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Adaptive sampling in two-phase designs:
a biomarker study for progression
in arthritis
Michael A. McIsaaca*† and Richard J. Cookb

Response-dependent two-phase designs are used increasingly often in epidemiological studies to ensure sampling
strategies offer good statistical efficiency while working within resource constraints. Optimal response-dependent
two-phase designs are difficult to implement, however, as they require specification of unknown parameters. We
propose adaptive two-phase designs that exploit information from an internal pilot study to approximate the
optimal sampling scheme for an analysis based on mean score estimating equations. The frequency properties of
estimators arising from this design are assessed through simulation, and they are shown to be similar to those
from optimal designs. The design procedure is then illustrated through application to a motivating biomarker
study in an ongoing rheumatology research program. © 2015 The Authors. Statistics in Medicine Published by
John Wiley & Sons Ltd.
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1. Introduction

1.1. Two-phase designs with response-dependent sampling

Epidemiological studies with multiphase sampling designs [1] yield efficient estimators of exposure
effects when one or more of the exposure variables are expensive or difficult to measure [2–4]. Key
early papers in examining two-phase designs for logistic regression include those of Breslow and Cain
[5] and Scott and Wild [6]. The considerable appeal of such designs has led to their use in many
areas of health research including dementia [7], myocardial infarction [8], and nephroblastoma [9].
Two-phase designs are perhaps the most widely employed multiphase design. In the first phase of sam-
pling ( phase-I), characteristics that are relatively inexpensive to measure are recorded for all individuals
in a large sample; these characteristics may include the response of interest (e.g., disease status) as well
as auxiliary covariates. This information is then used to inform the sampling scheme for a second phase
(phase-II) in which a subsample of individuals from the phase-I sample is selected for measurement of
the expensive exposure variable. Efficiency gains over use of simple random sampling at phase-II are
realized when phase-I data are used effectively to inform the phase-II sampling design [10,11] and partial
information available from phase-I is exploited in analyses.

Reilly and Pepe [12] develop mean score estimating equations for settings with incomplete covariate
data which can be easily implemented in two-phase studies if phase-I data are discrete. This approach
exploits information from individuals selected at both phases of sampling to achieve greater efficiency
than is possible based only on ‘complete’ data (i.e., data collected only from the subsample selected
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at phase-II). In terms of design, the mean score is particularly attractive because closed-form expres-
sions are available for the phase-II sampling probabilities which minimize the asymptotic variance of the
resulting mean score estimator [10,12]. General use of these asymptotically-optimal phase-II mean score
designs has been advocated because of the ease with which they can be implemented [3] and because
these designs have been shown to be highly efficient in a variety of settings, even when analyses are not
based on the mean score approach [13,14]. Implementation of asymptotically-optimal designs, however,
requires specification of underlying population characteristics including population variances and values
of the parameter(s) of interest. Often, these necessary design parameters are estimated using data from
an external pilot study [3, 10, 15], but external pilot data are also expensive to obtain, and the extra cost
may not be justified or recovered by the subsequent efficiency gains.

We consider a multiphase sampling design in which each sampling phase uses internal pilot data col-
lected previously for estimating the asymptotically-optimal sampling procedure for the next phase of
sampling. We implement and study a fully adaptive phase-II sampling design in which the asymptotically-
optimal design is re-estimated between the selection of every individual in phase-II, and we implement
a more practical adaptive design in which the phase-II sample is divided into an internal pilot sub-
sample (a phase-IIa sample), which exploits the phase-I data, and an approximately optimal subsample
(a phase-IIb sample), which exploits information gathered at both phase-I and phase-IIa. By using such
adaptive procedures, an asymptotically-optimal sampling design can be well approximated without the
need for external pilot data. The use of internal pilot data to modify study design was advocated by Wittes
and Brittain [16]. Lohr [17] used a similar approach, called triple sampling, in estimation of a multivari-
ate mean. Fedorov et al. [18] consider related adaptive designs in the design of dose-finding trials. Pepe
et al. [15] acknowledged the possibility of such an adaptive approach to approximate optimal mean score
designs and stated that this approach needs further exploration. This manuscript addresses this need.

