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Abstract
The deterioration of endothelial structure plays a very 

important role in the development of vascular diseases. 
It is believed that endothelial dysfunction starts in 
the early stage of kidney disease and is a risk factor 
of an unfavorable cardiovascular prognosis. Because 
a direct assessment of biological states in endothelial 
cells is not applicable, the measurement of endothelial 
microparticles (EMPs) detached from endothelium 
during activation or apoptosis is thought to be a marker 
of early vascular disease and endothelial dysfunction 
in children with chronic kidney disease (CKD). Few 
studies have shown increased circulating EMPs and 
its relationship with cardiovascular risk factors in 
patients with CKD. MPs contain membrane proteins and 
cytosolic material derived from the cell from which they 
originate. EMPs having CD144, CD 146, CD31+/CD41-, 
CD51 and CD105 may be used to evaluate the vascular 
endothelial cell damage and determine asymptomatic 
patients who might be at higher risk of developing 
cardiovascular disease in CKD and renal transplant. 
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Core tip: In chronic kidney disease (CKD), cardiovascular 
disease is a leading cause of mortality and morbidity 
even after renal transplantation. Classical cardiovascular 
risk factors are insufficient to explain the entire story 
in the development of atherosclerosis. The existence 
of endothelial dysfunction may serve as a marker of a 
poor cardiovascular outcome. The need for a reliable 
and clinically significant marker of early vascular disease 
and endothelial dysfunction in atherosclerosis and early 
detection of graft rejection in renal transplant recipients 
is emerging. Although the precise molecular mechanism 
of microparticle formation is not clear, it has recently 
emerged as a marker of vascular disease. The dynamics 
of circulating endothelial microparticles in CKD and 
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transplantation will be reviewed in this manuscript.
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INTRODUCTION
Cardiovascular disease is one of the most common 
causes of mortality and morbidity in adults and children 
with chronic kidney disease (CKD) even after renal 
transplantation, which is the ideal renal replacement 
therapy for children with end-stage kidney disease 
(ESKD). Atherosclerosis in patients with CKD is the 
most powerful independent predictor of all-cause and 
primarily cardiovascular mortality[1-5]. Hypertension, 
a second common post transplant complication, and 
cardiovascular events are risk factors for unfavorable 
outcome in children with renal transplant[4]. The classical 
cardiovascular risk factors are insufficient to explain 
the entire story in the development of atherosclerosis 
in uremia and how specific pathogenic uremic factors 
could be involved[6,7]. The deterioration of endothelial 
integrity plays a major role in the development of 
vascular diseases, including atherosclerosis and 
vascular calcification, and it is believed that endothelial 
dysfunction begins in the early stage of CKD[2]. The 
existence of endothelial dysfunction may serve as 
a reliable marker of poor cardiovascular outcome in 
patients with CKD[3]. 

The investigation for a reliable and clinically significant 
indicator of early vascular disease and endothelial dys-
function in atherosclerosis and the early detection of 
graft rejection in renal transplant recipients are hot 
topics[8]. Because a direct assessment of biological states 
in endothelial cells is often invasive or costly, biomarkers 
might be an alternative and reliable option in identifying 
the pathology and evaluating the risk of diseases[9]. 
Biomarkers are objectively measurable indicators of 
normal biological situations, pathogenic processes or 
pharmacological responses to treatments[10]. 

Recently, released vesicles into the extracellular 
space in both normal and stress conditions have been 
thought to be an indicator of early vascular disease 
and impaired endothelial function in children with CKD, 
vasculitis and obesity[11-13]. 

The term microparticle may be used to define a 
number of similarly sized particles that comprise the 
membrane, lipoprotein, protein aggregates and other 
debris. Membrane microparticles are microparticles (MPs) 
that consist of a cell-derived vesicle, which is resulted 
from the outer blebbing of the plasma membrane 
and sequential dropping into the extracellular space. 
Therefore, MPs contain membrane proteins and cytosolic 

material extracted from the cell from which they 
originate[14-16]. Endothelial microparticles (EMPs) are 
small (< 1.5 μm) vesicular particles of the endothelial 
cell membrane detached from endothelium during the 
process of activation or apoptosis. They are considered 
to be markers of endothelial dysfunction[9]. They act like 
diffusible vectors of biologic activities in our body and 
are involved in the exchange of information between 
the circulating cells and the endothelium[15-17]. The 
characteristics of EMPs are presented in Table 1. 

