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Predicting conformational changes of proteins is needed in order to fully comprehend functional
mechanisms. With the large number of available structures in sets of related proteins, it is now
possible to directly visualize the clusters of conformations and their conformational transitions
through the use of principal component analysis. The most striking observation about the distributions
of the structures along the principal components is their highly non-uniform distributions. In this
work, we use principal component analysis of experimental structures of 50 diverse proteins to extract
the most important directions of their motions, sample structures along these directions, and estimate
their free energy landscapes by combining knowledge-based potentials and entropy computed from
elastic network models. When these resulting motions are visualized upon their coarse-grained free
energy landscapes, the basis for conformational pathways becomes readily apparent. Using three
well-studied proteins, T4 lysozyme, serum albumin, and sarco-endoplasmic reticular Ca2+ adenosine
triphosphatase (SERCA), as examples, we show that such free energy landscapes of conformational
changes provide meaningful insights into the functional dynamics and suggest transition pathways
between different conformational states. As a further example, we also show that Monte Carlo simu-
lations on the coarse-grained landscape of HIV-1 protease can directly yield pathways for force-driven
conformational changes. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937940]

I. INTRODUCTION

Proteins are often regarded as the work force of cells,
and understanding their actions requires an understanding
of their dynamics. Experimental protein structures, whether
determined by X-ray crystallography, NMR spectroscopy, or
by high resolution cryo-electron microscopy,1,2 shed light
about the structure and function of diverse proteins. However,
the structures individually only provide a static snapshot of
the protein. But collectively, multiple structure determinations
of the same or closely related proteins can inform us directly
about its dynamics. Even mutants, it is now being realized,
have structures and motions falling primarily along the same
limited dynamics pathways.3,4 Wolynes, Onuchic, and Dill5–14

have all pointed out the importance of understanding the
energy landscapes. Understanding the dynamic distributions
of the different structures and their energetics upon the
landscape is a crucial step in understanding structure-function
relationship in proteins. Recently, Nussinov and Wolynes15

have pointed out how useful it is to interpret biomolecular
function within the framework of energy landscapes and can
help to explain diverse phenomena ranging from the effects
of ligand binding16 to the effects of mutations17–19 on protein
stability.

Predicting dynamics information, given the 3D structure
of a protein, has been a topic of a huge body of research.

a)Author to whom correspondence should be addressed. Electronic mail:
jernigan@iastate.edu

Molecular dynamics (MD)20,21 and Monte Carlo (MC)
methods22,23 are the most commonly employed techniques for
extracting such dynamics information. Despite their proven
success, these methods remain computationally intensive and
limited in the time-scales that can be thoroughly investigated.
On the other hand, coarse-grained (CG) methods such as those
used in the elastic network models (ENMs) offer a convenient
and quick alternative to all-atom models. Coarse-grained
ENMs successfully model the dynamics of most proteins,
even though the interactions between amino acid residues are
represented by extremely simple Hooke’s-law springs. The
most popular ENMs are the Gaussian network model (GNM)24

and the anisotropic network model (ANM).25 In addition to
being able to accurately predict residue position fluctuations,
the low-frequency modes predicted by ENMs often capture
the functionally relevant conformational changes evident in
multiple crystal structures, for a wide variety of proteins26,27

including even the largest molecular structures such as viral
capsids28 and ribosome.29–32

The number of available structures in the protein databank
(PDB)33 has been growing exponentially. While there is
remarkable diversity in the variety of type of structures in the
PDB, many of them are indeed structures of the same protein or
its close homologs and many more belong to the same protein
fold. These multiple structures of the same or closely similar
proteins in many cases provide an excellent sampling of the
possible conformational states, analogous to what one would
obtain from simulations such as MD or Monte Carlo. Previous
works have shown the close correspondences between motions
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inherent in sets of structures in the PDB and motions extracted
from analysis of MD trajectories34 or predicted motions from
theoretical models.35–37 Surprisingly, little effort is being made
to systematically explore the conformational space by using
the different structures of the same protein already available
in the PDB.

Given a set of structures (either experimental or those
generated from MD simulations), perhaps the most common
method of extracting useful dynamics information is principal
component analysis (PCA),38,39 and when applied to protein
samples generated from MD termed essential dynamics.40

PCA is a statistical method based on covariance analysis,
which can transform high dimensional data from the original
space of correlated variables into a highly reduced space of
independent variables (i.e., principal components or PCs).
By performing PCA to reduce the dimensionality, most of
a system’s variance will usually be captured by a small
subset of the PCs. This is one of the primary advantages of
performing PCA; that it greatly reduces the dimensionality
of the dynamics space (originally of the order of number of
residues) to a few dominant motions of the protein. PCA has
been applied extensively to analyze trajectory data from MD
simulations to find a protein’s essential motions.41,42

Earlier, Howe43 used PCA to classify structures in NMR
ensembles automatically, according to the correlated structural
variations, and the results have shown that two different
representations of the protein structure, the Cα coordinate
matrix and the Cα-Cα distance matrix, gave equivalent results
and permitted the identification of structural differences
between conformations. Teodoro et al.44 applied PCA to a
dataset composed of many conformations of HIV-1 protease
and found that PCA transformed the original high-dimensional
representation of protein motions into a low-dimensional one
that provides the dominant protein motions. PCA has also been
employed to characterize diverse biomolecular phenomena
such as protein folding pathways from MD simulations,45–47

the mechanism of prion action,48 and others.
Recent studies have also shown that the most important

motions (PCs) extracted from sets of experimental structures
correspond well to the modes predicted by using coarse-
grained models such as elastic network models.35–37 Software
to perform PCA on sets of protein structures is currently
supported by software packages such as Maven49 from our
lab, ProDy50 from the Bahar group, as well as Bio3d51 from
grant.

