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Abstract: In the last few decades extreme heat events have led to substantial excess mortality, most
dramatically in Central Europe in 2003, in Russia in 2010, and even in typically cool locations such
as Vancouver, Canada, in 2009. Heat-related morbidity and mortality is expected to increase over
the coming centuries as the result of climate-driven global increases in the severity and frequency
of extreme heat events. Spatial information on heat exposure and population vulnerability may
be combined to map the areas of highest risk and focus mitigation efforts there. However, a
mismatch in spatial resolution between heat exposure and vulnerability data can cause spatial
scale issues such as the Modifiable Areal Unit Problem (MAUP). We used a raster-based model
to integrate heat exposure and vulnerability data in a multi-criteria decision analysis, and compared
it to the traditional vector-based model. We then used the Getis-Ord Gi index to generate spatially
smoothed heat risk hotspot maps from fine to coarse spatial scales. The raster-based model allowed
production of maps at spatial resolution, more description of local-scale heat risk variability, and
identification of heat-risk areas not identified with the vector-based approach. Spatial smoothing
with the Getis-Ord Gi index produced heat risk hotspots from local to regional spatial scale. The
approach is a framework for reducing spatial scale issues in future heat risk mapping, and for
identifying heat risk hotspots at spatial scales ranging from the block-level to the municipality level.
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1. Introduction

Climate change is influencing the severity and frequency of heat waves [1,2], which may lead
to increasing heat-related morbidity (e.g., cardiovascular and respiratory diseases) and mortality,
especially during extreme heat events [3]. Excess mortality from extreme heat is a worldwide
phenomenon, occurring in the tropics [4], subtropics [5], and temperate climate zones, the latter
ranging from the extreme heat event in Central Europe in 2003 [6,7] to cooler places such as
Vancouver, Canada, in 2009 [8]. The health effects of extreme heat are influenced by the severity
and duration of the extreme heat event, compounded by simultaneous effects of air pollution as
well as population vulnerability [3], and modified by typical summer temperatures to which the
population is adapted [9,10]. In order to address related public health impacts, previous studies
have temporally evaluated a range of temperature metrics to estimate heat-related mortality [11,12],
have estimated spatial and temporal variability in heat-related mortality [13–20], and have developed
indices to locate heat vulnerable populations [2,21–23].
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Although previous studies have quantified and mapped population heat vulnerability, only a
few studies have combined heat vulnerability information with data on heat exposure to evaluate
the health risks associated with extreme heat [24–26]. Identification of heat risk hot spots can be
used to guide heat mitigation interventions, such as establishment of green or reflective roofs, urban
parks, water features, etc. Furthermore, most heat health risk studies have aggregated data to match
spatial units employed by the census from which vulnerability information is typically derived.
However, the choice of the spatial unit used to calculate vulnerability (e.g., postal code, census tract,
etc.) affects the identification of vulnerably neighborhoods [23], and introduces potential spatial
data quality concerns due to the relatively coarse spatial resolution of census information and the
modifiable areal unit problem (MAUP), a statistical bias that arises from the selection of a specific
spatial unit of analysis [27–30]. When geographic data are aggregated into a spatial feature with
specific spatial scale (e.g., by census tract, postal code, or county), mean values within the spatial
feature are affected by its boundary (Figure 1), which in turn may lead to a zoning effect that affects
subsequent analyses. For example, if a mean temperature value is assigned to a census tract that
temperature will be lower if the census tract includes a local lake than if the boundary had been
drawn such that the lake belonged to the neighbouring census tract, although the temperature that
the population is exposed obviously remains unaffected by the administrative boundary. This can
lead to substantial errors when temperature maps are used as proxies for the heat exposure of the
population living in each census tract, especially because temperature is strongly influenced by the
local landscape [31]. According to results by Sobrino et al. [32] the optimum spatial resolution of
surface temperature maps could be as low as 50 m when mapping the district-level surface urban
heat island and 100 m is sufficient to describe differences between neighborhoods, while a spatial
resolution of 500 m or coarser does not allow a description of significant temperature differences
between neighborhoods. Spatial units commonly used to quantify population vulnerability, such as
dissemination areas, census tracts and counties, are thus very coarse (typically > 1 km) compared to
the local variability in temperature found in urban environments. An even greater problem exists
when a local weather station is assumed representative of a study area that extends beyond its
neighbourhood [3]. In such cases spatial interpolation may be used to estimate neighbourhood-level
temperatures between weather stations, but inadequate coverage, uneven distribution of weather
stations, and the influence of the local landscape on temperature typically render such approaches
suboptimal [33].
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Figure 1. An illustration of the Modifiable Areal Unit Problem (MAUP). On the left side an original
high-resolution dataset is shown, while the right side illustrates two different results of spatial
aggregation of the original data from scaling (scaled to coarser scale/resolution with same spatial
size) and from zoning (scaled to the coarser scale/resolution by areas with different spatial sizes). The
spatial pattern of the averaged values depends on the boundaries of the spatial units of aggregation.
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The objectives of this study were: (1) to develop an alternative raster-based spatial framework
to estimate heat health risk at high spatial resolution; (2) to examine the differences between
the resulting raster-based map and a comparable map produced with the traditional vector-based
approach; and (3) to predict and map the heat risk hotspots at multiple spatial scales for our study
area, the greater Vancouver area, British Columbia, Canada.

