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Background. School children living in the tropics are often concurrently infected with plasmodium and helminth parasites. It
has been hypothesized that immune responses evoked by helminths may modify malaria-specific immune responses and increase the
risk of malaria.

Methods. We performed a randomized, open-label, equivalence trial among 2436 school children in western Kenya. Eligible
children were randomized to receive either 4 repeated doses or a single dose of albendazole and were followed up during 13 months
to assess the incidence of clinical malaria. Secondary outcomes were Plasmodium prevalence and density, assessed by repeat cross-
sectional surveys over 15 months. Analysis was conducted on an intention-to-treat basis with a prespecified equivalence range of
20%.

Results. During 13 months of follow-up, the incidence rate of malaria was 0.27 episodes/person-year in the repeated treatment
group and 0.26 episodes/person-year in the annual treatment group (incidence difference, 0.01; 95% confidence interval,−.03 to .06).
The prevalence and density of malaria parasitemia did not differ by treatment group at any of the cross-sectional surveys.

Conclusions. Our findings suggest that repeated deworming does not alter risks of clinical malaria or malaria parasitemia among
school children and that school-based deworming in Africa may have no adverse consequences for malaria.

Clinical Trials Registration. NCT01658774.
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Helminths and Plasmodium organisms are some of the most
common parasites infecting humans worldwide [1, 2]. Their
large-scale distributions are delineated by climatic factors,
principally temperature and humidity, and modified by socioe-
conomic factors [1, 3]. The overlapping distributions of hel-
minth and plasmodia species mean that coinfection with both
types of parasites is common [4], with school-aged children at
greatest risk [5, 6]. Helminth species elicit a strong immune re-
sponse among hosts [7], and it has been hypothesized that this
may influence, either positively or negatively, human immunity
to malaria parasites and hence susceptibility to clinical malaria
[8, 9]. However, previous studies have been typically cross-
sectional and performed in single populations, and they have
produced conflicting results [10–15].

A few randomized longitudinal studies have to date investi-
gated interactions between worm and Plasmodium species. In
Madagascar, bimonthly treatment with the anthelmintic levam-
isole had no effect on Plasmodium falciparum parasite density
among children aged <5 years but, among children aged ≥15
years, resulted in a significant increase in parasitemia, compared
with untreated controls [16]. A trial among Nigerian children
aged 12–59 months found that the Plasmodium prevalence or
density did not differ among those who received 4 monthly al-
bendazole treatments, compared with children who received a
placebo [17]. However, these trials had a small sample size,
had inadequate follow-up, or used a drug (levamisole) that elic-
its an immune response. Recently, a cluster-randomized trial in
Indonesia evaluated the impact of albendazole treatment re-
ceived every 3 months for 21 months among children aged
5–14 years and reported a transient increase in malaria parasi-
temia at 6 months among older children but no significant im-
pact at the end of the trial [18]. This latter study provides the
strongest evidence to date that intensive deworming does not
alter the risk of malaria among school-aged children living in
Asia. A more recent individual randomized trial in northwest-
ern Tanzania found that repeated treatment against schisto-
somes (using praziquantel) and soil-transmitted helminths
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(STH; using albendazole) did not alter the risk of clinical malar-
ia or parasitemia, compared with annual treatment [19]; how-
ever the combined use of praziquantel and albendazole may
have masked the effect of each treatment.

We present results from an individual randomized, open-
label trial evaluating the impact of repeated (every 4 months)
anthelmintic treatment with albendazole on clinical malaria
and malaria parasitemia among school children in an area
where only STH species are endemic. Our hypothesis was
that, although helminths elicit strong immune responses, re-
peated anthelmintic treatment does not decrease or increase
the risk of clinical malaria or malaria parasitemia, compared
with annual treatment. Thus, we tested the hypothesis of no dif-
ference (equivalence) between the 2 treatment groups.

MATERIALS AND METHODS

Reporting of the current trial is in accordance with the check-
list of the extension of the CONSORT statement for noninfer-
iority and equivalence randomized trials [20] (Supplementary
Materials).