PCs involved in the largest scale motions are often
associated with the functional mechanism of a protein52 and
thus also provide a convenient reduced coordinate system upon
which to construct energy landscapes as a basis for describing
conformational changes, and even to treat protein folding.45

Even though the energy landscape of a protein can be rugged
and high dimensional,5 using the PCs as coordinates for the
landscapes can usually reveal the dominant low energy regions
and pathways for conformational changes.47 There have also
been recent attempts to use PCA for internal coordinates53

rather than Cartesian coordinates to construct free-energy
landscapes.54–56 Free energies along the PCs are traditionally
calculated from the negative logarithm of the probability
distribution function of structures along each PC (Ref. 46)

as ∆G = −kT log Pi j, where k is the Boltzmann constant, T
the temperature, and Pi j the joint probability density function
of structures along a pair of PCs, PCi and PCj. But this
assumes that the simulation samples the entire conformational
space accessible to the protein, which is not necessarily true.
A more accurate picture of the energy landscape can be
obtained if the conformational space (at least along the most
significant directions of motion) is explicitly sampled and
the relative energies of structures in different regions of the
landscape can be computed. Here, we propose a new method
of combining the PCs from sets of experimental structures
with our previously successful free energy estimates57 to
construct the free energy landscapes of a group of 50 well
studied proteins.

The free energy ∆G of a system is defined as ∆V − T ∆S,
where ∆V and ∆S are measures of the energy and entropy of
the system, respectively. Given the difficulties in computing
interaction energies for proteins by using first principles,
the empirical statistical or knowledge-based potentials have
emerged as a convenient method to estimate potential energies
of proteins. They have been tested out extensively at the CASP
(Critical Assessment of Structure Prediction) competitions58

and have proven themselves to be superior to other types
of potentials. Knowledge-based potentials are calculated
based on the preference of amino acid contacts between
different residues in a database of known structures under
the assumption that the global free energy minimum is
the native structure of the protein. Pairwise (two-body)
statistical contact potentials were pioneered by Tanaka and
Scheraga59 and subsequently developed and extended by
Miyazawa and Jernigan60,61 and Sippl.62 Since then, with
increased availability of structures in the PDB, many different
two-body potentials have been developed and have found
applicability for a variety of protein problems ranging from
protein tertiary structure prediction63,64 and protein-protein
interaction prediction65–67 to protein design.68,69

The dense packing of residues in globular proteins means
that two-body potentials are likely not sufficient to capture the
3-dimensional cooperative nature of multiple interactions,70–72

and it has been suggested that higher-body potentials are
necessary for tasks like protein structure prediction. To
address this, three-body73 and four-body potentials74 have
been developed. Our own four body potentials75,76 capture the
cooperative nature of interactions among amino acid residues
in addition to incorporating differences between buried and
exposed residues and the interactions between backbone
and side chains. In addition, we have also developed an
optimized potential function77 combining the long-range four
body potentials with short-range potentials.78 This optimized
potential when combined with entropy measures obtained
from coarse-grained computational methods such as the
ENMs57,79 can provide estimates of free energy that have
already proven to be extremely powerful in identifying native
protein-protein complexes from sets of docked poses.57 We
therefore combine information about preferred directions of
motions from PCs with free energy information to present
coarse-grained free energy landscapes for proteins. These
show the pathways for the limited conformational changes
described by the set of dominant motions.
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The paper is organized as follows: First, we discuss how
to collect a dataset of proteins for this type of analysis and
how to construct free energy landscape for these proteins by
combining principal components and free energy estimates.
Then, we analyze and discuss in detail the energy landscapes
of three well known proteins and discuss how the energy
landscapes can be interpreted in the context of the motions
extracted from each dataset. As a further step, we also show
how Monte Carlo simulations on these coarse-grained free
energy landscapes can provide transition pathways for force-
driven conformational changes in proteins.

II. THEORY AND METHODS

A. Datasets

The PDB33 provides a clustering of all the chains by
using CD-HIT (Cluster Database at High Identity with
Tolerance)80,81 at different levels of specified sequence
similarity. In order to identify all the structures which are
highly similar to one another in the PDB, we have utilized
clusters obtained at 95% sequence similarity cutoff, from the
PDB (as of November 2014). In other words, all protein
chains in each cluster are at least 95% identical in sequence
to each other. After obtaining these clusters, only monomeric
proteins were retained for the analysis. However, with more
careful alignment of oligomers, this methodology can handle
multimeric proteins as well. Each of the members of these
sets is aligned using the multiple structural alignment (MSA)
tool MUSTANG82 and the alignment is manually edited to
remove any obvious mismatches or indels. Proteins within
each set often have stretches of residues lacking position
coordinate information (resulting in gaps in the alignment),
and these structures have been removed from the sets. Guided
by the MSA, the PDB files of the structures are processed
using our own Perl scripts to retain only residues present in
all the structures within each set (i.e., not including positions
having gaps in the MSA). Care is taken so as not to include
any structures having gaps in the middle of the protein. This
processed dataset of the position coordinates for each residue
in the set of proteins constitutes the data used to perform
PCA. Following this selection process, we obtain 50 proteins
from which at least 45 structures are retained. The complete
list of PDB IDs for all the 50 sets of proteins used in this
study are provided in Table S1 in the supplementary material83

and the distribution of root-mean-square deviations (RMSDs)
within the dataset of structures is provided in Fig. S1 in the
supplementary material.83

