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Summary

The amount and complexity of patient-level data being collected in randomized controlled trials 

offers both opportunities and challenges for developing personalized rules for assigning treatment 

for a given disease or ailment. For example, trials examining treatments for major depressive 

disorder are not only collecting typical baseline data such as age, gender, or scores on various 

tests, but also data that measure the structure and function of the brain such as images from 

magnetic resonance imaging (MRI), functional MRI (fMRI), or electroencephalography (EEG). 

These latter types of data have an inherent structure and may be considered as functional data. We 

propose an approach that uses baseline covariates, both scalars and functions, to aid in the 

selection of an optimal treatment. In addition to providing information on which treatment should 

be selected for a new patient, the estimated regime has the potential to provide insight into the 

relationship between treatment response and the set of baseline covariates. Our approach can be 

viewed as an extension of “advantage learning” to include both scalar and functional covariates. 

We describe our method and how to implement it using existing software. Empirical performance 

of our method is evaluated with simulated data in a variety of settings and also applied to real data 

arising from the study of patients suffering from major depressive disorder from which baseline 

scalar covariates as well as functional data from EEG are available.
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1. Introduction

Personalized medicine aims to provide a sound approach for making treatment decisions 

based on each individual’s clinical characteristics. These characteristics may include 

demographic information such as age, gender, or race, as well as more complex clinical 

information such as brain structure or function. The latter type of information may be 

viewed as functional data (Ramsay and Silverman, 2005). Developments in medical 

technology have begun to allow for the collection of such data on a scale that has never been 

seen before and there is growing interest in how best to use these data to guide clinicians in 

selecting targeted therapies that have the greatest chance to successfully combat a given 

disease or ailment.

One area of medical research that may substantially benefit from advances in personalized 

medicine is the development and assignment of treatment for major depressive disorder 

(MDD). It has been reported that fewer than 40% of patients find success (i.e., achieve 

remission) in using the first-line treatment that they are prescribed (Gaynes et al., 2009; 

Holtzheimer and Mayberg, 2011) even though a wide array of first-line treatments is 

available for patients suffering from MDD. This is especially troubling since selection of the 

“wrong” initial treatment may not only allow for MDD symptoms to persist but may also 

result in the worsening of those symptoms, additional suffering from treatment-related side 

effects, or heightened risk of suicide.

Considering the consequences of using an improper or ineffective first-line treatment for 

MDD, investigators have suggested that focus should shift to identifying baseline biological 

markers that can guide clinicians in treatment selection (McGrath et al., 2013). More 

specifically, it has been suggested that the search for these biomarkers should be among 

measures derived from neuroimaging modalities such as magnetic resonance imaging 

(MRI), functional MRI (fMRI), and electroencephalography (EEG), among others. Large 

clinical trials are now underway, EMBARC (NCT01407094) and iSPOT-D 

(NCT00693849), that have been designed to discover baseline clinical characteristics that 

modify the effect of treatment in MDD patients. In these studies, investigators are collecting 

large amounts of baseline information consisting of hundreds or thousands of scalar 

quantities as well as hundreds of 1-, 2-, and 3-dimensional brain images that can be regarded 

as functional data.

The statistical literature indicates that there is a growing interest in developing methods for 

using data from clinical settings to estimate strategies for providing treatment. While some 

investigators have focused on methods for making a treatment decision at one time point 

(Qian and Murphy, 2011; Zhao et al., 2012; Zhang et al., 2012; Lu et al., 2013), others have 

considered strategies consisting of a sequence of decisions often referred to as dynamic 

treatment regimes (Murphy, 2003; Robins, 2004; Zhao et al., 2009; Chakraborty et al., 

2009; Moodie and Richardson, 2010; Laber et al., 2014).

Whether the focus has been on developing rules for one or multiple time points, the majority 

of the research has concentrated on using scalar covariates to guide treatment selection while 

decisions based on functional covariates or combinations of scalars and functions which 
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account for the smooth nature of the functional covariates have remained unexplored. 

Oftentimes, when functional data are collected in clinical trials that involve an imaging 

component, these data are reduced to “expert-derived” scalar covariates which are used to 

develop treatment assignment strategies. Such large scale reduction in the data may explain 

why there has been relatively little success in identifying biomarkers for MDD treatment 

response based on imaging studies. Here we propose a method that overcomes the need to 

reduce functional data to scalar summaries but rather allows for functions and scalars to be 

used together to estimate a treatment decision rule and better understand heterogeneity in 

treatment response. Moreover, our approach can help investigators discover features of 

functional data that are most strongly associated with treatment response.