Study Area and Population
The study was conducted between January 2013 and September
2014 in Bumula District, Bungoma County, western Kenya. The
population of the area consists of indigenous Bukusu people
and mainly Luhya who settled in recent years. The economy
is primarily rural subsistence agriculture, with some families
growing sugar cane as a cash crop. Cattle and sheep are com-
monly kept. Malaria transmission is intense and perennial,
with 2 seasonal peaks (May–August andNovember–December).
Most malaria is caused by P. falciparum, with recent survey data
indicating a P. falciparum prevalence of 21.6% among school
children [21].Historically, helminth infections have been highly
prevalent (89.6%) in the area [22, 23], but recent improvements
in socioeconomic status and access to water and sanitation have
reduced infection levels [24]. Recent data indicate that 25.1% of
school children are infected with Ascaris lumbricoides and/or
hookworm [25]. As part of the national school-based deworm-
ing program launched in 2009, all school children in the area
were treated with 400 mg of albendazole in June 2013.

Study Design
The study was designed as individually randomized, open-label
trial to compare the impact of repeated (every 4 months) an-
thelmintic treatment versus annual treatment on the incidence
of clinical malaria and the prevalence and density of malaria
parasitemia among school children. A placebo-controlled trial
was considered unethical because of the ongoing national
school-based deworming program [25]. Although the study
was open label, community health workers undertaking the ma-
laria surveillance and laboratory technicians involved in parasi-
tological diagnosis were blinded to treatment allocation. The
primary outcome was incidence of clinical malaria assessed

by 13 months of weekly active-case surveillance. Secondary out-
comes were prevalence and density of Plasmodium species in-
fection, assessed through cross-sectional surveys conducted at
3, 7, 11, and 15 months.

Written informed consent was obtained from a parent or
guardian, and assent was sought from children before enroll-
ment into the study. A questionnaire was administered to
parents and guardians to collect information on household so-
cioeconomic characteristics, children’s use of malaria preven-
tion measures, and recent history of deworming. The study
was approved by the Kenya Medical Research Institute and Na-
tional Ethics Review Committee (SSC No.2242), the London
School of Hygiene and Tropical Medicine Ethics Committee
(6210), and the Makerere School of Public Health Institutional
Review Board (IRB00005876).

Study Participants
Rural schools in Bumula District that were accessible year-
round were purposively selected with the assistance of district
officials. Initially, 30 schools were screened in January 2013 to
identify schools with highest prevalence of STH infection. Sub-
sequently, 23 schools with an STH prevalence >20% were in-
cluded in the study. All children in participating schools for
whom informed consent was provided were screened for STH
infection, using the Kato-Katz method. To maximize the poten-
tial immunological impact of worms among participants, we
initially recruited children with detectable infection with A.
lumbricoides, Trichuris trichiura, and/or hookworms into the
main study (n = 1505). In vitro studies have shown inhibition
of P. falciparum by benzimidazoles [26], and a previous ran-
domized, placebo-controlled trial suggested a possible indirect ef-
fect of albendazole treatment on clinical malaria and malaria
parasitemia among preschool children [27] Therefore, to under-
stand the impact of albendazole among children uninfected with
STH, we additionally recruited 841 randomly selected uninfected
children. Exclusion criteria were signs of severe malaria [28], age
>15 years, STH negativity, and suspected sickle-cell trait. Recruit-
ment was done once and closed after the baseline survey.

Study Interventions and Randomization
Enrolled children were randomly assigned to receive either a
single dose of 400 mg of albendazole (Zentel; GlaxoSmithKline
South Africa, Cape Town) every 4 months for 12 months or a
single dose of 400 mg of albendazole at month 0 and a single
250 mg dose of vitamin C (Cosmos, Nairobi) at 4, 8, and
12 months. Allocation to treatment group was randomized
using computer-generated randomization by an independent
statistician. All drugs were administered under direct obser-
vation by study nurses who were not involved in other study
activities. Albendazole and vitamin C tablets were received
with water. In case of vomiting within the first 30 minutes, treat-
ment was repeated; no vomiting occurred after the second
administration.
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Sample Size Calculation
The study was designed to evaluate whether the rate of clinical
malaria was equivalent among the treatment groups (repeated
anthelmintic treatment vs annual anthelmintic treatment),
and as such sample sizes were calculated on the basis of equiv-
alence [29]. Treatment groups were assumed to be equivalent if
the difference in malaria incidence rate between groups fell be-
tween a predefined margin of 20% (−0.08 to 0.08 malaria epi-
sodes/person-year), a difference considered to represent an
important public health impact. To establish equivalence within
this range, assuming a malaria incidence of 0.4 episodes/year
[30], with 18 months of follow-up, 80% power, and a 2-sided
95% confidence interval (CI), the sample size would be 665 chil-
dren per group. To allow for loss to follow-up (20%), 753 STH-
infected children would need to be enrolled in each treatment
group in the main trial. For the secondary outcome, prevalence
of malaria parasitemia, the proposed sample size would provide
80% power with a 2-sided 95% CI to assume equivalence be-
tween treatment groups if the difference in the malaria parasi-
temia between treatment groups fell within a 20% margin of
−8.3% to 8.3%, given an expected malaria parasitemia preva-
lence of 32% (a conservative estimate) [21].