Some interventions such as fish-oil supplementation, 
statins, anti-TNF agents, acetylsalicylate and vitamin C 
supplementation may affect microparticle formation and 
reduce number of circulating microparticles[18-22]. For this 
reason, analysis of circulating microparticles could give 
useful information about the efficacy of treatment[23]. 

HOW EMPS FORMED AND WHAT IS 
THEIR ROLE IN THE PATHOGENESIS OF 
VASCULAR DISEASE IN CKD?
The vascular endothelium plays a key role as a barrier 
between the circulating blood and the vessel wall. 
The protracted or excessive endothelial activation by 
pathophysiological stimuli or agonists, like proinfla-
mmatory cytokines, growth factors, infectious agents, 
lipoproteins and oxidative stress and uremic toxins, 
results in impairment in endothelial function and 
circulating EMPs separated from a blood vessel[6,24-26]. 

Although the precise molecular mechanism of MP 
formation is not clear, the breakdown of the membrane 
skeleton and the loss of phospholipid asymmetry 
are thought to be essential[9]. Figure 1 shows the 
proposed mechanisms leading to MP formation. The 
outer blebbing of the plasma membrane is the first 
step that begins the MP formation[9]. A second event 
involved in the MP formation is the externalization of 
phosphatidylserine (PS)[9]. The composition and the 
distribution of cell membrane phospholipids are highly 
special: Phosphatidyl-ethanolamine (PE) and PS are 
found in the inner side of the cell membrane, whereas 
phosphatidylcholine and sphingomyelin are located in 
the external membrane layer. The maintenance of this 
asymmetry is crucial and is maintained by three distinct 
enzymes: Flippases, floppases and scramblases[9,14]. 
Flippases contribute to the translocation of PS and PE 
against their electrochemical gradient towards the inner 
membrane. Floppases catalyze the transport of PS to 
the outer membrane. Finally, scramblases are ATP-
independent and facilitate the movement of PS between 
both membrane leaflets[27,28]. The loss of phospholipid 
asymmetry results from activation; apoptosis and 
necrosis uncover PS on the outer cell surface, which is a 
key event of the formation of MPs[9,14].

Cell activation and apoptosis are two well-known 
processes causing the formation of MPs[29]. Vascular 
endothelium can release MPs in the case of cell 
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activation caused by bacterial lipopolysaccharides, 
the inflammatory cytokines, including tumor necrosis 
factor or interleukin-1, the complement complex C5b-9, 
accumulated low density lipoproteins, uremic toxins, high 
glucose and reactive oxygen species[9,15,30]. Cell activation 
causes a prompt release of intracellular calcium from the 
endoplasmic reticulum (Figure 1). The rise of cytosolic 
calcium triggers a change in the transmembrane usual 
state, which activates cytosolic enzymes, including 
calpain that leads to the disruption of cytoskeleton 
filaments. Ultimately, such cell membrane changes 
generate blebbing and dropping of the membrane-
derived MP into the extracellular fluid[8] (Figure 1). 

Apoptosis is the process of programmed cell death 
characterized by blebbing, cell contraction, nuclear 
disruption, increased chromatin concentration and 
chromosomal DNA fragmentation. When the cells 
enter the apoptotic process, they cause rapid cellular 
membrane blebbing. Creation of bleb results from the 
actin cytoskeleton and actin-myosin contraction tightly 
controlled by caspase 3-produced Rho kinase Ⅰ activa-
tion[31-33] (Figure 1).

The surface of the released MPs has special bioche-
mical features leading to important consequences in the 
blood and tissue. First, PS binds to annexin Ⅴ, which 
is usually used to define and count total MP amounts. 
However, the binding of annexin Ⅴ is unspecific. Second, 
PS abundance supplies multiple binding sites for the 
coagulation factors providing MP pro-coagulant activity. 
Finally, lipid and protein content of MP membrane may 
help characterize the MP and identify their potential 
biological effects[29]. 