To our knowledge McKeague and Qian (2014) are the only ones to date who have taken a 

functional data approach to constructing treatment policies. They propose methods for 

estimating and evaluating treatment regimes based on one baseline functional covariate. 

With respect to estimation of a treatment policy, they discuss several approaches including 

(1) the FAME model of James and Silvermam (2005), (2) models based on a single 

component of the functional covariate (i.e., models that use only one value of the functional 

covariate at a specified time, location, etc.), and (3) an “area impact” model in which 

treatment selection is based on a localized region of the functional covariate.

We are interested in considering situations in which multiple functional covariates or 

combinations of scalar and functional covariates are available and can be used to estimate a 

treatment regime. We propose a method in which the task of estimating the optimal regime 

using scalar and functional predictors is cast as a loss-minimizing procedure where the loss 

function corresponds to a form of A-learning (Murphy, 2003; Robins, 2004; Blatt et al., 

2004). Accordingly, we expect that the estimated regime is robust to certain types of mis-

specification of the posited model for the response provided that the part of the model 

involving interactions between treatment and baseline covariates is correctly specified. We 

provide evidence of this via numerical investigations. Furthermore, our approach produces 

an estimated regime that can be used to better understand how the scalar and functional 

baseline covariates interact with treatment. This may provide important information about 

which patient-level characteristics are particularly important in guiding treatment selection 

and may also aid in understanding the etiology of the disease being treated. In contrast to 

McKeague and Qian (2014) our method (i) allows for both multiple scalars and multiple 

functions to be used in estimating a treatment regime and (ii) employs penalized functional 

regression (PFR) (Goldsmith et al., 2011) to incorporate the functional predictors.

The remainder of the paper is organized as follows. In Section 2 we discuss the framework 

of potential outcomes and treatment regimes in the setting where both scalar and functional 

baseline covariates are available. We follow this with a description of our approach for 

estimating a treatment decision rule. Our proposed approach is assessed via simulations in 

Section 3. In Section 4 we apply our method to a data set arising from a study of subjects 

with MDD from which baseline scalar covariates and baseline functional covariates derived 

from EEG measures were collected. We conclude with a discussion in Section 5. Additional 

information including a derivation, additional simulation results, and R code is available in 

the online appendix.
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2. Framework and Methodology

2.1 Formal Framework

In what follows, we essentially restrict our discussion to data arising from a randomized 

controlled trial (RCT) where treatment is randomly assigned. However, we note that data 

from observational studies, where treatment is not randomly assigned, can be cast in the 

same framework and analyzed using the subsequently described methodology.

Suppose we have n subjects sampled from a patient population of interest. Each subject is 

randomly given one of two possible treatments. These treatments are assigned based on 

some pre-specified probabilities that are the same for all subjects. Let the variable A, 

corresponding to treatment assignment, take on the value of either 0 or 1. For each subject 

we observe a collection of baseline covariates consisting of scalar values and functions. 

Denote the set of baseline scalar covariates by a p-dimensional vector Z = (Z1, …, Zp)⊤ and 

denote the set of baseline functional covariates by the q-element set of functions X = {X1, 

…, Xq}. Here we assume that X1, …, Xq are one-dimensional functional random variables 

(Xℓ : Dℓ ⊂ ℝ → ℝ, ℓ = 1, …, q) that are each square integrable on a compact support I ⊂ ℝ 

(i.e, , ℓ = 1, …, q). Although we present only one-dimensional functional 

predictors here, it is possible to extend our approach to higher dimensional functional 

random variables such as images. Lastly, let Y be the observed outcome of interest. Without 

loss of generality, we assume that larger values of Y are preferred. The observed data are 

given by (Yi, Ai, Zi, Xi), i = 1, …, n, which are independent and identically distributed with 

Zi = (Z1i, …, Zpi), Xi = {X1i, …, Xqi}, and Xℓi(s) is the value of ith subject’s ℓth functional 

covariate at argument s.