Recruitment was delayed in 2012 and follow-up curtailed in
2013 by unpredictable nationwide teacher strikes. Therefore,
faced with budget and time constraints, we conducted active
case surveillance for only 13 months instead of the planned
18 months. Active case detection commenced at the beginning
of the next school term after the teacher strike (September 2013)
and was terminated at 13 months (October 2014). With this
follow-up period, a sample size of 909 children in each treat-
ment group would be required to maintain adequate power.
To account for the shortened period of follow-up, we included
both infected (n = 1484) and uninfected (n = 829) children in
the final analyses. This was justified on the basis of 3 reasons.
First, only 61 children (9.7%) uninfected at baseline remained
uninfected throughout the study. Second, baseline characteristics
were generally similar among both sets of children, with exception
that infected children were more likely to be male and parasitemic
(Supplementary Table 1). Third, sensitivity analysis conducted in-
cluding only infected children revealed no change in the direction
or magnitude of results (Supplementary Tables 3 and 4).

Procedures
The primary outcome, incidence of clinical malaria, was as-
sessed through active case detection conducted on a weekly
basis through school visits. Children absent from school were
followed up at home. Axillary temperature was measured
using a digital thermometer. Children with documented fever
(temperature, ≥37.5°C) or who reported fever or other signs
of malaria within the past 24 hours were asked to provide a
blood sample by finger prick, which was used to perform a ma-
laria rapid diagnostic test (Bioline Malaria Ag P.f/Pan, BD

Biosciences, San Diego, California) and to prepare thick and
thin blood smears. Any child with a diagnosis of uncomplicated
clinical malaria (based on the rapid diagnostic test result) was
treated with a 6-dose regimen of 20 mg artemether/120 mg lu-
mefantrine in accordance with national guidelines.

Secondary outcomes, prevalence and density of Plasmodium
infection, were assessed by expert microscopy during cross-
sectional surveys at 0, 3, 7, 11, and 15 months. Blood smears
were stained with 2% Giemsa (pH 7.2) for 45 minutes. Parasite
density was defined as the number of Plasmodium parasites per
microliter of blood, counted against 200 leukocytes and with the
assumption of a leukocyte count of 8000 leukocytes/µL. If <10
asexual parasites were detected in the first 200 leukocytes,
counting was continued against 500 leukocytes. A blood
smear finding was considered negative when the examination
of 200 high-power fields failed to reveal asexual parasites.

Table 1. Baseline Characteristics of Children

Characteristic

Study Group

Annual
Treatment
(n = 1173)

Repeated
Treatment
(n = 1173)

Male sex 52.7 (618/1173) 52.3 (614/1173)

Age, y, mean ± SD 10.5 ± 2.5 10.4 ± 2.5

Body temperature, °C, mean ± SD 36.6 ± 0.7 36.5 ± 1.1

z score less than −2 SD below median reference value

Weight for age 2.9 (34/1173) 3.2 (37/1173)

Height for age 25.8 (303/1173) 24.7 (290/1173)

Body mass index for age 10.8 (127/1173) 10.1 (118/1173)

Malaria parasitemiaa 48.4 (546/1129) 48.3 (549/1136)

Parasitemia level, parasites/µL,
mean (95% CI)

1626 (1104–2393) 2143 (1571–2925)

STH prevalence

Hookworm 38.3 (449/1173) 38.1 (443/1173)

A. lumbricoides 35.0 (411/1173) 36.6 (429/1173)

T. trichiura 1.0 (12/1173) 0.6 (7/1173)

Any STH infection 64.2 (753/1173) 64.1 (752/1173)