2. Methods

2.1. Study Site

The greater Vancouver area is a coastal metropolis with a population of more than two million
people [34] and a moderate, temperate climate (Figure 2). During the summer of 2009 the greater
Vancouver area experienced an unprecedented extreme heat event [15] that was associated with
more than 100 excess deaths over a 7-day period [8]. It was the first clear indication that high
ambient temperatures could adversely affect the population of greater Vancouver. Immigration
and rapid development has created an environment in greater Vancouver with a high percentage
of the population living alone and in multi-storey buildings, two factors known to increase heat
health vulnerability [35,36]. According to the 2006 census [34], 28.46% of the population in
the Greater Vancouver Census Division live in single-person households, and 39.41% live in the
multi-storey apartments. This includes 12.76% living in high-rise buildings with more than five
storeys. Furthermore, as elsewhere in Canada and beyond, the area is experiencing a gradual aging
of the population [34].
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Figure 2. Study site in the greater Vancouver area. A Landsat 5 TM image forms the background, the
extent of the study area is indicated in semi-transparent grey, and the population density is shown in
shades of red.

2.2. Data

2.2.1. Vulnerability Data

Despite geographical variation, population groups at elevated mortality risk during extreme
heat events have typically been found to include: (1) seniors; (2) infants; (3) people living in old
housing, multi-story apartment buildings, and mobiles homes; (4) people living alone; (5) people with
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low income; (6) people with low education; and (7) the unemployed. Seniors are widely recognized
as a heat vulnerable population [25,26,37,38]. Seniors typically exhibit lower tolerance of extreme
heat due to comorbidities, reduced mobility, reduced ability to care for themselves, and weaker
immune systems [39,40], which increases their susceptibility to heat-related morbidity and mortality
during extreme hot weather events [7,41]. Infants are primarily at risk due to low self-awareness of
dehydration combined with inability to cool themselves, and rely on parents for cooling [42]. Heat has
specifically been shown to be a factor in Sudden Infant Death Syndrome [43], and some suggest that
the heat health risk of infants is usually underestimated [44]. People who live in older housing can
be at risk because many older buildings do not have air conditioning and rely on natural ventilation
using open windows and doors during hot weather [36]. This can result in heat trapped indoors and
thus increased heat exposure, especially during stable atmospheric conditions with little wind [45],
conditions that are typical of extreme heat events in the area [46]. Similarly, living in the upper level of
a high-rise building or in a mobile home is associated with greater heat-health risk [25,36,45]. People
living alone have increased risk of social isolation, which reduces their ability to seek and receive care
when needed [36,45]. People with low income are at elevated risk as they have fewer resources for
coping with extreme heat and, on average, also suffer more from comorbidities. As an example at
the extreme end of the poverty spectrum, the homeless population in greater Vancouver has elevated
incidence of mental illness as well as an elevated incidence of health problems stemming from drug
use and alcohol consumption [47–49]. This population group has been shown to be at particular
risk of heat stroke [50]. People with a lower education level are at elevated risk because they are
more likely to do physically demanding work outdoors, which increases their heat exposure [51].
Finally, while unemployment in itself may not lead to increased risk, it can be associated with both
social isolation and low income, which in turn may lead to poor living conditions. The unemployed
have been demonstrated to be at elevated mortality risk during extreme heat events [36,50,52].
Acclimatization to heat can reduce the effect of these vulnerabilities on morbidity and mortality [9,10].