We wish to use these data to construct a rule for assigning treatment, often referred to as a 

“treatment regime” (Zhang et al., 2012; Murphy, 2003), to future subjects in such a way that 

the selected treatment yields higher outcome values than the alternative treatment for these 

subjects. As in Zhang et al. (2012), we formalize the notion of an optimal treatment regime 

by defining the potential outcomes Y*(0) and Y*(1) to be the values of the outcome that 

would be observed if a subject was assigned treatment 0 or 1 respectively. We assume that Y 

= Y*(1)A + Y*(0)(1 − A) (i.e., for the treatment that is actually received, the observed and 

potential outcomes are the same (Rubin, 1978)), which is known as the consistency 

assumption. Furthermore, we assume that subjects do not interfere with one another and that 

an individual’s treatment assignment is independent of the potential outcomes conditional on 

the baseline covariates. This final assumption is satisfied in the context of a RCT where 

treatment is randomly assigned.

A treatment regime is a function, g, that maps the baseline covariates (Z, X) to {0, 1} such 

that a patient with baseline covariates (Z = z, X = x) will receive treatment 1 if g(z, x) = 1 

and will receive treatment 0 if g(z, x) = 0. The “optimal treatment regime”, gopt, is the 

function that maximizes the expected value of the response among some class of functions 

, i.e., gopt(Z, X) = argmaxg∈  E[Y*{g(Z, X)}].

With the framework and assumptions discussed above, we have that
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where E(Z,X) (·) denotes expectation with respect to the joint distribution of (Z, X) and the 

optimal treatment regime is given by

(1)

In the case where E(Y|Z, X, A = 1) = E(Y|Z, X, A = 0), one might employ a randomization 

procedure to select the treatment or use whichever treatment corresponds to the current 

standard of care if such a treatment is being considered.

A typical approach for deriving an optimal treatment regime is to assume some structure on 

E(Y|Z, X, A) and employ a regression model. Here we consider a semi-parametric model. 

Specifically, we propose to model the expected value as

(2)

where h0 is some “baseline” function that corresponds to the effects of the baseline 

covariates on the response for A = 0, Z̃ = (1, Z⊤)⊤, β = (β0, …, βp)⊤, and {ω1, …, ωq} are 

smooth square integrable weight functions. In (2), f(Z, X) corresponds to the effect of the 

treatment A = 1 on the response, which is a function of the baseline covariates and is 

typically referred to as the “contrast.”When the conditional expectation of the response is 

modeled in this way, we see that f(Z, X) = E(Y|Z, X, A = 1)−E(Y|Z, X, A = 0) and so the 

optimal treatment regime corresponding to the model in (2) is given by gopt(Z, X) = I{f(Z, 
X) > 0}. Since the optimal treatment regime depends only on the contrast, primary interest 

lies in obtaining estimates for the corresponding contrast parameters (i.e., β and ω = {ω1, …, 

ωq}).

2.2 Methodology

In order to develop an optimal treatment decision rule, we propose to take an approach that 

views the estimation of the contrast parameters as a loss-minimizing procedure in the 

framework of advantage learning (A-learning) (Murphy, 2003; Robins, 2004; Blatt et al., 

2004). This approach parallels that taken in Lu et al. (2013) which considered only scalar 

baseline covariates in a high-dimensional setting. Given the observed data, (Yi, Ai, Zi, Xi), i 

= 1, …, n, we seek to minimize the loss function

(3)

where ϕ(Zi, Xi) is an arbitrary function of the baseline covariates which may or may not 

approximate h0 from (2) well and π(Zi, Xi) = P(Ai = 1|Zi, Xi) is the propensity score which 

gives the probability that a subject with a specific covariate profile will receive treatment A 

Ciarleglio et al. Page 5

Biometrics. Author manuscript; available in PMC 2016 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= 1. For our purposes, we treat the propensity score as a known constant that is determined 

by trial protocols. In an observational study setting, one may posit a model for π (e.g., 

logistic model) that depends on all of or a subset of the baseline covariates and substitute the 

predicted propensity scores in (3).

In the case where there are only scalar baseline covariates, the estimating equations 

corresponding to (3) have been shown to provide consistent and asymptotically normal 

estimates for the contrast parameters of interest (Robins, 2004; Lu et al., 2013). This is 

advantageous in that even if h0(Z, X) is mis-specified, the estimates of the contrast 

parameters can be consistently estimated, so long as the contrast is correctly specified and 

the propensity scores are known or can be estimated consistently.

Our setting is more complex since we have functional baseline covariates in addition to 

scalar ones. However, if we represent the functional covariates and their corresponding 

coefficient functions in terms of some suitably chosen set(s) of basis functions then we can 

view the loss function in (3) as wholly consisting of scalar quantities. This puts us back in a 

setting where we might expect the same benefit of consistent estimates for the contrast 

parameters.