STH intensity, eggs/g of feces, mean (95% CI)

Hookworm 68 (44–106) 119 (75–191)

A. lumbricoides 1979 (1509–2596) 1693 (1263–2269)

Coinfection

Hookworm and A. lumbricoides 10.0 (117/1173) 11.3 (131/1173)

Hookworm and P. falciparum 21.3 (239/1129) 20.1 (227/1136)

A. lumbricoides and P. falciparum 18.1 (204/1129) 18.1 (204/1136)

Hemoglobin level, g/dL, mean
(standard error)

12.3 ± 1.3 12.3 ± 1.4

Anemia 36.8 (402/1093) 39.2 (432/1103)

Slept under bed net previous night 49.0 (854/1100) 51.0 (888/1113)

Education level of household head

None or incomplete primary 49.6 (623/1090) 50.1 (632/1095)

Above primary school 50.2 (467/1090) 49.8 (463/1095)

Data are % (proportion) of children, unless otherwise indicated.

Abbreviations: A. lumbricoides, Ascaris lumbricoides; CI, confidence interval; P. falciparum,
Plasmodium falciparum; SD, standard deviation; STH, soil-transmitted helminth; T. trichiura,
Trichuris trichiura.
a Determined by microscopy.
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Thin smears were used for species identification. P. falciparum
was the only species detected. The hemoglobin concentration
was assessed using a HemoCue hemoglobin photometer (Hb
201+, Ångelholm, Sweden). During the surveys conducted at
7, 11, and 15 months, children were asked to provide a stool
sample, which was examined in duplicate for the presence
and number of helminth ova by the Kato-Katz technique.

Statistical Analysis
Analysis was conducted on an intention-to-treat basis (includ-
ing all children randomized and entered into active case surveil-
lance), with additional analysis conducted on a per-protocol
basis (including all children who received all 4 treatment
rounds). Data were analyzed using Stata, version 13 (Statacorp,
College Station, Texas).

Summary statistics were calculated for all baseline data. Anthro-
pometric indices—z scores of height for age (HAZ), weight for age

(WAZ), and body mass index for age (BMIZ)—were calculated
using the AnthroPlus software for children aged 5–19 years [31],
assuming a midpoint age for each child. Weight for age was calcu-
lated only for the children aged 5–10 years. Children were classified
as stunted, underweight, and thin if their HAZ, WAZ, and BMIZ,
respectively, were less than −2 SDs from the reference medium.
Anemia was defined using age- and sex-specific World Health
Organization thresholds adjusted on the basis of altitude [32].

Clinical malaria was defined as the presence of asexual Plas-
modium species parasitemia (as determined by microscopy)
and either an axillary temperature of >37.5°C or a reported
history of fever or other signs of malaria during the preceding
24 hours. An alternative case definition that used a parasite den-
sity cutoff of >2500 parasites/µL was also used [33]. Children
were considered at risk from their date of entry into the study
until experiencing an episode of clinical malaria completing
follow-up at 13 months. Children who had documented or

Figure 1. Trial profile. Children whose parents withdrew consent and children who refused to be part of the study were categorized as “withdrew”; children who stopped
coming to school were categorized as “dropped out”; and children who moved to schools not in the study were categorized as “transferred.” Abbreviation: STH, soil-transmitted
helminths.
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reported clinical malaria or who were known to have received
medical attention from any source other than the survey team
were censored for 28 days. Children who were absent at school
for ≥10 days were censored for the time of absence. Rates in
each treatment group were calculated as the number of events
divided by the number of person-years at risk, and relative dif-
ferences in rate ratios were determined using survival analysis
functions in Stata. Survival analysis for clinical malaria up to
13 months was based on Kaplan–Meier curves. The prevalences
of STH and Plasmodium infection, together with their 95% CIs,
were calculated using exact binomial analysis. To allow for over-
dispersion of egg counts, arithmetic mean numbers of eggs per
gram of feces, with their 95% CIs, were estimated using negative
binomial regression, taking into account clustering by school.
The differences in the prevalence of malaria parasitemia be-
tween treatment groups at 0, 3, 7, 12, and 15 months were de-
termined using the binomial test for differences in proportions.