It is important to note that not all these variables have been shown to influence heat health
risk in the greater Vancouver area [8,15], and that the climatic, social and infrastructural context is
likely to modify their local importance. However, until more evidence of specific locally important
heat vulnerability variables emerges, these variables are a reasonable list of factors likely to influence
heat health vulnerability in the area. Data on these variables were extracted from the 2006 Canadian
Census at the dissemination area level, a spatial unit that contains an approximate population of
400–700 persons, using the SimplyMap 3.0 database (Table 1). The physical size of dissemination
areas in British Columbia varies between 839 m2 and 121,589 km2. Apart from the unemployment
rate, all values were divided by the physical size of the dissemination area to obtain density values.

Table 1. Social vulnerability variables used to quantify heat vulnerability.

Variables Name Details

Seniors Number of people more than 55 years old
Infants Number of people less than 5 years old

People in old houses Number of households living in housing built prior to 1970

People in high heat risk homes Number of households living in multi-story
apartment buildings or mobile homes

Low income population Number of people with annual household
income less than $20,000

Low education population Number of people without a diploma or a degree
People living alone Number of single-person households

Unemployment Unemployment rate

2.2.2. Heat Exposure Data

Heat exposure was estimated using the land surface temperature (LST) derived from a Landsat
5 TM image from 23 July 2006, covering the full study area, resampled to 60 m spatial resolution.
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The date the image was acquired was a typical hot summer day in the study area, with a maximum
temperature of 26.7 ˝C at Vancouver International Airport, light wind and no clouds. LST was
estimated from Landsat TM band 6 based on the LST calculation from Ho et al. [31]. To obtain
LST, we calculated the blackbody radiance at temperature LST based on the upwelling atmospheric
radiance (LÒ), downwelling atmospheric radiance (LÓ) and atmospheric transmittance τ from NASA’s
Atmospheric Correction Parameter Calculator [53], and the emissivity values (ε) from the North
American ASTER Land Surface Emissivity Database [54], with the following equation:

BpLSTq “
Lsen ´ LÒ

ετ
´

1´ ε

ε
LÓ (1)

where B(LST) is the blackbody radiance at temperature LST and Lsen is the at-sensor radiance [55].
After that, an inversion of Planck’s Law was applied with the B(LST) to obtain the LST:

LST “
K2

lnp
K1

B pLSTq
` 1q

(2)

where K1 and K2 are the thermal band calibration constants.

2.3. Multi-Criteria Decision Analysis

We used multi-criteria decision analysis (MCA) with two different data resampling approaches
to visualize the influence of the MAUP issue on heat health risk maps. MCA is a qualitative statistical
method that allows users to combine data layers in an analysis by assigning weights that represent
the importance of each layer. Weights are typically based on expert knowledge. MCA proceeds by
first assigning weights to each variable, then calculating a per-cell weighted average, and (optionally)
discretizing the result based on percentiles or natural breaks. The method has been widely applied to
risk analysis, for example in predicting landslide susceptibility, sinkhole mapping, soil erosion, and
the potential for land development [56,57], as well as in the spatial heat-health literature [2,24–26].
We used MCA to map the heat-risk hotspots by combining heat vulnerability and exposure data
layers in an application of Crichton’s Risk Triangle [58]. The eight individual heat vulnerability layers
were classified using Jenks natural breaks [59], resulting in eight new vulnerability layers each with
an index value from 1 (lowest vulnerability) to 9 (highest vulnerability). These eight layers were
then combined into a single composite heat vulnerability layer by assigning equal weights (12.5%)
to each layer, and the composite layer was reclassified using Jenks natural breaks in order to stretch
the weighted values to a range of 1 to 9. The heat exposure layer was similarly classified using Jenks
natural breaks, resulting in a layer with index values ranging from 1 (coolest, lowest exposure) to 9
(highest exposure, warmest). The composite vulnerability and exposure layers were then combined
into a heat risk layer by assigning equal weights (50%) to each, and reclassifying the result into 9 new
index values ranging from 1, indicating lowest risk resulting from a combination of low vulnerability
and low exposure, to 9, indicating highest risk resulting from a combination of high vulnerability and
high exposure.