There is a wide variety of basis functions from which to choose for representing the 

functional covariates and/or their corresponding coefficient functions including functional 

principal components, splines, and wavelets. We choose to employ the same representation 

used in Goldsmith et al. (2011) so that we can take advantage of existing software for 

obtaining estimates of the contrast parameters and ultimately of the treatment regime. We 

review this representation here. For ℓ ∈ {1, …, q} let  where ψℓ(·) 

= {ψℓk(·) : 1 ≤ k ≤ Kℓ} are the first Kℓ eigenfunctions of the smoothed estimated covariance 

operator ΣXℓ(s1, s2) = cov{Xℓ(s1), Xℓ(s2)}. Each coefficient function can be expressed in 

terms of a truncated power series spline basis given by θℓ = {θ1, …, θMℓ} such that 

 where we have θ1(s) = 1, θ2(s) = s, θm(s) = (s−κm)+ for m 

= 3, …, Mℓ, and  are knots. Using these representations, the contrast can be written 

as  where the functional principal component (FPC) scores for the ℓth 

functional predictor from the ith observation are given by cℓi = (cℓi1, …, cℓiKℓ)
⊤, the 

unknown spline coefficients for the ℓth coefficient function are bℓ = (bℓ1, …, bℓMℓ)
⊤, and Jℓ 

is a Kℓ × Mℓ dimensional matrix with entry (u, υ) given by ∫ ψℓu(s)θυ(s)ds. Letting 

 we have that (3) can be expressed as

(4)

which provides a loss function in the framework of A-learning. In Web Appendix A we 

show this loss function yields estimating equations corresponding to those associated with 

A-learning.
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As noted above, a desirable consequence of using A-learning in our setting is that we expect 

the estimates of the contrast parameters to be robust to mis-specification of the h0 function. 

Thus our approach is flexible in that it allows us to use any functional form for ϕ. 

Simulation studies conducted by Lu et al. (2013) and Schulte et al. (2014) show that if one 

happens to properly model the h0 function, then one can expect good estimation accuracy 

and treatment selection performance with smaller sample sizes than if h0 is mis-specified. 

Although it is not necessary to specify ϕ(z, x), it is common practice to employ some simple 

parametric form. One option is to use a linear model 

, which, in practice, would require using similar 

representations for the functional components of ϕ as those involved in the contrast. As for 

each ωℓ, each αℓ, corresponds to a vector of unknown basis coefficients which we will 

denote by aℓ = (aℓ1, …, aℓVℓ)
⊤. As an alternative to using a function that is linear in the 

baseline predictors, one might choose to use a constant function for ϕ (i.e., ϕ2(z, x) = γ).

For ϕ taking any parametric form, estimates of β and b1, …, bq (and therefore ω1, …, ωq) 

can be obtained using penalized functional regression (PFR) (Goldsmith et al., 2011). PFR 

allows for the functional covariates to be sparsely or densely sampled and also allows for 

them to be measured with or without error. Furthermore, PFR can be performed using 

existing software, pfr, contained in the R package refund (Crainiceanu et al., 2014). PFR 

takes account of the functional nature of ω1, …, ωq in order to provide smooth estimates. 

Smoothing is induced by assuming that  for ℓ = 1, …, q, where 0bℓ 

is a vector of zeros of length (Mℓ − 2) and Ibℓ is an (Mℓ − 2) × (Mℓ − 2) identity matrix. If ϕ1 

is used for ϕ then we also have that  for ℓ = 1, …, q, where 0aℓ is 

a vector of zeros of length (Vℓ − 2) and Iaℓ is a (Vℓ − 2) × (Vℓ − 2) identity matrix. (We note 

that if ϕ2 is used for ϕ then there are no basis coefficients that need to be estimated in 

addition to those corresponding to the coefficient functions in the contrast.)

The basis coefficients are viewed as random effects in a mixed effects model. The variance 

components,  (and  if applicable), can be viewed as smoothing parameters and can be 

estimated via restricted maximum likelihood estimation (REML). The corresponding model 

for the response is

(5)
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which is a mixed model with  random effects in the case where ϕ = ϕ1 

or  in the case where ϕ = ϕ2. As noted in Goldsmith et al. (2011), maximizing 

the likelihood over the unknown parameters β, b1, …, bq, and any parameters related to ϕ, 

based on the data, is equivalent to minimizing

(6)

where  if ϕ = ϕ1 and Pa = 0 if ϕ = ϕ2,

Furthermore, minimizing (6) is equivalent to minimizing

As noted above, the smoothing parameters can be automatically selected using REML. The 

tuning parameters that need to be selected by the user consist of the numbers of leading 

functional principal components used for representing each of the functional predictors and 

the numbers of spline basis functions used to represent each of the coefficient functions. 