B. PCA

The dataset for PCA, Ξn×p, is the matrix of position
coordinates (x, y, and z) of the Cα atoms in an aligned set
of proteins for n structures each having the total number of
variables, p = 3N , where N is the number of residues in each
structure. Then the p × p dimensional variance-covariance
matrix C has elements,

ci j =
n

k=1
(ξki − ξ̄i)(ξk j − ξ̄ j)/(n − 1), ∀1 ≤ i, j ≤ 3N.

(1)

Each diagonal term is the variance of each position coordinate
and the cross diagonal terms are the covariances. Here,
ξki refers to the value of the ith variable (x, y, or z)
for the kth structure in the dataset Ξn×p and ξ̄i refers
to the mean of the ith variable. The covariance matrix
C can be decomposed as C = E∆ET , where the columns
of E are the eigenvectors ek∀1 ≤ k ≤ 3N , which are the
linearly independent, orthogonal vectors along directions
of the variations in the data and the eigenvalues are the
elements of the diagonal matrix ∆. The eigenvalues are sorted
in order, and each eigenvalue is directly proportional to
the amount of the variance it captures. The projections of
the points on each eigenvector are called the PCs and are
obtained as columns of the matrix Pn×3N = Ξn×3N × E3N×3N .
The PC scores are calculated as projections of the mean
centered data onto the PCs, obtained as columns of the matrix
Pn×3N = (ξ − (⃗1p×1 × ξ̄

T))E3N×3N , where ξ̄
T

is the transpose
of the mean vector of position coordinates. The ith row of the
matrix P correspondingly gives the PC scores of structure i in
the dataset.

C. Knowledge based potential functions

The potential energies for the structures are estimated
as an optimized linear combination of three different in-
house statistical potential functions: four-body sequential
potential,75 four-body non-sequential potential,76 and short-
range potentials;78 as in our previous work.57 Four-body refers
to close groups of four amino acids that can interact,

Vopt = V4-body seq + 0.28 ∗ V4-body non-seq + 0.22 ∗ Vshort range. (2)

The weights for the four-body sequential and four-body
non-sequential potential terms were obtained previously77

by minimizing the RMSD of best decoys from homology
modeling targets of CASP884 to their corresponding native
structures using particle swarm optimization (PSO).85 Please
refer to our previous work77 for more details about how the
weights for each potential terms were optimized.

D. Structural entropy evaluation

In order to obtain a reliable measure of the entropy of
a system, we use coarse-grained models of protein dynamics
referred to as ENMs.24,25,86,87 In ENMs, the molecules are
represented using bead-spring models in a simplified manner
(for the coarse-grained cases usually the beads are the Cα

atoms of proteins, i.e., one bead per residue, which is what
has been used here) and are assumed to interact with only
the physically close beads (within a specified distance cutoff,
taken here as 7 Å). Here, we specifically use the GNM24 in
which the equilibrium fluctuations of the beads are assumed
to be isotropic and normally distributed. The spring stiffness
(γ) between all the beads is assumed to be the same (γ = 1).
The potential energy of the system is then simply proportional
to the sum of squares of displacements of all the beads
from their equilibrium positions. Mean square fluctuations
of the Cα atoms computed from the GNM (obtained as
diagonal elements of the pseudoinverse of the connectivity
or Kirchoff matrix) have been shown to agree well with the
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experimental temperature factors for many different crystal
structures, and also to agree with the variabilities observed
in sets of structures.35,36 The entropies for the structures are
directly computed as the sum of mean square fluctuations of
all the Cα atoms57 as computed with the GNM,

∆S ∝ Γ−1 =
N

i=2

1
λi
(MiMT

i ), (3)

where N is the number of residues in the structure, Mi is the
ith mode vector from the GNM, λi the corresponding square
frequency, Γ the system’s Kirchoff or connectivity matrix, and
Γ−1 its pseudo-inverse.

E. Construction of energy landscapes

The first few eigenvectors from PCA capture the most
important directions of motions from the set of structures, and
these provide convenient coordinates for constructing free
energy landscapes. By using the PC vectors, representative
structures can be sampled along the first few eigenvectors
under the assumption of linearity provided the conformational
changes are not overly large. The distribution of structures
along the PC axes (the mean-centered projections of the
structures onto the eigenvectors) indicates the similarities and
dissimilarities between the various structures in the dataset.
Usually there are clusters within the dataset, by viewing their
distribution.