This work is motivated by the need to derive a sampling scheme for a biomarker study involving a
cohort of patients with psoriatic arthritis (PsA). We describe the particular details of this problem in the
next subsection. The remainder of this article is organized as follows. In Section 2, we define notation
and give a derivation of the mean score estimating equations and the limiting distribution of the resulting
estimator. The adaptive two-phase design is then described in detail in Section 3. The results of empirical
studies are discussed in Section 4. Concluding remarks are made in Section 5.

1.2. A biomarker study in psoriatic arthritis

Psoriatic arthritis is an inflammatory, potentially debilitating, form of arthritis associated with psoriatic
skin involvement [19]. The course of this disease is highly variable; many patients do not experience any
joint destruction, while as many as 20% suffer extensive joint destruction and consequently experience
significantly poorer quality of life and decreased functional ability after developing a more serious
form of the condition called arthritis mutilans [20]. Mild cases of PsA are often successfully treated
with nonsteroidal anti-inflammatory drugs, but more severe cases require third-line therapies involving
disease-modifying antirheumatic drugs and biologic agents [21]. The long-term use of these stronger
therapies incurs considerable cost to the healthcare system and may be associated with increased risk of
liver toxicity [22]. It is therefore important to determine in which patients early and aggressive interven-
tion is warranted to alter the disease course and maintain quality of life and functional ability. To this
end, there is great interest in identifying biomarkers that are associated with rapid disease progression
and disability [21, 22].

Researchers at the University of Toronto PsA Clinic maintain a registry of over 1000 patients with
PsA [20]. Disease activity and progression in this registry cohort are tracked through annual clinic visits
and biannual radiographic examinations. In addition, blood and urine samples from these individuals
have been stored in a biobank. Samples from this biobank can be drawn for measurement of potentially
important biomarkers. There is particular interest in examining the effect of the matrix metalloproteinase
3 (MMP-3) biomarker, which has been shown to be both associated with the presence of PsA in patients
with psoriasis and correlated with disease activity in patients with other forms of arthritis [19].

Processing and testing of the serum samples are expensive and cannot feasibly be performed for all
patients in the cohort. We therefore require design strategies so that a subset of patients can be selected
for measurement of MMP-3 to provide optimal information regarding the association between levels of
the expensive biomarker MMP-3 and disease progression. Because the erythrocyte sedimentation rate
(ESR), a generic marker of inflammation, is commonly used for prognostic inferences, the goal is to
assess the relationship between MMP-3 levels and progression while controlling for the ESR level. Pilot
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data from the University of Toronto Psoriatic Arthritis Clinic are used to frame the simulation studies
reported in Section 4.

2. Response-dependent sampling with the mean score method

2.1. Notation and model assumptions

Let Yi denote a discrete response, which could be binary, categorical, or multivariate in which case Yi =
(Yi1,… ,YiK)′ is a K × 1 vector for individual i, i = 1, 2…. We let Xi denote an exposure variable of
primary interest that is difficult or expensive to observe, and let Vi denote a discrete, inexpensive auxiliary
covariate. Suppose that interest lies in estimation of the p × 1 parameter 𝛽 indexing the conditional,
possibly joint, probability mass function for Yi given (Xi,Vi) denoted

f (Yi|Xi,Vi; 𝛽). (1)

The conditional distribution of Xi given Vi, denoted g(Xi|Vi; 𝛼), is indexed by a q × 1 parameter 𝛼,
and we suppose that the marginal probability mass function of V is indexed by an r × 1 parameter
𝛾 . The full vector of random variables is therefore governed by the joint model f (Y ,X,V; 𝛽, 𝛼, 𝛾) =
f (Y|X,V; 𝛽)g(X|V; 𝛼)h(V; 𝛾), where 𝛼 and 𝛾 are nuisance parameters that are routinely eliminated by
conditioning on (X,V) when data are complete.