Goldsmith et al. (2011) note that as long as the values of these tuning parameters are chosen 

“large enough,” then their specific values will have little impact on estimation. 

Alternatively, one can employ an objective data-driven procedure for selecting these tuning 

parameters such as cross-validation with the objective being to minimize (6). In practice, the 

sample size, n, sets upper limits on the values {M1, …, Mq} (and {V1, …, Vq} if applicable) 

as well as on the number of parameters corresponding to the scalar covariates that can be 

estimated. Specifically, if we choose to employ ϕ = ϕ1 then there are 

parameters to estimate whereas if we employ ϕ = ϕ2 then there are 

parameters to estimate.

3. Numerical Investigations

3.1 Numerical Investigation Setup

We assess the performance of our method with respect to estimation accuracy and selection 

of the optimal treatment regime on simulated data in various settings. We consider six 

scenarios that differ in the the number of baseline covariates available and in the true form 

of the baseline h0 function. Each simulated observation consists of a treatment assignment 

indicator, a set of p scalar covariates (p = 2 in Scenarios 1 – 3, p = 15 in Scenarios 4 – 6), a 
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set of q functional covariates (q = 2 in Scenarios 1 – 3, q = 15 in Scenarios 4 – 6), and a 

response.

The treatment assignment indicator, A, is generated such that π(Z, X) = 0.5. The vector of 

baseline scalar covariates, Z = (Z1, …, Zp)⊤, is generated from a multivariate normal 

distribution with each component having mean 0 and variance 1. Correlation between the 

components is given by corr(Zj, Zk) = 0.5|j−k|.

The functional baseline covariates, {X1, …, Xq}, are generated to be similar to the EEG 

curves observed in the motivating data set discussed in Section 4. To simulate the baseline 

functional covariates, we take an approach similar to that used in Swihart et al. (2013). 

Specifically, to generate a new functional covariate, Xℓ, we compute the first 5 observed (O) 

principal component basis functions , corresponding score variances, 

, and mean function, , from a FPC decomposition of the collection of 

curves from the data set corresponding to the ℓth electrode from the cap worn during an 

EEG recording. To produce the ℓth simulated (S) full (F) functional covariate for the ith 

observation, we generate subject-specific PC loadings, , from 

, let , and evaluate this function at 300 

equally spaced values of s yielding, , a vector of 300 values. The first value corresponds 

to the current source density (CSD) value, a measure derived from EEG, at the 0.25 Hz 

frequency and the 300th value corresponds to the CSD value at the 75 Hz frequency. To 

mirror the analysis that we perform in Section 4, we trim the full functional covariates to 

argument values roughly corresponding to the theta and alpha bands (4 – 13 Hz) of the EEG 

CSD curves, to form  which is a vector of 37 values. Figure 1 shows 25 simulated 

functional covariates for each of 2 different electrodes.

Responses are generated such that . The 

error term, ε, follows a  distribution where σε is chosen such that R2 = 0.85.

In Scenarios 1 – 3, in which p = q = 2, we have β = (β0, β1, β2)⊤ = (−0.65, 0.65,−0.65)⊤, 

ω1(s) = [1/{135 · 152 · Γ(3)}](s/36)2e−10(s/36), and ω2(s) = −[1/{135 · 152 · Γ(3)}]{(s − 

36)/36}2e10{(s−36)/36}. In Scenarios 4 – 6, in which p = q = 15, we have β = (β0, …, β15)⊤ = 

(−0.65, 0.65,−0.65, 013)⊤ (0d is a zero-vector of length d), ω1 and ω2 are the same as in 

Scenarios 1 – 3, and ω3 = …= ω15 ≡ 0.