In order to obtain a free energy landscape, we choose
to focus on the most important motions, along the PC1-PC2
coordinates, considered as grid points. Consider a dataset of
(x, y, z) coordinates, Ξn×3N of n structures with N residues
each. Performing PCA on this dataset as described above
yields 3N eigenvectors ek ∀1 ≤ k ≤ 3N . For this study, we
consider only the first two eigenvectors (e1 and e2) which
capture the largest fraction of the variance in the data of
any pair of such coordinates. Representative structures were
sampled uniformly at equally spaced points along the PC1 and
PC2 directions to yield a rectangular grid where the extrema
of the grid are dictated by the extrema in the PC scores of
all of the crystal structures. For this, the coordinates of each
representative structure on the grid are obtained relative to
the coordinates of a central structure (closest to the origin) on
the grid, R0. The 3D coordinates R1×3N of a structure R on
the PC1-PC2 grid at position (Ri,Rj) are obtained using the
coordinates of the central structure on the grid R0 as

R1×3N = R0
1×3N +

�
Ri − R0

i

�
× e1 +

(
Rj − R0

j

)
× e2, (4)

where (R0
i ,R

0
j) are the PC1-PC2 scores of the central

structure on the PC grid and e1 and e2 are the eigenvectors
corresponding to PC1 and PC2.

The free energy of a representative structure is measured
as

∆G = ∆V − a∆S, (5)

where the energy contribution ∆V is obtained from Vopt (as
in Eq. (2)) and the entropy contribution ∆S is obtained from
the GNM fluctuations (Eq. (3)). The value of a cannot be

determined universally for all proteins because the entropy
term depends on various factors such as the size of the protein.
The value of a is taken to be a variable and is optimized for
each protein as the value that places the largest number
of structures in lowest energy regions of the landscape, as
discussed in Section III.

Once the free energies for each of the representative
structures is computed, the values are visualized as a contour
along the PC1-PC2 coordinate space and the contour plot is
colored spectrally according to the order VIBGYOR (with
violet corresponding to regions of lowest energy and red
corresponding to regions of highest energy). The experimental
structures are plotted in this space on top of the contours.
Usually, the experimental structures fall into lower free energy
regions of such a contour plot, subject to some uncertainties
arising from additional conformational variabilities from
additional PCs beyond the first two that are being ignored.

F. Generation of a transition path between
two structures on the free energy landscape

In order to show an example of how to obtain the
transition pathway between two different forms of a protein,
we have chosen to perform force applications using Monte
Carlo simulations on HIV-1 protease. This approach builds
on the Hessian matrix computed from coarse-grained ANM
and generates a displacement vector in response to an external
force perturbation vector based on linear response theory88,89

to relate the response behavior to the equilibrium fluctuations
in the unperturbed state. This displacement vector can be
represented as

Γ
−1
i · Fi = ∆Ri, (6)

where the matrix Γ−1 is equivalent to the inverse Hessian
and Fi is the external force vector applied on residue i with
component directions (Fx,Fy,Fz), and ∆Ri is the displacement
vector in Cartesian coordinates for residue i.

We have developed a pipeline (unpublished) to perform
randomly directed force perturbations at sites where
exothermic events occur. To understand the conformational
changes in HIV-1 protease, where the binding process itself
is exothermic,90,91 we have added forces on the residues close
to the flaps, where the major conformational changes take
place. Any extremely large forces that could rupture bonds
would clearly fall outside the range of linear responses, so we
apply small iterative forces. In this way, we will avoid large
disruptions, but permit new contacts between two nodes to
form during a transition. We use a Metropolis Monte Carlo
approach,92 which follows a series of steps (deformations)
that are mostly downhill on the energy landscape, but with
occasional uphill steps. Instead of accepting all steps during
a simulation, we accept some and reject others using the
Metropolis decision criterion. We have integrated this MC
scheme with our elastic network based force perturbation
method.

The Metropolis decision criterion uses only the four-body
potential energy of the newly generated state m in comparison
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with the four-body energy of the previous state,

p =



1, Vm ≤ Vm−1

exp
(
−Vm − Vm−1

kT

)
, Vm > Vm−1

, (7)

where p is the probability for accepting the newly generated
structure in the MC simulation. Vm the four-body energy
of the newly deformed structure, Vm−1 the four-body energy
of the previous structure, k the Boltzmann constant, and
T the temperature. In other words, any newly generated
conformation lower in energy than the previous conformation
will always be accepted, while the probability of accepting a
newly generated conformation is lower if the newly generated
conformation has a four-body energy higher than at the
previous step.

III. RESULTS

A. Distribution of crystal structures in low energy
regions of the landscape

One of the principal aims of this study is to learn whether
the crystal structures are located in low free energy regions
of the landscape. If the experimentally determined structures
do reside in the low free energy regions on the landscape, this
supports the conformational selection point of view for the
protein under study. In other words, we can assume that the
protein is in a state of dynamic inter-conversion between the
conformations corresponding to the low free energy regions
and different triggering events such as binding of a ligand,
introduction of a mutation, or a chemical reaction may shift the
equilibrium in favor of some slightly different conformations.