Equivalence between treatment groups can be stated if the
95% CIs of the relative difference in malaria incidence and para-
sitemia lie within the predetermined margins of equivalence of
−0.08 to 0.08 episodes/person-year for clinical malaria and
−8.3% to 8.3% for prevalence of malaria parasitemia. Sensitivity
analyses were performed to examine the intervention effect, ex-
cluding children who were uninfected at baseline.

RESULTS

Trial Profile and Baseline Characteristics
Between February and June 2013, 7075 children aged 5–18 years
were screened; 1505 infected with at least 1 STH species were
recruited into the trial. A further 841 randomly selected chil-
dren without STH infection were also recruited. In total, 2346
children were included in the baseline survey and randomized
to receive either repeated or annual treatment. Baseline charac-
teristics were comparable between the 2 treatment groups

Table 2. Prevalence and Intensity of Hookworm, Ascaris lumbricoides, and Any Soil-Transmitted Helminth (STH) Infection During the Cross-sectional
Surveys

Month (Survey Time), STH Species Children, No.

Prevalence, % (95% CI)

P ValueAnnual Treatment Repeated Treatment

0 (Feb–June 2013) 2346

Hookworm 38.3 (33.1–44.3) 37.7 (33.1–43.1) .799

A. lumbricoides 35.0 (28.2 43.4) 36.5 (30.6–43.6) .438

Any STH 63.8 (59.4–68.6) 63.4 (60.3–66.7) .830

7 (Jan 2014) 1969

Hookworm 12.3 (9.2–16.4) 6.6 (5.0–8.6) .001

A. lumbricoides 14.7 (10.9–19.9) 6.4 (4.3–9.5) <.001

Any STH 23.8 (19.4–29.0) 11.7 (9.6–14.5) <.001

11 (May 2014) 1870

Hookworm 13.0 (10.0–17.0) 6.6 (5.1–8.6) <.001

A. lumbricoides 16.3 (11.1–24.0) 5.0 (3.1–8.1) <.001

Any STH 24.6 (19.4–31.3) 10.2 (7.9–13.1) <.001

15 (Sept 2014) 1772

Hookworm 13.6 (10.8–17.1) 5.6 (4.1–7.7) <.001

A. lumbricoides 17.6 (13.0–23.9) 5.0 (3.1–8.1) <.001

Any STH 26.5 (21.8–32.2) 9.6 (7.4–12.4) <.001

Intensity of Infection, Eggs/g (95% CI)

Annual Treatment Repeated Treatment

0 (Feb–June 2013) 2346

Hookworm 68 (43–105) 118 (75–189) .004

A. lumbricoides 1966 (1500–2596) 1673 (1249–2240) .093

7 (Jan 2014) 1969

Hookworm 143 (79–261) 14 (7–28) <.001

A. lumbricoides 656 (415–1037) 148 (68–321) <.001

11 (May 2014) 1870

Hookworm 144 (79–262) 24 (13–44) <.001

A. lumbricoides 1185 (732–1919) 190 (89–399) <.001

15 (Sept 2014) 1772

Hookworm 83 (32–218) 8 (4–18) <.001

A. lumbricoides 1672 (1121–2491) 89 (45–176) <.001

Abbreviation: CI, confidence interval.

270 • JID 2016:213 (15 January) • Kepha et al



(Table 1). Between the baseline survey and the start of active
case surveillance, 33 children were lost to follow-up, leaving
2313 children. During the course of the trial, 1937 children
(82.5%) received all 4 doses of albendazole or albendazole/vita-
min C; 240 (10.2%) received 3 doses, 97 (4.1%) received 2 doses,
and 72 (3.1%) received only 1 dose. The trial profile (Figure 1)
shows that 1000 children (85.3%) in the repeated treatment
group and 997 (85.0%) in the annual treatment group complet-
ed the full 13 months of active case surveillance follow-up.

Follow-up Data
Table 2 and Figure 2 present the effect of repeated and annual
treatment on A. lumbricoides and hookworm prevalence over
time. T. trichiura was very rare among study participants.
Repeated treatment markedly reduced the prevalence of STH
infection to <10% after 7 months and kept levels low (<6%)
at 15 months of follow-up. In contrast, annual treatment only
reduced the prevalence of A. lumbricoides to 14.7% and the
prevalence of hookworm to 13.0% at 7 months of follow-up,
and thereafter, at 11 and 15 months, infection levels rose slight-
ly, to 24.8% and 26.4%, respectively. Of the 1505 children who

were infected with any STH species at baseline, 1141 (75.8%)
were followed up, and 257 (22.5%) remained infected at 15
months. Of the 841 children uninfected at baseline, 631
(75.0%) were followed up, and 61 (9.7%) remained uninfected
at 15 months.