Although there is consensus on the importance of 
EMPs, obtained results may show variation even within 
the same disease likely due to diversity in methodology 
used for microparticle measurement[34]. For example, 

freezing may decrease EMPs level regardless of storage 
duration[34]. In another study[35], It was demonstrated 
that there was no significant difference in terms of 
the levels of EMPs between fresh and frozen samples, 
however, long term storage of samples at -80°, all types 
of MPs were significantly reduced. 

Solid phase capture assay, flow cytometry and ELISA 
have been used to identify and measure EMPs level in 
blood. The solid-phase capture assay is able to perform 
the capture of most of MPs and functional assessment 
of the circulating MPs having procoagulant potential, 
irrespective of the capture ligand. The most important 
weakness of this method is underestimation of MP 
levels by antigenic capture due to possible interaction of 
soluble antigens[36]. Flow cytomety is the most widely 
used technique to quantify EMPs. It can capable of the 
analysis of thousands of MPs and differentiate the MPs 
based on their cellular origins[35,36]. Major disadvantages 
of flow cytometry are its labor-intensiveness, costs 
and ineffective to detect MPs smaller than 300 nm in 
diameter[34-36]. 

EMPS IN CKD
Endothelial dysfunction has a major role in the evolution 
of atherosclerosis. Deterioration of endothelial function 
evolves in the early stage of kidney disease when the 
glomerular filtration rate starts to decline and blood 
pressure increases[2]. The presence of endothelial dys-
function may serve as a marker of an unfavorable 
cardiovascular prognosis[3,37]. Because EMPs are able 
to directly impair endothelium-dependent vasodilator 
mechanisms, the levels of EMPs in patients with CKD 
are thought to be inversely correlated with endothelial 
function measured by flow-mediated vasodilatation[25]. 
In patients with CKD, EMPs may provide not only useful 
information regarding endothelial dysfunction but may 
also accelerate preexisting vascular dysfunction by 
impairing the nitric oxide release from the vascular 
endothelial (VE) cells[38]. 

The carotid intima-media thickness (cIMT), carotid 
artery and primary femoral artery pulse wave velocity 
(PWV) are used as indicators of early atherosclerosis[11,39]. 
Recently, we demonstrated that EMPs in the circulation 
were strongly related to atherosclerosis and arterial 
stiffness. We showed that PWV and cIMT were increased 
in uremic children and that both were positively corre-
lated with CD144+ EMP and CD146+ EMP. CD144+ EMP 
and mean blood pressure values were independent 
predictors of arterial stiffness, which was measured by 
PWV[11]. 

Although the reason of the increased circulating EMPs 
in hypertensive patients is not completely clear[40], it 
has been shown that EMPs may induce the progression 
of impaired endothelial function that already exists via 
expression of different adhesion molecules, endothelial 
cyclooxygenase type 2, the release of cytokines, and the 
impairment of nitric oxide released from VE cells[23,25]. 
This may cause atherosclerosis, hypertension and target 
organ damage such as hypertensive nephropathy, 
which is one of the common complications of high blood 
pressure. Hypertension is one of the leading causes of 
CKD in adult and EMPs are involved in impaired renal 
function in patients with hypertension[41]. Hsu et al[41] 

Characteristic Microparticles

Size 100-1000 nm
Mechanism of formation Outward blebbing of plasma membrane
How detected Flow cytometry, capture-based assays and 

electron microscopy
Characteristic features Annexin V-positivity and presence of cell-

specific surface markers
Composition Protein, RNA and miRNA
Membrane properties Externalized phosphatidylserine, rich in lipid 

rafts and impermeable
Name of antigens CD31 (PECAM-1)

CD51 (vitronectin receptor, αv β3)
CD105 (endoglin)

CD144 (VE-cadherin)
CD146 (S-Endo 1-associated antigen)

Table 1  Characteristics of endothelial microparticles[9]
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studied the relationship between circulating MPs and 
decline in glomerular filtration rate (GFR) in hypertensive 
subjects and demonstrated that the ratio of circulating 
EMP to endothelial progenitor cell (EPC) was associated 
with deterioration of kidney function. This is likely ex-
plained by the impaired vascular repair capacity and 
increased endothelial damage indicated by higher EMP to 
EPC ratios may accelerate the decline in GFR in patients 
with hypertension[41].