In order to test this hypothesis, we choose 50 proteins
of interest (selected on the basis of having at least 45
experimental structures each). Next, we construct the free
energy landscape for the proteins by computing the free
energies of the structures obtained by deforming the structures
along the first two pairs of PCs on an equally spaced
rectangular grid. Let us assume that the entire grid produces a

scale of free energies from Gmin (lowest free energy) to Gmax

(highest free energy). The free energy of each crystal structure
is assumed to be that of the closest grid point. We then consider
a set of percentiles Gi ∀ i ∈ {0,5,10, . . . ,100} of the crystal
structures on the free energy scale of the whole grid. If the
free energy of the crystal structures was predominantly in low
energy regions of the entire landscape, we would expect the
higher percentile values to be closer to the lowest free energy
on the grid, Gmin. For this, we compute the normalized energy
difference δi from Gmin for each percentile value Gi relative
to Gmax (the highest free energy in the grid),

δi =
Gi − Gmin

Gmax − Gmin
, i ∈ {0,5,10, . . . ,100}. (8)

We then plot the scaled percentile rank i/100 against the
normalized energy difference of each percentile value, δi ∀ i
∈ {0,5,10, . . . ,100} (Eq. (8)). This plot can be considered
analogous to the receiver operating characteristic (ROC)
curve used in machine learning: for higher percentile rank
i corresponding to lower δi, the curve is shown in Fig. 1(a).
As in the ROC, we can use the area under the curve (AUC)
as a measure of the tendency for experimental structures to
lie in low energy regions. Higher AUC values mean that the
energies of the experimental structures with respect to the
entire landscape grid are lower. For each of the 50 sets of
proteins, AUC values were calculated for different values of
the entropy weight “a” from Eq. (5) to find an optimal value
for a. Fig. 1(a) shows the plot of percentile rank i vs δi curve
for sarco-endoplasmic reticular Ca2+ ATPase (SERCA). The
optimum value of a obtained is 1.35 with an AUC (red curve)
of 0.84 vs. 0.81 (blue curve) when the entropy term was not
included.

Table S2 in the supplementary material83 shows the
maximum AUC values and the corresponding optimal values
of a for all 50 proteins under study. If the crystal structures
were not found to be preferentially located in low energy
regions of the landscape, then the curve would be close to the
diagonal from the origin which would result in an AUC of
0.5. In our dataset, we find that 43/50 proteins (86%) show

FIG. 1. Measures of the distribution of the experimental structures in the low free energy regions of the landscapes. (a) Plot of percentile rank i/100 against the
normalized free energy difference δi from the lowest free energy in grid for sarco-endoplasmic reticular Ca2+ ATPase (SERCA). Without including the entropy
term, the area under the curve (AUC) is 0.81 (thin line), while for the entropy weight a = 1.35, the AUC increases to 0.84 (thick line). (b) Plot of AUC (sorted)
for optimal weight of the entropy term for all 50 proteins investigated in this study. The AUC for 43 out of 50 cases is above 0.5 suggesting that the crystal
structures are located in lower energy regions of the free-energy landscape.
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an AUC above 0.5 (Fig. 1(b)). Interestingly, for a number
of proteins, including the entropy term does not improve
the AUC, whereas for some, it does improve the behavior
significantly. We hypothesize that for at least those cases that
improve the AUC when the entropy term is included; there
is a significant entropic contribution to the conformational
change. In Sections III B–III E, we discuss in detail the energy
landscapes derived from the sets of experimental structures
for three well studied proteins: lysozyme, serum albumin, and
SERCA.

B. Case study I: T4 lysozyme

Lysozyme is an enzyme found in various plants and
animals and is primarily used as a first line of defense against
bacteria. In humans, it is found in many bodily secretions
including saliva, tears, mucus, and milk as well as the
secondary (granulocyte specific) granules of neutrophils and
serves as a part of the innate immune system. It causes bacterial
lysis by hydrolyzing the 1,4-β-glycosidic linkages between the
N-acetyl muramic acid (NAM) and N-acetyl -glucosamine
(NAG) residues in peptidoglycan cell walls of bacteria.93

Several types of lysozymes have been identified in diverse
organisms, but the most important classes of lysozymes are
the chicken-type (C-type), virus type (V-type), and goose type
(G-type).

Discovered by Fleming in 1922,94,95 lysozyme was not
only one of the first proteins whose 3D structure was solved
using X-ray crystallography96,97 but also a first protein
for which a detailed catalytic mechanism was proposed.
Since then, more than 1500 structures of different members
of the lysozyme superfamily have been determined using
X-crystallography and NMR spectroscopy. After filtering
structures with missing residues and outliers, we obtain 218
structures for human lysozyme (C-type), 183 structures for
T4 lysozyme (V-type), and 586 structures for hen egg-white
lysozyme (C-type). Here, we discuss results for the set of
T4 lysozyme structures. The crystal structure98 of the T4L
protein (162 residues) shows that it is comprised of two
domains, the N-terminal domain (residues 15-65), and the
C-terminal domain (residues 80-162) connected by an inter-
domain helix (residues 66-80) with a deep cleft between them
where the peptidoglycan backbone of the bacterial cell wall
binds. PCA on the set of 183 T4 lysozyme structures results
in the first three PCs capturing an unusually high fraction
of the variance in the first three PCs, with 78%, 5%, and
2% of the total variance, respectively (Fig. 2(a)). Both PC1
(Fig. 2(c)) and PC2 (Fig. 2(d)) correspond to combinations of
hinge bending motion of the two domains with respect to each
other and a twisting of the domains (refer to supplementary
movies S1 and S2 for animations of the PCs83). The difference
between the two PCs is that the motions are at an angle of