During the 13 months of active case detection, 606 incident
cases of malaria occurred, with 405 children having only 1 in-
cident case and 93 having ≥2 cases. The incidence of malaria
was 0.27 episodes/person-year in the repeated treatment
group and 0.26 episodes/person-year in the annual treatment
group, a rate difference of 0.01 (95% CI, −.03 to .06), based
on intention-to-treat analysis. Figure 3A presents comparisons
of incidence rates among treatment groups and shows that CIs
included 0 and were within the predefined margin of equiva-
lence (−0.08 to 0.08 malaria episodes/person-year) for inten-
tion-to-treat and per-protocol analyses. Similarly, by using a
malaria case definition based on an increased parasite density
cutoff, the results showed equivalence (Figure 3A). Figure 4 pre-
sents the Kaplan–Meier survival curves for clinical malaria up
to 13 months and shows similar curves for each treatment
group. Although there was a slight diversion after 8 months,

Figure 2. Prevalence and intensity of hookworm (A and C) and Ascaris lumbricoides (B and D) during the 4 cross-sectional surveys. Whiskers denote 95% confidence
intervals. The point of origin x-axis is shifted right to make error bars visible.
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the difference was small. The absolute prevalence difference in
malaria parasitemia and the associated 95% CI at each of the 5
cross-sectional surveys fell within the predefined margin of
equivalence (Figure 3B and Table 3). The density of parasitemia
was similar in each treatment group (Table 3). Sensitivity anal-
ysis showed comparable results when analysis was restricted
to children with detectable STH infection (Supplementary
Tables 2–4).

DISCUSSION

The results of our trial show that 4 rounds of albendazole at 4
monthly intervals did not increase or decrease the incidence of
clinical malaria or malaria parasitemia, compared with a single
round of treatment, based on our predefined margins of equiv-
alence (±0.08 cases/person-year and ±8.3%, respectively). Our

study has a number of strengths, including a randomized de-
sign, a prespecified sample size, a specific case definition of ma-
laria, and a high (85%) follow-up rate. A previous study in
Nigeria found that anthelmintic treatment every 4 months for
14 months resulted in an increase in Plasmodium infection in
the dry season, compared with findings in the placebo group,
but this difference was found to be nonsignificant, partly be-
cause of the very low follow-up rate (26%) [17]. A placebo-con-
trolled trial in Uganda involving a birth cohort found that
quarterly albendazole treatment reduced the malaria incidence
among children aged <5 years, with the strongest effects among
children aged 15–24 months [27]. However, this study was un-
able to determine whether this observation was due to removal
of worms from children or to the direct inhibitory effect of al-
bendazole on malaria parasites. A recent study in Tanzania

Figure 3. Absolute incidence rate difference over 13 months of follow-up between treatment groups (A) and the absolute difference in the prevalence of malaria parasitemia
between the treatment groups during 5 cross-sectional surveys (B). Whiskers denote 2-sided 95% confidence intervals, vertical dashed lines denote zones of predefined
equivalence, and solid lines denote null scales. Abbreviations: ITT, intention-to-treat analysis; PP, per-protocol analysis.
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found that repeated anthelmintic treatment with praziquantel
and albendazole 4 times/year did not change the incidence of
malaria or the prevalence of Plasmodium among children, com-
pared with findings associated with annual treatment [19]. This
study did not include an explicit sample size calculation, re-
cruiting some 100 children per school, and relied on school-
teachers to identify clinical cases of malaria over 2 years of
follow-up. In Indonesia, an adequately powered and rigorous
cluster-randomized trial reported no effect of repeated treat-
ment with albendazole on the prevalence of malaria parasitemia
among school children. Combined, these previous studies and
our study suggest that repeated school-based deworming has
no indirect effects on the risk of clinical malaria and malaria
parasitemia among school children.