We consider three forms for h0 that are composed of the functions h01 and h02. Let 

 and . In Scenarios 1 

– 3 we have γ1 = (γ1,1, γ1,2)⊤ = (0.65, −0.65)⊤, γ2 = (γ2,1, γ2,2)⊤ = (−0.65, 0.65)⊤, α1,1(s) = 

0.04sin(2πs/36), α1,2(s) = −0.04sin(2πs/36), , and 

. In Scenarios 4 – 6 we have γ1 = (γ1,1, …, γ1,15)⊤ 

= (0.65, −0.65, 013)⊤, γ2 = (γ2,1, …, γ2,15)⊤ = (−0.65, 0.65, 013)⊤, {α1,1, α1,2, α2,1, α2,2} are 

the same as in Scenarios 1 – 3 and α1,3 = … = α1,15 = α2,3 = …= α2,15 ≡ 0. In Scenarios 1 
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and 4 we have h0 = 1 + h01, a linear function of the baseline covariates. In Scenarios 2 and 5 

we have h0 = 1 + 0.5h01h02, involving interactions among the baseline covariates. In 

Scenarios 3 and 6 we have , involving nonlinear functions of the 

baseline covariates. Table 1 shows the form of h0 and all parameter values, including plots 

of the functional coefficients, used in each of the six scenarios. Note that scenario pairs 1 

and 4, 2 and 5, and 3 and 6 are exactly the same except that Scenarios 4 – 6 include more 

baseline variables that are unrelated to the response.

We compare two different commonly employed working models for 

 and ϕ2(Z, X) = γ.We consider four different 

sample sizes n = 75, 150, 300, and 600 for Scenarios 1 – 3 and two sample sizes n = 300 and 

600 for Scenarios 4 – 6. (We do not fit models for Scenarios 4 – 6 with the smaller sample 

sizes because the number of parameters is too large in each case.) For each scenario and 

sample size combination, we generate 250 data sets and estimate a treatment regime for 

each. For each scenario we also generate a test set with N = 150, 000 independent 

observations that are used for evaluating treatment selection performance. Based on 

previous analyses, not discussed here, we chose to employ PFR using 8 B-spline basis 

functions since this provided a small but rich-enough set of functions to estimate the contrast 

coefficients well in all settings. We also used the first 10 observed functional principal 

components as we found that they accounted for over 99% of the variation in each of the 

functional predictors.

Estimation performance is evaluated separately for the scalar and functional parts of the 

models. For the scalar coefficients, we compute the mean squared error (MSE), ‖β̂ − β0‖2 

where β0 is the vector of true values for β, from each of the 250 estimated regimes and report 

the mean and corresponding standard error. For the functional coefficients, we compute the 

mean integrated mean squared error (MIMSE) for the estimated coefficient functions 

corresponding to the first two functional predictors,  where L 

is the length of the interval over which the baseline covariate functions are observed, from 

each of the 250 estimated regimes and report the mean and corresponding standard error. 

We consider estimation error in only the first two coefficient functions in order to draw 

performance comparisons between the scenarios with no spurious covariates and the 

corresponding scenarios with spurious covariates.

We evaluate treatment assignment accuracy for each estimated regime on a test data set that 

is independent of the data used to fit the model. The model estimates are used to compute 

the treatment assignment  for the ith test observation. 

For the entire set of test observations we compute the percent correct decision (PCD) given 

by
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and take the average of these accuracies over the 250 replications. We also evaluate the 

treatment selection performance by computing the the expected value of the response under 

the selected treatment in a test data set. When we constructed the test set for each scenario, 

we generated the response under each treatment so that we are able to calculate an 

approximation to the average treatment response under treatment 0 (E{Y*(0)}), under 

treatment 1 (E{Y*(1)}), and under the optimal treatment (E{Y*(gopt)}). These values are 

provided in the bottom three rows of Table 1 for each scenario. We point out that in all 

scenarios, assigning treatment 0 to all subjects is favored over assigning treatment 1 since 

the average value of the response is larger, but assigning the optimal treatment results in 

even better (larger) average response. We use the baseline covariates from the test data to 

estimate treatment assignment from the estimated regimes in the 250 replications and 

compute the mean response on the selected treatment and then average over the 250 

replicates. These values are denoted by 8 E{Y*(ĝ)}.

