areas that are predictive of aphasia type, such as the insula and basal ganglia.

Traditional classifications of the aphasia syndromes emerged due to the clinically observed 

consistency of patterns of language impairment related to lesions of specific locations. 

Although many variations of classifications systems have been proposed over several years, 

the descriptions of language disorders clustered as syndromes and anatomical substrates 

have remained relatively stable since the days of Wernicke and Lichtheim (Benson & 

Ardila, 1996; Goodglass & Kaplan, 1983). While the validity of aphasia classification 

systems has been challenged (Caplan, 1993; Wertz et al., 1984), reporting classification type 

remains common in clinical and research settings. Several problems can be pointed out with 

using a behavioural battery like the WAB for determining patient’s aphasia types. For 

instance, it is possible that the behavioural assessment might not match the clinical 

impression. Also, the aphasia type is questionable for a patient whose behavioural score is at 

the threshold level between two aphasia types (which is particularly problematic for scores 

that rely on subjective opinion of the clinician completing the assessment). Despite these 

potential problems, our results suggest that the Western Aphasia Battery provides criteria for 

consistently classifying aphasia syndromes, some of which can be strongly predicted based 

on patterns of underlying neural damage.

A next step will be to predict the expected aphasia type and recovery prognosis based on a 

patient’s acute symptoms. Identifying prognosis and potential for recovery is critical, as 

acute patients and caregivers need to know how their future quality of life might be affected 
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by the stroke. Some aphasia syndromes are quite resistant to improvement, while others tend 

to recover more easily (Kertesz & McCabe, 1977; McDermott et al., 1996). For example, 

acute Broca’s aphasia and conduction aphasia sometimes resolve to anomic aphasia, while 

Wernicke’s aphasia may develop into either anomic or conduction aphasia (Pashek & 

Holland, 1988; Benson & Ardila, 1996). We can predict that classification, using the 

approach described here, would hold up over the course of recovery; as recovery occurs, the 

type of aphasia manifested in the chronic stage represents the neuroplasticity associated with 

recovery. Our results demonstrate that chronic aphasia types can, in fact, be distinguished 

from each other based on damage to atlas-defined brain areas. Importantly, our findings 

provide support for both historical and current accounts that associate patterns of brain 

damage with fairly predictable patterns of speech-language impairment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overlap of lesions across patients of each aphasia type. A voxel with overlap = 1 indicates 

that this voxel is lesioned in 100% of the patients.
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Figure 2. 
Brain loadings computed from predicting one aphasia type versus another. See Figure 3 for 

the remaining 5 pairings of aphasia types.
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Figure 3. 
Brain loadings computed from predicting one aphasia type versus another. See Figure 2 for 

the remaining 5 pairings of aphasia types.
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Figure 4. 
Areas that are most predictive of each aphasia type (see Table 3) mapped onto a standard 

brain template. The colour indicates the predictive relevance of a brain area (red being the 

least predictive, and yellow being the most predictive).
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Table 3

Brain areas that are predictive of each aphasia type, with overall predictive relevance given in parentheses. 

Only areas with predictive relevance > 1 are listed (no such areas were found for anomic aphasia). White-

matter tracts are given in italics.

Broca’s aphasia Conduction aphasia Global aphasia Wernicke’s aphasia

Anterior Segment (3.2) Posterior Segment (2.48) Middle frontal gyrus (2.51) Angular gyrus (1.76)

Long Segment (2.85) Heschl’s gyrus (1.47) Inferior frontal gyrus, triangular (2.18) Heschl’s gyrus (1.61)

Inferior frontal gyrus, opercular 
(2.45) Optic Radiations (1.14) Temporal pole: mid. temporal gyrus (2.15)

Temporal pole: mid. temporal 
gyrus (1.47)

Rolandic operculum (2.2) Precentral gyrus (2.05)
Temporal pole: sup. temporal 
gyrus (1.34)

Superior temporal gyrus (1.99) Putamen (2.02)
Superior temporal gyrus 
(1.31)

Arcuate (1.91) Rolandic operculum (1.96) Putamen (1.3)

Supramarginal gyrus (1.66) Temporal pole: sup. temporal gyrus (1.81)

Pallidum (1.45) Inferior frontal gyrus, opercular (1.78)

Heschl’s gyrus (1.35) Heschl’s gyrus (1.78)

Precentral gyrus (1.06) Uncinate (1.71)

Insula (1.66)

Anterior Segment (1.65)

Long Segment (1.47)

Superior temporal gyrus (1.31)

Inferior frontal gyrus, orbital (1.28)

Arcuate (1.21)

Superior frontal gyrus (1.21)

Cortico-Spinal Tract (1.08)
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