FIG. 2. Bacteriophage T4 lysozyme. (a) Percentage of variance captured by the first 10 PCs from a set of 183 T4 lysozyme structures. (b) and (c) Visualization
of PC1 and PC2 on the protein structure (thick black arrows) as a combination of hinge-bending and twisting motions of the N-term domain (blue) with respect
to the C-term domain (red). (d) Energy landscape of human lysozyme along the PC1-PC2 coordinates (entropy weight a = 0). Crystal structures are denoted by
white hexagons. The large cluster at lower values of PC1 corresponds to closed structures whereas the open structures are more broadly scattered along PC1 and
PC2.
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approximately 90◦ relative to one another. The hinge-bending
motion between the two domains in T4L has previously been
well documented as an intrinsic property of T4L based on
experimental structures of various mutants.99–101 This motion
was also reported from MD simulations102–104 and shown to
be highly similar to the principal motions extracted from a
set of crystal structures.103 In addition, this motion was also
characterized extensively in both hen-egg white105 and human
lysozymes106 using normal mode analysis. The hinge-bending
motion of the domains has been considered to be the functional
motion for the entry of substrate and the release of products.

Upon projecting the structures onto the PCs (mean
centered projections, also referred to as PC scores), it can be
seen that most of the structures fall into a low energy cluster
located at low values of PC1. The free energy landscape
(as discussed in Section II) along PC1-PC2 is shown in
Fig. 2(b). These are the structures where the two domains
are “closed” with respect to one another and correspond to
a conformation with bound ligand where the protein can be
considered “closed.” On the other hand, the “open” forms of
T4L are scattered along PC2 for a range of higher values in
PC1. This is quite different from what we have observed for
many other proteins where there are tighter clusters of open
and closed forms. This broader unusual distribution possibly
suggests that the two hinge motions may be coupled to each
other and that at higher values of PC1, the structures can be
sampled uniformly along each of the two PCs. The AUC was
0.69 suggesting that the crystal structures fall into low energy
regions of the energy landscape.

C. Case study II: Human serum albumin (HSA)

Serum albumin (HSA) is the most abundant blood protein
in mammals and is essential for maintaining the proper
osmotic balance between body fluids inside blood vessels and
tissues.107 It is also the primary carrier of many hydrophobic
molecules108 in the blood such as steroids, fatty acids, thyroid
hormones, and hemin and also transports certain metal ions
like Cu2+ and Ca2+. Structurally, HSA is a globular protein
(585 amino acids) comprised of several helices organized
into three domains:109 domain I (residues1-195), domain
II (residues196-383), and domain III (384-585), which are
homologous in both sequence and structure but arranged in
an asymmetric fashion. Each of these domains can be divided
into subdomains A and B where the subdomains IA, IB, and
IIA can be thought of as forming a head for the molecule with
IIB, IIIA, and IIIB forming a tail109 giving the protein overall
a heart shape.108

The versatility of serum albumin to bind diverse water
insoluble ligands ranging from fatty acids to metal ions
is attributed to the diverse binding sites present on its
domains. There are at least six major sites where ligand
association occurs. Of the various ligand binding sites, the
one on subdomain IIIA is the most active and preferentially
accommodates several ligands.110 The primary binding sites
for fatty acids and bilirubin are IIA and IIIA with their
pockets located in similar regions containing hydrophobic
side chains and gated by two helices A-h5 and A-h6. It is
believed that the binding ability of these pockets is due to the

strategic positioning of W214, K199, and Y411 which limit
accessibility to solvent.107,108 In addition, since IIA and IIIA
share a common interface, the binding of ligands to one of
the domains can affect the conformation and binding ability
of the other.

We perform extensive analysis on a set of 99 structures
of HSA for the stretch of residues 5-558 with no gaps. PCA
on this set results in PC1, PC2, and PC3 capturing 85%, 7%,
and 2% of the total variance, respectively (Fig. 3(a)). In PC1,
domain I rotates as a single unit relative to domain III providing
access to the ligand binding pocket within subdomain IIIA
(Fig. 3(c)). PC2 involves a motion of subdomain IIIB relative
to subdomain IB, providing access to the ligand binding site
on IB. In addition, PC2 also involves a breathing motion of the
helices A-h5 and A-h6 of subdomain IIIA, which is most likely
responsible for the gating of this versatile pocket (Fig. 3(d)).
It is worth noting that both PC1 and PC2 are motions
involved in restricting access to the crucial IIIA binding
pocket (see animations of the PCs in supplementary movies
S3 and S483).

PC1 and PC2 separate the set of 99 structures into three
primary clusters (Fig. 3(b)), with one cluster at high values
of PC1 corresponding to structures with the domain I rotated
and open to provide access to the domain IIIA binding pocket;
a second cluster at low values of PC1 and high values of
PC2 (structures with domain III closed and blocking access
to the IB binding site) and a third cluster at low values of
PC1 and low values of PC2 (representing structures with
domain III open). We construct the free energy landscape for
this set of proteins and obtain an AUC of 0.77 suggesting
that a majority of the crystal structures fall into the minima
of the free energy landscape. In addition, the landscape also
clearly shows possible low energy transition paths between
the different clusters.