The vulnerability and exposure data layers were combined using two different resampling
approaches. In the raster-based approach, the spatial structure of the heat exposure data (raster
format with 60 m cell size) formed the basis of the overlay analysis. The vulnerability data layers were
resampled to this format by extracting, for each cell, the value from the dissemination area covering
the cell center. In the vector-based approach, the spatial structure of the heat vulnerability data (vector
format defined by the census dissemination areas) was retained, and heat exposure values for each
dissemination area were calculated as the mean of all cells within each vector polygon. We then
compared the heat risk maps resulting from these two approaches to investigate differences in the
resulting spatial patterns (Figure 3).
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2.4. Getis-Ord Gi Index

Subsequently, we used the Getis-Ord Gi index [60] to improve the visualization of hotspots of
heat risk at varying scales and reduce the zoning effect caused by the MAUP problem. The Gi index
is a spatial statistic that identifies clusters of high and low values in a spatial data set by comparing
values in a neighbourhood to the distribution of values in the complete data set. Gi is calculated as:

Gipdq “

ř

j wijpdqxj
ř

j xj
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where d is the distance between cells, wij pdq is a symmetric one/zero spatial weight matrix with ones
for all links defined as being within d of a given i, and zero are the all other links including the link
of point i to itself.

The Gi index quantifies the z-score of a cluster of values defined using a spatial lag distance [61].
Higher Gi values indicate a high-value cluster, i.e., a hotspot, while lower values indicate a cold spot.
Lag distances between one and four pixels, corresponding to approximately 200 and 500 m radii
around each cell, were used to define the clusters and assess the effect of varying lag distance.

3. Results

3.1. Raster-Based and Vector-Based Heat Risk Maps

Heat health risk maps produced for the greater Vancouver area, using the two resampling
approaches and the census and satellite data from 2006, are shown in Figure 4.

The broad spatial patterns of heat health risk are similar between the two approaches, and
indicate high risk in areas with a concentration of people with known vulnerability factors such as in
the areas dominated by high-rise buildings (e.g., downtown Vancouver, and New Westminster), areas
with relatively low income (e.g., South Burnaby and East Vancouver), and areas with a substantial
immigrant population [62]. Areas known to be relatively hot, such as the extensive low-medium
density neighbourhoods in Vancouver, Burnaby, Surrey and Richmond are also described as having
relatively high risk. Within this broad spatial pattern, the maps also outlined several instances of
local variability in heat health risk, such as in Burnaby, Richmond, and in the east end of downtown
Vancouver, where substantial neighbourhood-level differences in vulnerability and exposure exist.
The raster-based approach typically allowed description of greater local-scale variability than
the vector-based approach, which largely classified the densely populated regions of Kitsilano,
East Vancouver, Central Burnaby and New Westminster with a single index value. In addition,
the raster-based and vector-based approaches typically portrayed local variability differently, as
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illustrated for Richmond in Figure 5. While the most densely populated part of Richmond is
identified as a moderate hot spot by both approaches, the raster-based approach suggests that the
rest of Richmond also has substantial heat health risk (light red colour in Figure 5 Top), while the
vector-based approach suggests it does not (white colour in Figure 5 Bottom).
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Also, by comparing the heat risk estimation from two approaches to the exposure and
vulnerability data (Table 2), the heat risk from raster-based approach better stratified the data than
vector-based result. The ranges of exposure and vulnerability data from raster-based approach were
much wider than the results from vector-based model.