3.2 Numerical Investigation Results

Tables 2 and 3 summarize the estimation and treatment selection accuracy of our method 

based on the data generated under Scenarios 1 – 3 and Scenarios 4 – 6 respectively using 

either ϕ1 or ϕ2 as a working model for h0 and based on varying sample sizes. In general we 

see that increased sample size yields improved estimation accuracy for both the scalar and 

functional parameter estimates. The results also suggest that using a richer linear working 

model for ϕ yields better estimation accuracy when compared with the simpler constant 

working model, even when h0 is not truly linear in the baseline covariates. We further note 

that settings in which there are no spurious variables (Scenarios 1 – 3) generally show better 

estimation performance than the corresponding settings with spurious variables (Scenarios 4 

– 6). A closer inspection of estimation performance with respect to the scalar and functional 

parts of the contrast is provided in Web Appendix C.

With respect to treatment selection accuracy as measured by PCD, we observe that larger 

sample sizes, fewer spurious variables, and a richer working model for ϕ result in higher 

accuracy in treatment selection in the independent test sets. Furthermore, the results show 

that our approach can provide treatment selection strategies that can come close to achieving 

the mean value of the response in the population under the optimal treatment.

In Web Appendix B, we give a brief discussion concerning inference for the difference in 

the expected values of the response under competing regimes. We also outline and comment 

on a simple bootstrap procedure for constructing confidence intervals for this difference. In 

Web Appendix C we show the results of applying this bootstrap procedure for constructing 

confidence intervals on the simulated data generated under Scenarios 1 – 3.

4. Application to MDD Treatment Data

To illustrate our proposed approach for developing a treatment decision rule using available 

baseline scalar and functional covariates, we consider data from a study that investigated the 

use of two treatments for MDD. In addition to standard clinical measures (e.g., age, gender, 

Hamilton Depression Rating Scale (HAM-D) score, etc.) the study also collected EEG 

measurements under a controlled resting condition in which subjects had their eyes open or 
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closed. After these baseline data were collected, the participant was randomized to either an 

antidepressant (a selective serotonin reuptake inhibitor (SSRI)), or placebo. The participant 

was monitored via assessments at 1, 2, 3, 4, 6, and 8 weeks after initiation of treatment.

There are 92 subjects in the study. We consider a restricted set of baseline scalar covariates 

consisting of gender, age, and baseline HAM-D score. We also consider two baseline 

functional covariates derived from resting EEG using a 72-electrode montage. More 

specifically, these two functional covariates correspond to the curves giving the difference 

between current source density (CSD) amplitude spectrum values (μV/m2) when the 

participant’s eyes are closed and when they are open (closed - open) over a frequency range 

of 3 to 16 Hz for the P5 and P9 electrodes. This frequency range roughly corresponds to 

what are known as the theta and alpha frequency bands and these two electrodes are located 

in the posterior region of the 72-electrode montage. Prior studies have suggested that 

posterior theta and alpha rhythm of the EEG may be useful in differentiating patients who do 

or do not respond to SSRIs or other treatments for MDD (Bruder et al., 2008; Tenke et al., 

2011). A detailed discussion of CSD measures in EEG is provided in Tenke et al. (2011). 

The top left and right panels of Figure 2 show the CSD difference curves corresponding to 

the P5 (X1) and P9 (X2) electrodes for the 92 subjects in our data set.

Of the 92 subjects that we use to develop a treatment decision rule, 48% were randomized to 

SSRI, 65% are female, the mean age is 39.05, and the mean baseline HAM-D score is 18.34. 

For the response, we consider HAM-D score at end of the treatment period. Thus lower 

values of the response variable are desirable. Three of the 92 subjects were missing their 

HAM-D score at week 8 so we chose to use their score at week 6 for the response.

Let Z = (Z1, Z2, Z3)⊤ be the vector of baseline scalar covariates where Z1 = 1 if the patient is 

female and 0 otherwise, Z2 = age, and Z3 = HAM-D score at baseline. These scalar 

covariates are centered and scaled by their respective sample means and standard deviations 

before fitting the model. Furthermore, let X = {X1, X2} where X1 and X2 are the CSD 

difference curves corresponding to the P5 and P9 channels respectively. To estimate the 

decision rule, we assumed equal probability of receiving the SSRI or placebo and used a 

working baseline function given by . We used 10 

functional principal components to represent each of the functional covariates and a B-spline 

basis with 8 basis functions to represent each of the coefficient functions.