Increased MP levels have been reported in a variety 
of diseases that are especially associated with vascular 
injury[8]. Soriano et al[42] evaluated the possible relation 
between VC and the number of EMPs in CKD and 
investigated whether MPs from CKD patients may 
directly take part in the pathogenesis of VC. They 
showed that VC patients had an increased number 
of EMPs compared to non-VC patients and that MPs 
from CKD patients having VC raised 3-fold increase 

of osteocalcin expression, known as an active player 
in vascular calcification, in vascular smooth muscle 
cells[42,43]. Chen et al[44] examined the number of 
circulating MPs in patients with cardio-renal syndrome 
with and without coronary artery disease (CAD). 
They found that CAD was an independent predictor 
of increased EMPs in patients with CKD and that an 
increased creatinine level was related to the number 
of circulating of MPs. On the contrary, Faure et al[6] 
investigated EMP levels of patients with and without a 
clinical history of cardiovascular diseases and detected 
that the ones without a cardiovascular history did not 
have lower EMP levels compared to the ones with a 
cardiovascular history. They concluded that CKD patients 
without vascular diseases suffered from vascular injury 
associated with high EMP levels. 

To date, few studies have examined the circulating 
EMPs on CKD[6,11,25,38,45]. Boulanger et al[45] indicated 
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that EMPs were increased in end-stage renal disease 
through low shear stress, which is a major determinant 
of endothelial apoptosis[45]. Faure et al[6] enumerated 
the levels of circulating EMPs in pre-dialysis patients 
with CKD and in HD patients, and they examined the 
capability of uremic toxins to generate the release of 
EMP in HUVEC. They demonstrated that the levels 
of CD144 and CD146+ EMP in the pre-dialysis and 
hemodialysis groups were significantly higher than those 
in the healthy controls. They also found out that uremic 
toxins significantly induced the high level of EMP release 
by cultured HUVEC. In addition, they demonstrated 
that there was no difference in CD146+ or CD144 + 
EMP levels in terms of dialysis membrane (cellulosic vs 
synthetic) and that HD session did not affect CD146+ 
or CD144 + EMP levels. Amabile et al[25] demonstrated 
similar findings. In addition, they examined the relation-
ship between circulating EMPs and arterial dysfunction. 
They showed that the levels of EMPs correlate the loss 
of flow-mediated dilatation, increased PWV and an 
increased carotid artery augmentation index[25]. The 
increased levels of EMPs in patients with ESRD could 
be directly related to the presence of uremic toxins, 
such as p-cresol[6], p-cresyl sulfate[46], indoxyl sulfate[6] 

and homocysteine[47]. The elevation of EMP may 
exaggerate endothelial injury caused by the uremic 
state[6]. The p-cresol limits endothelial cell activation 
caused by inflammatory cytokines[48]. Both p-cresol and 
indoxyl sulfate inhibit endothelial proliferation. They are 
produced by amino acid catabolism as end-products 
and protein-bound uremic solutes. Thus, they are badly 
removed by conventional hemodialysis[49]. Altogether, 
this finding could explain the reason that HD sessions 
do not change CD146+ or CD144 + EMP levels. The 
pathogenic role of p-cresol and indoxyl sulfate in the 
formation of EMPs has been established[50,51]. It is shown 
that CKD patients had increased serum level of p-cresol 
and indoxyl sulfate are increased[52]. The p-cresol and 
indoxyl sulfate can stimulate the vesiculation of cultured 
endothelial cells in two ways. First, p-cresol affects the 
endothelial cell cytoskeleton in a Rho kinase-dependent 
way required for endothelial cell vesiculation[53,54]. 
Second, p-cresol modifies the actin cytoskeleton orga-
nization in endothelial cells, and its inhibitory effect on 
endothelial proliferation could, in part, be related to its 
effects on the endothelial actin cytoskeleton[55]. 