3.2. Multi-Scale Hotspot Analysis

Figure 6 shows the multi-scale hotspot results using lag distances between one and four pixels,
corresponding to 180 m and 540 m. All lag distances result in maps that visualize the broad spatial
trends in the data, locating areas with high heat exposure and high social vulnerability [31,63] such as
low-income neighborhoods in East Vancouver and Central/South Burnaby that are likely associated
with relatively higher heat risk [36]. Hotspots produced with the single-pixel lag distance are
relatively more isolated and show greater local variability, while the four-pixel lag distance produces
a smoother map with less local variability and clearer broad spatial patterns. This smoothing effect is
inherent to the Gi index and other spatial filtering methods.
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Table 2. Comparison of heat risks from raster-based and vector-based model. Each type of heat risk was evaluated with the mean value of exposure and
vulnerability variables.

Risk
Category Mean LST Mean

Seniors
Mean

Infants
People in

Old Houses

People in
High Heat

Risk Homes

Low Income
Population

Low
Education
Population

People Living
Alone

Unemployment
Rate

1
Raster-based 292.4 7.2 0.8 3.1 1.3 1.3 11.4 2.1 2.1
Vector-based 299.6 6.1 0.6 1.5 1.2 0.8 7.6 1.5 2.3

2
Raster-based 297.9 8.4 0.9 2.6 3.3 1.4 10.0 2.6 2.4
Vector-based 305.1 57.1 6.1 22.0 18.3 10.2 77.7 17.5 3.9

3
Raster-based 301.8 20.6 2.0 7.6 4.8 3.0 27.9 5.3 3.1
Vector-based 308.1 227.8 25.9 85.1 63.5 33.5 323.1 62.8 4.5

4
Raster-based 307.0 80.3 8.2 31.2 14.8 11.3 111.2 19.3 3.9
Vector-based 309.7 496.4 61.0 215.8 136.5 86.6 745.4 140.8 6.6

5
Raster-based 311.3 412.4 50.6 180.2 95.2 69.6 639.0 112.0 5.4
Vector-based 312.0 599.5 79.1 307.6 235.0 122.8 967.0 210.3 5.5

6
Raster-based 313.1 1002.3 130.1 487.3 630.7 263.5 1637.5 434.3 7.4
Vector-based 312.7 969.0 128.0 538.5 773.1 292.2 1556.2 522.2 6.0

7
Raster-based 313.3 2343.0 283.5 1505.0 3601.6 1151.8 3578.1 2019.4 7.9
Vector-based 313.6 1483.9 168.6 762.1 1419.7 510.5 2450.7 860.0 7.2

8
Raster-based 312.6 4871.9 654.5 4788.2 11951.1 4233.6 7317.8 6809.0 9.0
Vector-based 314.2 2126.5 242.9 1347.5 2979.9 1155.6 3466.5 1705.6 8.2

9
Raster-based 313.9 6073.5 298.9 9284.7 14965.3 11314.6 12507.8 12110.7 14.8
Vector-based 314.6 4360.7 634.0 5211.2 9453.2 4475.1 7183.6 5847.5 8.5
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4. Discussion

4.1. Comparison of Resampling Approaches

The maps in Figures 3 and 4 illustrate the importance of the MAUP issue, specifically in the
context of MCA analysis. The raster-based approach was designed to retain the spatial resolution of
the heat exposure data, which resulted not only in a description of heat health risk that included
greater local variability, but also produced substantially different predictions of heat health risk
for a large area in Richmond. While the raster-based approach avoids aggregation of temperature
data into the dissemination area polygons, it implicitly assumes that the vulnerability data for the
dissemination area in question are a valid representation of vulnerability in each raster cell covered
by the area. Especially in dissemination areas that cover relatively large neighbourhoods, this
assumption will necessarily generate some level of error in the pixel-level heat health risk estimates.
The MAUP issue is thus not avoided, but rather changed in nature. No analysis has been conducted to
assess which of the two maps provide the best description of the actual distribution of heat health risk
in the area, but a comparison of the two maps with observed and geo-located heat-related mortality
could provide such analysis. Such analysis would also provide additional information on the strength
of the relationship between the heat health risk of an individual and the geographical location of that
individual’s residence. While such relationship is an implicit assumption of geographically based
heat exposure assessments (e.g., [16,43]), most adults spend the majority of the daytime at other
locations, with uncertain and variable influence on their cumulative daily heat exposure.