The estimated treatment decision rule is given by

where ω̂
1 and ω̂

2 are shown in the bottom panels of Figure 2. If ĝ(Z, X) = 1 then the SSRI is 

selected, otherwise placebo is selected. Although complex, the estimated decision rule may 

provide some insight into how individual patient characteristics can be used to select 

treatment. First consider the scalar covariates. Adjusting for all other covariates, being 

female, being older than the average age in the sample, and having baseline HAM-D that is 

higher than the average in the sample all increase the value of the contrast and so might 

Ciarleglio et al. Page 12

Biometrics. Author manuscript; available in PMC 2016 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggest the use of the SSRI over placebo. Next consider the functional covariates and their 

corresponding contrast coefficient estimates shown in Figure 2. Based on ĝ, adjusting for all 

other covariates, large positive CSD differences across the theta and alpha frequency bands 

corresponding to the P5 electrode suggest the use of the SSRI over placebo. The estimated 

contrast coefficient function corresponding to the P9 electrode shows that large positive 

CSD differences in the theta band, especially at lower frequencies, suggest the use of 

placebo over the SSRI and large positive CSD differences in the alpha band, especially at 

higher frequencies, suggest the use of the SSRI over placebo.

To assess treatment selection among the patients used to develop the decision rule, we 

compared the average value of the response among the following subgroups: (1) those who 

received placebo, (2) those who received the SSRI, and (3) those who received the treatment 

that would have been assigned if ĝ were used to assign treatment. There were 52 patients 

whose actual treatment assignment matched what would have been assigned based on ĝ (22 

on placebo, 30 on the SSRI). Figure 3 shows the distributions of the HAM-D score at the 

end of treatment for each of these three subgroups. The mean HAM-D scores at the end of 

treatment are 11.42 for those on placebo, 10.93 for those on the SSRI, and 9.38 for those 

who received their estimated optimal treatment. We used the bootstrap procedure discussed 

in Web Appendix B (see note on issues related to using a bootstrap procedure) to construct 

95% confidence intervals for the mean improvements in HAM-D score at the end of 

treatment comparing our treatment assignment model (denoted by g) to either (1) assigning 

the SSRI to all patients (denoted by 1) or (2) assigning placebo to all patients (denoted by 0). 

The 95% confidence interval for E{Y*(g)} − E{Y*(1)} is (−4.07, −0.06) and for E{Y*(g)}

−E{Y*(0)} is (−4.65, −0.17). Both intervals suggest that the treatment regime based on the 

baseline scalar and functional predictors is preferable, perhaps only slightly, to assigning 

everyone either SSRI or placebo as it appears to lead to lower HAM-D score at the end of 

the treatment period.

5. Discussion

We have proposed a method for constructing a treatment decision rule based on scalar and 

functional baseline covariates that casts estimation as a loss-minimizing procedure in the 

framework of A-learning. In the case of all scalar baseline covariates, A-learning has been 

shown to provide protection against mis-specification of part of the response model 

provided that the contrast is correctly specified. Our numerical investigations provide 

evidence that this property carries over to the case where the baseline covariates consist of 

both scalars and functions. Furthermore, it has been argued that A-learning is appealing 

because it may be reasonable to expect that there is a complex relationship between the 

baseline covariates and the response, but that the optimal treatment rule should depend on 

those baseline covariates in a simple manner (Schulte et al., 2014). Although the part of the 

model corresponding to the response among those on the “reference treatment” may be mis-

specified, we recommend using a richer working model as we have evidence that a richer 

model leads to better estimation and treatment selection.

Regarding our application to the MDD data, one reason why the treatment assignment 

model that we consider did not lead to “substantially” better response may be that we are not 
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considering baseline covariates that are most prescriptive of treatment. In practice, there 

may be relatively little clinical guidance on which baseline covariates are prescriptive of a 

particular treatment and so it may be desirable to incorporate a variable selection procedure 

into our approach that can identify such variables. Furthermore, our numerical investigations 

demonstrated that the inclusion of spurious variables in the response model can lead to 

poorer estimates of the contrast parameters and poorer performance with respect to 

treatment selection. Development of approaches that can both estimate treatment decision 

rules and select important prescriptive scalar and functional baseline covariates is crucial 

and could lead to better outcomes for patients suffering from MDD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Simulated functional predictors: (left) 25  and (right) 25  functional predictors from 

one simulated data set.
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Figure 2. 
Top Panels: CSD differences (eyes closed - eyes open) from the P5 channel (left) and P9 

channel (right). Bottom Panels: Estimated contrast coefficient functions corresponding to 

the P5 channel (left) and P9 channel (right)
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Figure 3. 
Boxplots comparing HAM-D scores at end of treatment for those on placebo, SSRI, or for 

those whose treatment matched the optimal treatment according to ĝ.
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