Similar to the case reported in a previous adult 
study, in our pediatric study, children with CKD (both 
dialysis and pre-dialysis group) had significantly 
increased circulating EMPs and cardiovascular risk 
factors (e.g., blood pressures, PTH, CRP, low albumin, 
anemia and low GFR) were associated with an increase 
in EMPs. Additionally, we demonstrated that HD patients 
had significantly increased EMPs showing endothelial 
dysfunction compared to PD patients. From this 
perspective, the data suggested that the deterioration 
of endothelial function in PD patients is slightly milder 
than in HD patients[11]. 

WHICH EMPS SHOULD WE USE IN 
CLINICAL PRACTICE?
VE-cadherin (CD144) is an endothelial-specific adhe-
sion molecule positioned at junctions between the 
endothelial cells. It controls special cellular processes, 
like cell proliferation and apoptosis, and regulates VE 
growth factor receptor functions[56]. CD 146 known as 
S-Endo 1-associated antigen is an integral membrane 
glycoprotein and located at the cell-cell junction in 
all of the endothelial cells[57]. CD31 known as platelet 
endothelial cell adhesion molecule-1 is expressed on 
the both early and mature endothelial cells, platelets, 
and the majority of leukocyte subpopulations. Its 
expression on endothelial cells is intensified at cell-cell 
junctions. CD31 works such a sensor of endothelial cell 
response to fluid shear stress and participated in the 
regulation of leukocyte migration along the venular 
walls[58]. CD51 (Vitronectin receptor α) is a member of 
type Ⅰ transmembrane protein and exist on endothelial 
cells, monocytes, macrophages, and platelets. It is 
involved in leukocyte homing and rolling. CD105 known 
as endoglin is a type Ⅰ membrane glycoprotein presented 
on the cell surfaces and is a component of the TGF 
beta receptor complex. It is involved in the cytoskeletal 
organization affecting cell morphology and migration 
and has very important function in the development of 
the cardiovascular system and in vascular remodeling[59]. 
Hence, EMPs having CD144, CD 146, CD31+/CD41-, 
CD51 and CD105 may be used to measure the existence 
and severity of VE cell damage[15]. Unfortunately, we do 
not have data giving the normal reference of MP in adult 
and pediatric population and its level based on CKD 
stage. Recently, we have demonstrated the patients with 
CKD stage 3-5 had increased EMPs compare to control 
subjects[11]. 

EMPS IN CKD AS A SURVIVAL MARKER
CV disease is a major cause of mortality and subs-
tantially reduces the life expectancy in patients with 
CKD[60]. Because arterial damage is thought to be a 
major contributor to cardiovascular mortality[61], Amabile 
et al[61] performed a prospective study in 81 stable, 
hemodialyzed, ESRD patients. They examined the 
influence of EMPs on all-cause mortality and fatal major 
cardiovascular events. The preliminary data showed that 
high levels of EMPs were associated with poor outcome. 
They were also independent predictors of all-cause and 
cardiovascular mortality. The most interesting findings 
in their study was that they determined a cut-off value 
(1190 events/μL) for global death prediction with 63% 
sensitivity and 82% specificity (The areas under the 
curve 0.73 ± 0.065) and a cut-off value (1040 events/μL) 
for CV death prediction with 83% sensitivity and 75% 
specificity (the areas under the curve 0.876 ± 0.06)[38]. 
Hence, the monitoring of EMP levels in patients with 
CKD might be a useful approach for determining the 
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ones without any symptom for high risk of developing 
CV diseases. This strategy would provide better risk 
stratification and introduce inexpensive prophylactic 
treatments[38].