D. Case study III: SERCA

SERCA is a Ca2+ ATPase found on membranes of the
sarcoplasmic reticulum (SR) in muscle cells. The primary
function of SERCA is the reuptake of Ca2+ ions (an active
transport process) from the cytosol of muscle cells into the
lumen of the SR (for internal storage of Ca2+) during muscle
relaxation using energy derived from ATP hydrolysis. In other
words, it is essential for maintaining a proper concentration
of Ca2+ in the cytosol of muscle cells. There are several
isoforms of SERCA encoded by three different genes which
were reviewed in detail by Misquitta et al.111

Early on, site-directed mutagenesis112–115 and cryo-
electron microscopy116 have elucidated extensive information
about the structure and function of the various domains of the
protein. The 994 residue protein is an integral membrane
protein consisting of a large head on the cytoplasmic
side, a small flexible stalk, and a transmembrane (TM)
domain comprised of 10 TM helices and associated loops
in the lumen of the SR. A crystal structure117 of the
SERCA1a isoform (most abundant form) from rabbit fast-
twitch skeletal muscle revealed that the cytoplasmic head
consists of three domains: domain A (actuator) involved in the
gating mechanism regulating the binding and release of Ca2+,
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FIG. 3. Human serum albumin (HSA). (a) Percentage of variance captured by the first 10 PCs from the set of 99 HSA structures. (b) Visualization of PC1 on
the protein structure—domain I (red+magenta) rotates and moves away from domain III (blue+cyan) providing access to the ligand binding site on subdomain
IIIA (cyan). (c) Visualization of PC2—subdomain IIIB (blue) moves away from subdomain IB (red) providing access to its ligand binding site. In addition, the
two helices governing access to the binding site on subdomain IIIA (cyan) open and close in a breathing motion. (d) Energy landscape of HSA along PC1-PC2
(entropy weight a = 0). Crystal structures are denoted by white hexagons. The two largest clusters are clearly located in lowest energy regions (see free energy
scale on the right hand side, from blue favorable to red unfavorable).

domain N (nucleotide-binding) that binds ATP and ADP, and
domain P (phosphorylation) containing residue D351, which
is phosphorylated as part of the transport cycle reaction. A
transport mechanism has been described118 in the form of
a cycle to consist of two main conformations E1 and E2,
where the E1 (open) conformation has high affinity for Ca2+

and binds it from the cytoplasm whereas the E2 (closed)
conformation has low affinity for Ca2+ and releases it into the
SR lumen. The transition from E1 to E2 proceeds through
the phosphorylated states E1P and E2P and involves large
conformational rearrangements and rotation of the N and A
domains.

Several structures of SERCA are available from the PDB
that sample multiple conformational states of the transport
cycle which makes its analysis by PCA worthwhile. We
compiled a dataset of 63 structures of rabbit SERCA1a
and performed PCA on this set, which results in the PCs
1-3 capturing ∼57%, 27%, and 11% of the total variance,
respectively (Fig. 4(a)). PC1 when visualized appears as
a twisting motion of the actuator and nucleotide-binding
domains whereas PC2 corresponds to a hinge-bending motion
of the actuator and nucleotide-binding domains toward each
other (Figs. 4(c) and 4(d)). Since the A-domain is linked
to three helices of the TM domain through highly flexible
linkers, it has been suggested previously that the rotation of
the A domain could play a key role in the rearrangement of

helices that open the gate to release Ca2+ into the lumen119

(see supplementary movies S5 and S6 for animations of the
PCs83).

When the structures are projected onto PC1 and PC2, they
distinctly separate into two major clusters: one cluster at low
values of PC1 and PC2 corresponding to E2 (closed) structures
and another at high values of PC1 and PC2 corresponding to
E1 (open) structures. Two minor clusters are also observed
at high values of PC1 and low values of PC2, and these
correspond to structures where the A and N domains have
rotated, but a hinge-bending motion between the two domains
has not occurred. The free energy landscape obtained from
our analysis is shown in Fig. 4(b). The optimum weight for
the entropy term obtained is 1.35 corresponding to an AUC
of 0.84, again suggesting that most of the crystal structures
fall into low energy regions of the energy landscape. One
interesting feature of this landscape that differs from those
of other proteins investigated is that the low energy basins
corresponding to clusters are not connected to others by low
free energy paths. This can be understood by interpreting the
landscape in the context of the SERCA transport cycle which
requires external energy in the form of ATP. This further shows
that these coarse-grained free energy landscapes are powerful
enough to identify high energy barriers that cannot be crossed
without significant additional energy (e.g., ATP or guanosine
triphosphate (GTP) driven mechanisms in proteins).
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FIG. 4. Sarco-endoplasmic reticular Ca2+ ATPase (SERCA). (a) Percentage of variance captured by the first 10 PCs from the set of 63 SERCA structures. (b)
Visualization of PC1—twisting motion of the N (green) and A (red) domains against each other whereas the TM domain (gray) remains relatively rigid. (c)
Visualization of PC2 as an opening-closing motion of the N and A-domains towards each other. (d) Free energy landscape of the molecule along PC1-PC2
(entropy weight a = 1.35). Crystal structures are denoted by white hexagons.

E. Predicting the transition pathway between the open
and closed forms of HIV-1 protease

When there are two or more distinct conformations for a
protein, it becomes important to understand how the protein
passes between these conformations. For example, many
proteins have a “closed” conformation after they bind their
ligands and an “open” conformation when they have released
the ligands. Using the intensely studied protein HIV-1 protease
as an example, we show that transition paths between the open
and closed conformations can be predicted by using the free
energy landscapes.