There are a number of study limitations. The study was
partially unblinded; participants were aware of treatment

allocation, but assessors of main outcomes were blind. Second,
our study reflects parasitemia based on expert microscopy find-
ings, which underestimates infection, compared with molecular
methods [34]. Third, children may have sought treatment from
other sources and may therefore have been missed by our active
case surveillance, but our randomized design should have min-
imized bias between groups. Fourth, the ethical obligation to
provide at least annual deworming, the standard of care in
Kenya, meant that we were unable to include an untreated con-
trol group. We expected 4 rounds of treatment to completely
clear infection among children in the repeated treatment
group. At 15 months of follow-up, however, 9.7% of children
still harbored STH infections, compared with 26.5% in the an-
nual treatment group. As such, the low levels of infection might
explain the lack of difference between the treatment groups.
Given that the strength of immunological responses against hel-
minths depend partly on infection intensity [8, 35], another po-
tential contributing factor to the lack of difference are the
relatively low intensities found in western Kenya, compared
with other settings [16, 17, 36]. However, low levels of infection
are increasingly becoming the norm as countries implement na-
tional deworming programs, and as such our results have rele-
vance for many settings in sub-Saharan Africa.

In areas of high malaria transmission, the main burden of
malaria is among young children, but the risk of coinfection
is low because of low levels of helminth infections in this age
group [37]. It would nonetheless be important to investigate
the impact of deworming on the risk of malaria among young
children, because an effect has been previously documented
[27] and because young children receive deworming, either as
part of school-based deworming programs or during child
health days. In contrast to their younger siblings, school-age
children living in areas of high malaria transmission have gen-
erally acquired immunity to malaria [38] and therefore tend to

Figure 4. Cumulative risk of malaria over 13 months of follow-up, by treatment
group.

Table 3. Prevalence and Density of Malaria Parasitemia at Each Cross-sectional Survey

Month (Survey Time) Season Children, No.

Prevalence, % (95% CI)

Proportion Difference (95% CI)Annual Treatment Repeated Treatment

0 (Feb–June 2013) Dry 2265 48.3 (42.7–54.7) 48.4 (43.7–53.6) 0.000 (−.04 to .04)

3 (Sept 2013) Wet 2163 41.5 (36.2–47.6) 41.8 (36.8–47.4) −0.001 (−.04 to .04)

7 (Jan 2014) Dry 2008 32.3 (26.4–39.6) 31.9 (26.0–39.1) 0.004 (−.04 to .04)

11 (May 2014) Wet 1928 43.7 (38.3–50.0) 41.5 (37.2–46.3) 0.02 (−.02 to .07)

15 (Sept 2014) Wet 1851 42.9 (37.8–48.8) 45.3 (40.4–50.8) −0.03 (−.07 to .02)

Density, Parasites/µL (95% CI)

Mean Difference (95% CI)Annual Treatment Repeated Treatment

0 (Feb–June 2013) Dry 2265 1626 (1105–2393) 2144 (1571–2926) −497 (−1417 to 424)

3 (Sept 2013) Wet 2163 460 (370–573) 1149 (452–2924) −683 (−1774 to 408)

7 (Jan 2014) Dry 2008 602 (442–821) 507 (366–704) 94 (145–335)

11 (May 2014) Wet 1928 1210 (891–1645) 1345 (954–1896) −120 (−613 to 371)

15 (Sept 2014) Wet 1851 577 (475–703) 670 (493–912) −92 (−304 to 121)

Abbreviation: CI, confidence interval.
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experience less morbidity from malaria. However, although the
burden of malaria may be low, it is not insignificant [39]. In this
study, 1 in 5 children experienced clinical malaria, and 30%–

50% of children, depending on the season during which the sur-
vey was performed, were infected with malaria parasites. Future
analysis will investigate risk factors for malaria morbidity and
association with anemia.

An estimated 81.6 million school-aged children living in sub-
Saharan Africa benefitted from mass treatment with albenda-
zole or mebendazole in 2013 [40]. The results from our study,
together with other work, show that repeated anthelmintic
treatment does not increase or decrease the rate of clinical ma-
laria or the risk of malaria parasitemia. These findings offer ev-
idence for use in the planning of school-based deworming in
sub-Saharan Africa and show that the scaling up of deworming
is unlikely to have adverse consequences for malaria among
school-aged children.

Supplementary Data
Supplementary materials are available at http://jid.oxfordjournals.org.
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