EMPS IN KIDNEY TRANSPLANT
Although the survival of patients who undergo renal 
transplantation has improved and more than doubled 
the expected lifetime of a person with ESRD[62], renal 
transplant recipients still have high risk of vascular 
complications, in part due to the effect of immu-
nosuppressive medications[63]. To our knowledge, three 
studies have examined the role of EMPs in kidney 
transplantation and the impact of immunosuppressive 
agents on the kinetics of EMPs in renal transplant 
recipients (RTRs) during the post-transplant phase[64-66]. 
Al-Massarani et al[64] analyzed the levels of EMPs at 4 h 
to 6 h before the graft and at 3, 6, 9 and 12 mo after 
the transplantation. Similar to previous studies, before 
the graft, the RTRs had significantly high level of EMPs 
compared to healthy donors. Following one year post 
transplant, EMPs levels were significantly decreased 
regardless of the immunosuppressive treatment. They 
did not find any difference in the EMP levels between 
two therapeutic arms (CsA/AZA vs Tac/MMF). They also 
evaluated the ones with and without a clinical history of 
cardiovascular disease (HCVD) in terms of EMP levels, 
and they demonstrated that patients with HCVD had 
significantly increased EMP levels compared to the 
patients without HCVD. There was a significant decline 
in EMP levels in patients without HCVD one year after 
transplant. The most interesting findings of the study 
were that patients with CMV infection had high level of 
EMP and that the presence of CMV was an independent 
predictor of enhanced EMP[64]. Increased EMP levels 
in CMV infection are attributed to virus tropism for 
endothelial cells[67,68]. 

Endothelial dysfunction observed in dialysis patients 
improves after kidney transplant, which is likely secon-
dary to the decline in cardiovascular risk factors, like 
anemia, volume overload, uremic toxins and oxidative 
stress[53]. The amelioration of cardiovascular risk 
factors and the recovery of renal function in RTRs could 
decrease cellular activation and the EMP levels[65].

Although the population of renal transplant recipients 
with functioning allograft has significantly increased, 
graft rejection that occurred by cellular, humoral or mix 
mediated is still one of the major causes for allograft 
failure[66]. It is well known that the endothelium is the 
primary target of immunological attack in allograft 
rejection that could be detected early for effective 
patient care and management[66]. Unfortunately, serum 
creatinine (SCr) is a non-specific marker for the diagnosis 
of allograft dysfunction and kidney biopsy, which is the 
gold standard diagnostic procedure for the assessment 
of allograft rejection and is an invasive and expensive 
procedure. Qamri et al[66] measured EMP and SCr levels 

in blood plasma before (baseline) and periodically on 
days 7, 14 and 21, and 2 mo after transplantation and 
investigated whether the changes in circulating EMP 
levels were different based on underlying causes of 
CKD. They showed that the circulating EMP levels from 
baseline to two months post-transplant in patients with 
diabetes mellitus who received only kidney allograft, 
patients with obstructive/inherited isolated kidney 
disease and patients with immune-complex mediated 
glomerulonephritis were decreased. An increased circu-
lating EMP level was associated with rejection. When 
they classified patients based on peritubular capillary 
(PTC) C4d staining, the circulating EMPs in patients with 
negative PTC C4d staining were rapidly decreased after 
treatment for rejection; however, the circulating EMP 
level decreased more slowly in patients with positive PTC 
C4d staining that likely showed endothelial activation[66]. 
Based on the results of the study, it is perceived that 
antibody mediated endothelial cell injury is involved in 
allograft rejection. Increased circulating EMPs may give 
useful information about vascular endothelium in the 
setting of graft rejection and may provide novel tools 
for defining or adapting post-transplant therapeutic 
management[64]. In conclusion, EMPs are small vesicular 
particles of the endothelial cell membrane detached 
from endothelium during the process of activation or 
apoptosis and are considered as a marker of injury in 
the microvascular endothelial cells, which is a prominent 
characteristic of acute vascular rejection and chronic 
allograft nephropathy[9,66]. The circulating EMPs could be 
used as a marker of VE cell damage and to determine 
asymptomatic patients who might be at higher risk of 
developing cardiovascular disease in CKD and renal 
transplant. However, normal values should be obtained 
by conducting measurements in healthy subjects, 
including children from birth to 16 years of age, to use 
EMP as a reliable marker of vascular dysfunction in 
clinical practice. We also need a general agreement on 
methodological aspects of MP assessments to provide 
an opportunity of inter-laboratory comparisons of the 
results and determination of normal levels of MPs
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