In a two-phase study, {(Yi,Vi), i = 1, 2,… ,N} are observed for N individuals selected in a phase-I
sample, but Xi is observed only for the n individuals selected for inclusion in the phase-II subsample,
where n < N. We let Ri indicate selection of individual i into the phase-II sample so that Xi is known
only for those n individuals for whom Ri = 1. The response and auxiliary covariate are discrete in the
present setting, which means that the phase-I sample can be subdivided into strata defined by (Y ,V); we
let NYV =

∑
i I(Yi = Y ,Vi = V) denote the size of the corresponding strata, where the indicator function

I() is 1 if condition  is true and is 0 otherwise. We let nYV =
∑

i I(Yi = Y ,Vi = V ,Ri = 1) represent the
number of individuals randomly subsampled from the phase-I strata, and we suppose that these phase-
II stratum sample sizes can be specified by the investigator; by design, a simple random sample of size
nYV will be selected for the measurement of X from the available NYV individuals in stratum (Y ,V).
The resulting data will be missing at random [23] because X⊥R|Y ,V (i.e., missingness is conditionally
independent of the potentially missing covariate given the phase-I data). We wish to employ optimal
phase-II sampling designs that allocate resources to select individuals such that the asymptotic variance
is minimized for the estimator of interest; ultimately, we wish to determine the optimal choices of nYV
for selecting the n =

∑
YV nYV individuals for whom the expensive covariate X will be observed.

2.2. The mean score method

Upon selection of the phase-II sample, X is unobserved for N−n individuals, so estimation of 𝛽 must occur
jointly with estimation of the nuisance parameter 𝛼 in likelihood analysis. Estimation can be carried out
by maximizing the observed data likelihood directly or by implementing an expectation–maximization
algorithm [24] in which the equations

N∑
i=1

{
RiU𝛽(Yi|Xi,Vi) + (1 − Ri)EX|Y ,V [U𝛽(Yi|X,Vi)]

}
= 0 (2)

and
N∑

i=1

{
RiU𝛼(Xi|Vi) + (1 − Ri)EX|Y ,V [U𝛼(X|Vi)]

}
= 0

are iteratively solved, where U𝛽(Yi|Xi,Vi) = 𝜕 log f (Yi|Xi,Vi; 𝛽)∕𝜕𝛽 and U𝛼(Xi|Vi) = 𝜕 log g(Xi|Vi; 𝛼)∕𝜕𝛼
[23, 25]. The resulting maximum likelihood estimator for 𝛽 will be consistent and fully efficient if all
model assumptions are valid. It can be challenging to specify the nuisance probability model for X|V ,
and it is undesirable for inferences about 𝛽 to be sensitive to misspecification of this model [26].

To address this, Reilly and Pepe [12] propose a pseudolikelihood method that leads to a mean score-
estimating equation for 𝛽 obtained through a noniterative, empirical approximation to the expectation in
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(2). When Y and V are discrete and the data are missing at random, the conditional expectation of the
pseudoscore is estimated as

ÊX|Y ,V [U𝛽(Yj|X,Vj)] = n−1
YjVj

∑
i∶Ri=1

U𝛽(Yi|Xi,Vi)I(Yi = Yj,Vi = Vj),

and the mean score estimating equations reduce to

Ū(𝛽) =
N∑

i=1

Ri𝜋(Yi,Vi)−1U𝛽(Yi|Xi,Vi) = 0,

where 𝜋(Y ,V) = nYV∕NYV [12, 25]. The mean score method, therefore, can be viewed as a Horvitz–
Thompson-type inverse probability weighted estimating equation for which the selection probabilities
are estimated empirically [8].

Under mild regularity conditions [27], a consistent estimator 𝛽 is obtained as the solution to the mean
score equation Ū(𝛽) = 0. Moreover,

√
N(𝛽 − 𝛽)

p
→ N(0,−1 +

−1


−1), (3)

where  = EYXV [−𝜕U𝛽(Yi|Xi,Vi)∕𝜕𝛽′],

 =
∑
YV

P(Y ,V)
[

NYV

nYV
− 1

]
⋅ varX|Y ,V [U𝛽(Yi|Xi,Vi))],

and P(Y ,V) is the joint probability mass function for (Y ,V); see the Supporting Information for details.
Reilly and Pepe [12] show that when N and n are fixed, the form of this asymptotic variance can be
exploited to give closed-form solutions for the optimal phase-II sampling design that selects individuals
in order to minimize the asymptotic variance of an estimator of interest. Reilly and Pepe [12] considered
fixing the expected phase-II sample size through the constraint

n = N
∑
YV

[
nYV∕NYV ⋅ P(Y ,V)

]
. (4)