4.2. Multi-Criteria Decision Analysis

We used equal weights to combine the eight vulnerability layers, and subsequently to combine
the vulnerability and exposure layers to produce the risk layer, because no information exists from which
a more appropriate weighting can be derived. While a strength of MCA is indeed the ability to
provide different weighting of variables with different importance, the lack of both sufficient expert
knowledge and quantitative information for calibration of weights and/or inclusion/exclusion of
vulnerability variables is a limitation of both this and other similar studies [2,24–26]. Furthermore,
there are indications that intra-urban variability in the temperature-mortality relationship can
exist [14,16], in which case MCA weights should ideally be geographically variable. However,
without extensive local calibration data such variability, and any similar variability in the
vulnerability-mortality relationship, is not possible to include in the analysis. Future research
should address ways to conduct such calibration, ideally using georeferenced mortality data from
past extreme heat events when these are available and sufficiently extensive.

We used LST to quantify heat exposure because this is the most commonly used heat
exposure variable in spatial heat health research [16,18,24–26], and because derivation of LST from
publicly available Landsat data is relatively straightforward. Replication is thus possible for health
geographers, public health scientists, urban planners and others who may have limited experience
with processing of satellite data. Heat exposure measures based on air temperature or apparent
temperature (a combination of air temperature and humidity) are likely more directly related to the
effect heat has on human health [64,65], and are the norm in the non-spatial heat health literature
(e.g., [12]), but such heat exposure measures are more difficult to map, subject to larger errors in their
per-cell temperature estimates, and require extensive local calibration [31,66].

Despite possibilities for improvement, the results of the present analysis are sensible in the
context of local heat-health studies [8,15], and represent a good assessment of the spatial distribution
of heat health risk in the area. Importantly, the present analysis relies entirely on publicly available
data, allowing straightforward replication elsewhere in Canada and beyond.
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4.3. Hotspot Analysis

We used the multi-scale hotspot analysis to identify areas of elevated heat health risks at a range
of spatial scales. Because the hotspot analysis is based on the regular grid provided by the raster
approach it is not significantly influenced by the arbitrary boundaries of census dissemination areas
and thus less subject to zoning issues related to MAUP [27]. The primary utility of this approach is
that practitioners may benefit from identification of hotspots at a specific scale that suits their specific
information needs. For example, at one scale regional health authorities may be able to identify
priority municipalities to work with, while at another scale the municipalities may identify specific
hotspots that can be targeted for heat mitigation measures such as urban greening or water fountains.
While this provides substantial flexibility, it does require users to consciously and intelligently select
spatial scales suitable for their specific needs.

5. Conclusions

Mortality caused by extreme heat is a global phenomenon expected to increase in severity as a
result of global climate change. Spatial data on population vulnerability and heat exposure can be
combined to map the health risk associated with extreme heat events. We illustrated a raster-based
and a vector-based approach to combine census data and thermal satellite imagery in a multi-criteria
analysis, and used the Getis-Ord Gi index to conduct a spatially smoothed hotspot analysis for the
greater Vancouver area in Canada. The results illustrate that the raster-based approach reduces the
potential modifiable areal unit problem, and produces more detailed maps of local spatial variability
in heat health risk. The Getis-Ord Gi index with a range of lag distances allowed production of
hotspot maps at a range of spatial scale as a useful tool for urban planners engaging in heat mitigation
planning. The approach demonstrated in this study could increase the spatial specificity of heat risk
predictions, which may improve the quality and cost-effectiveness of heat mitigation and emergency
planning. Geocoded mortality data could potentially be used for local model calibration.
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