HIV-1 protease is a retroviral aspartyl protease respon-
sible for cleaving newly synthesized polyproteins to produce
mature proteins in the infectious HIV virion. The protein is
composed of two symmetrical identical subunits (each 99
residues long).120 Each monomer consists of three domains:
a flap domain (residues 33-62), a core domain (10-32 and
63-85), and a terminal domain (1-4 and 96-99). The active
site is composed of the D25-T26-G27 amino acid triad from
both the monomeric units and the protein functions only in
the dimeric form.

Given its importance as a primary target for HIV therapy,
more than 300 structures of this protein have been solved
using X-ray crystallography in complex with diverse ligands.
In addition, this protein has been a subject of extensive
study by computational simulations, especially molecular

dynamics.121–125 Previous work35 from our lab has shown
that the principal motions extracted from sets of X-ray and
NMR structures or snapshots from MD simulations of the
protein agree well with the motions predicted by ANM.
Crystal structures of mutants as well as MD simulations
have identified distinct closed and open conformations of the
protein. The flaps are assumed to open up, allowing for the
binding of substrate and the release of products. Here, we
discuss the transition between the open and closed forms
within the context of free-energy landscapes generated using
a set of 304 experimental structures of the protein.

The PCs obtained from a set of 304 structures are shown
in Fig. 5. The first three PCs capture 30%, 21%, and 7% of the
total variance, respectively (Fig. 5(a)). PC1 is an opening and
closing motion of the flaps resulting in significant changes
for the ligand binding space (Fig. 5(c)). PC2 (Fig. 5(d)) is a
twisting motion of the flaps (see animations in supplementary
movies S7 and S883). When the intermediate structures along
the transition pathway (discussed in Section II F) are projected
onto the free energy landscape (Fig. 5(b)) from the set of
structures, it can be seen that they fall on a relatively low free
energy path between the two conformations. There are a few
energy barriers which the protein crosses to reach the final
state, but most interestingly the transition path passes through
the regions of the landscape where experimental structures
are located. Recall that in this Monte Carlo simulation, only
energies and not entropies have been considered in making
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FIG. 5. Predicted conformational transition pathway for HIV-1 protease. (a) Percentage of variance captured by the first 10 PCs from the set of 304 HIV-1
protease structures. (b) Visualization of PC1—opening and closing of the flap domains (red) against the core domain (blue). The terminal domain is shown in
green. (c) Visualization of PC2—twisting motion of the flaps (red). (d) Free energy landscape of the molecule along PC1-PC2 (entropy weight a = 1.3). Crystal
structures are denoted by black hexagons, while intermediate structures along the predicted transition pathway are shown as magenta diamonds. The predicted
transition pathway follows a relatively low-energy path on the landscape along a diagonal path and passes close to several experimental intermediate forms.

the decisions for the steps taken, so the path when plotted on
the free energy surface does not follow the lowest free energy
path. This suggests that the free energy landscapes obtained
by the use of this method can guide the probable transition
pathways between structures.

IV. CONCLUSIONS

In this work, we have exploited the availability of multiple
structures for groups of closely related proteins in the PDB
to understand conformational changes in the context of their
free energy landscapes constructed by combining knowledge
based potential functions with entropy terms from elastic
network models. By using principal components as a suitable
coordinate system for landscape construction, we have been
able to map out the free energetics of conformational changes
along the most important directions of motion for several
proteins. It has been found that most of the crystal structures
tend to lie in regions of relatively low free energies. However,
we also find cases where there were lower free energy regions
on the landscape where a structure has not yet been observed.
In principle, for cases such as these, it may be possible to
pursue these analyses to suggest mutants that would occupy
these lower free energies regions.

Further investigations are required to establish with
certainty whether the conformational changes from higher
order less important principal components affect in any

significant way the free energy landscapes. The cases where
the first few principal components are dominant should be
the most reliable cases, but approximations to account for the
effects of some higher order, less important motions can be
developed in future studies.

Our analysis also sheds light on the two contrasting
views about conformational changes in proteins: the
conformational selection hypothesis or induced fit. According
to the conformational selection hypothesis, proteins exist in
equilibrium among their different conformations and a trigger
(such as a binding event) causes a shift in the equilibrium
towards one of the states. This can be contrasted with the
induced-fit hypothesis where the protein is assumed to exist
in one conformation only and where a triggering event such
as binding induces a change in conformation of the protein.
We find from our analysis of a set of 50 proteins that most of
the crystal structures do occur in regions of relatively low free
energy on coarse-grained landscapes. With the exception of
a few cases (e.g., T4 lysozyme), the structures are clustered
along the PC coordinate and each of these clusters can be
considered to represent a conformation of the protein. Further,
the clusters seem to occupy a low free energy basin within the
conformational space and are often connected to each other
through narrow low free energy paths (which suggest possible
transition paths between the conformations), as can be seen
from the landscapes of T4 lysozyme, serum albumin, or HIV-1
protease. However, in a few cases (e.g., SERCA), the clusters
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are separated from each other by high energy barriers. These
can be considered to represent cases that require extra energy
(from ATP or GTP interactions) which is not considered
in our calculations. In summary, our analysis suggests that
such coarse-grained free energy landscapes of proteins can
be used to shed light on the extent to which conformational
selection or induced fit is operative in a system. From the
present point of view, interpretation of the difference between
conformational selection and induced fit can be made directly
from the free energy landscapes. Whenever the conformations
are accessible without requiring passage over high energy
barriers, this would be conformational selection, but when
there are high free energy barriers, this would require induced
fit arising from favorable interactions with the ligand.
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