If we wish to minimize the [k, k] entry of the covariance matrix defined in (3) corresponding to the
estimator of a parameter of interest with this constraint, then the optimal stratum-specific sample sizes are

n(opt)
yv =

Nyv ⋅ n∕N ⋅
{
−1varX|y,v [U𝛽(Yi|Xi,Vi)

]
−1

}1∕2

[k,k]∑
YV P(Y ,V) ⋅

{
−1varX|Y ,V [

U𝛽(Yi|Xi,Vi)
]
−1

}1∕2

[k,k]

,

where the [k, k] entry of a matrix  is denoted by {}[k,k]. Here, we focus on minimizing the asymptotic
variance for the estimator of a particular parameter; however, researchers are free to define optimality cri-
teria in a variety of ways, and designs can naturally be modified to accommodate optimality criteria based
on linear functions of the elements of the asymptotic variance matrix (e.g., analogues to A-optimality
and C-optimality [28] could be considered as described by McIsaac and Cook [13]).

An obvious challenge in implementing an optimal design is that computation of these optimal stratum-
specific sample sizes hinges on specification of the matrix , varX|Y ,V [

U𝛽(Yi|Xi,Vi)
]
, and the joint

probability P(Y ,V) [12]. McIsaac and Cook [13] also noted that the expected sample size constraint of
Reilly and Pepe [12] may not be appropriate when the sizes of the phase-I strata are known. In the next
section, we derive an adaptive procedure that uses a more suitable constraint and that does not require
external information to specify the approximately optimal selection probabilities.
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3. Adaptive response-dependent multiphase sampling designs

The proposed adaptive sampling strategy involves partitioning the phase-II sampling into a series of dis-
tinct subphases. Individuals in the first subphase of phase-II data collection cannot be selected optimally
because at this point there are insufficient data to estimate the components necessary for approximating
the optimal mean score design (i.e., , varX|Y ,V [U𝛽(Yi|Xi,Vi)], and P(Y ,V) cannot all be estimated using
only phase-I data). Subsequent subphases, however, can make use of the accumulating data to estimate
the necessary design components, and therefore, one can approximate the asymptotically-optimal design
[18, 29, 30].

As an extreme implementation of the proposed approach, we consider a fully adaptive sampling
strategy in which, following a small initial sample, selection probabilities are updated after each indi-
vidual is sampled in phase-II. This fully adaptive design therefore features almost as many sampling
subphases as there are individuals selected in phase-II. We also consider a two-stage adaptive sam-
pling strategy that uses only two subphases of sampling individuals for measurement of the expensive
covariates; we refer to these as phase-IIa in which n(a) individuals are selected for measurement of
X without information about the optimal design components, and phase-IIb in which we sample the
remaining n(b) phase-II individuals by exploiting the phase-I and phase-IIa data to approximate the
asymptotically-optimal design.

In what follows, we describe how the two-stage adaptive sampling procedure enables one to
approximate asymptotically-optimal sampling at the second subphase of phase-II (i.e., phase-IIb); this
process can be generalized to a sampling design with an arbitrary number of subphases. The impact
on efficiency of the number of sampling subphases and the relative sizes of each sampling subphase is
explored through simulations in the next section, where we also examine the impact of using empirical
estimators for , varX|Y ,V [U𝛽(Yi|Xi,Vi)], and P(Y ,V).

The sampling plan involves deciding how to distribute the fixed phase-II sample size of n = n(a) + n(b)

individuals among the strata defined by phase-I data while adhering to the phase-II sample size constraint

n =
∑
YV

[
n(a)YV + n(b)YV

]
, (5)

where n(a)YV represents the number of individuals selected from stratum (Y ,V) at phase-IIa and n(b)YV is
defined analogously for phase-IIb. We assume that the stratum sizes of the internal pilot study, n(a)YV , are
fixed, and we select the remaining individuals using the optimal design, which minimizes the asymptotic
variance of the estimator of interest (the [k, k] entry of the asymptotic covariance matrix in (3)). Assuming
that the necessary optimal design components are estimated as ̂, v̂arX|Y ,V [U𝛽(Yi|Xi,Vi)], and P̂(Y ,V)
using data collected at phase-I and phase-IIa, we wish to find the

{
n(b)YV

}
that are stationary points of the

Lagrangian

Λ =

{
̂

−1 + ̂
−1

{∑
YV

P̂(Y ,V)

[
NYV

n(a)YV + n(b)YV

− 1

]
⋅ v̂arX|Y ,V [U𝛽(Yi|Xi,Vi)]

}
̂

−1

}
[k,k]

+ 𝜆

[∑
Y ,V

(n(a)YV + n(b)YV ) − n

]
.

The optimal n(b)yv is the solution to

𝜕Λ
𝜕n(b)yv

=
⎧⎪⎨⎪⎩̂

−1

⎧⎪⎨⎪⎩
Nyv(

n(a)yv + n(b)yv

)2
P̂(y, v)v̂arX|y,v[U𝛽(Yi|Xi,Vi)]

⎫⎪⎬⎪⎭ ̂
−1

⎫⎪⎬⎪⎭[k,k]

+ 𝜆 = 0,
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and the optimal stratum-specific phase-IIb sampling sizes are therefore best selected as

n(b,opt)
yv =

n ⋅ N1∕2
yv P̂(y, v)1∕2 ⋅

{
̂−1v̂arX|y,v [U𝛽(Yi|Xi,Vi)

]
̂−1

}1∕2

[k,k]∑
YV N1∕2

YV P̂(Y ,V)1∕2 ⋅
{
̂−1v̂arX|Y ,V [

U𝛽(Yi|Xi,Vi)
]
̂−1

}1∕2

[k,k]

− n(a)yv (6)

under the constraints 0 ⩽ n(b)yv ⩽ Nyv − n(a)yv . If n(b)yv > Nyv − n(a)yv for some (y, v), then one can set n(b)yv =
Nyv − n(a)yv and solve for the other phase-IIb sample sizes using an updated version of (6) [12]. Here,
we need not worry about the degenerate case n(b)yv = 0 but must simply ensure n(a)yv + n(b)yv > 0. Note
that n(a)yv + n(b,opt)

yv is slightly different than n(opt)
yv of Reilly and Pepe [12] owing to the different phase-II

sample size constraints we adopt (i.e., (5) as opposed to (4)), although the two will align when P(Y ,V)
is estimated empirically as P̂(Y ,V) = NYV∕N.

4. Empirical properties of adaptive two-phase mean score designs

4.1. Design of simulation studies

In this section, we examine empirically the stratum-specific sampling probabilities and the efficiency
of adaptive mean score designs in the context of the PsA biomarker study. In each simulation, we
implement a nonadaptive sampling design based on proportional stratified sampling (i.e., where nYV ∝
NYV ), a nonadaptive sampling designs based on balanced stratified sampling (i.e., where all nYV are
equal), a fully adaptive sampling design, two-stage adaptive designs with varying choices of n(b), and a
local asymptotically-optimal design based on the true (in practice, unknown) parameters. The latter is
considered as a benchmark to assess how close to optimal the adaptive designs can behave. We also con-
sider estimation of the design components , varX|Y ,V [

U𝛽(Yi|Xi,Vi)
]
, and P(Y ,V) in two ways. The first

is by assuming parametric forms of the component models and finding interim estimates of necessary
parameter values; , for example, would be estimated parametrically as ̂ = (𝛽(a), 𝛼(a), 𝛾̂ (a)) where
parameters are estimated based on the currently available (phase-I and phase-IIa) data. The second is
through empirical estimation; for example, using

̂ = −N−1
∑

i

R(a)
i 𝜋(a)(Yi,Vi)−1𝜕U𝛽(Yi|Xi,Vi)∕𝜕𝛽′

|||𝛽(a) ,

where R(a)
i indicates that individual i was selected in phase-IIa and 𝜋(a)(Y ,V) = n(a)YV∕NYV .

In our simulation studies, we assume the correct parametric form when estimating design compo-
nents; it would be impossible to guarantee that an assumed parametric form is correct in practice, but
other studies have demonstrated that the efficiency of optimal mean score designs can be fairly robust
to misspecification of such auxiliary models [13, 31]. In addition, we note that misspecification of these
auxiliary models at the design stage will not affect the consistency of the robust mean score estimation
procedure. As suggested by Pepe et al. [15], we stabilized the estimation of the design components by
adding two artificial observations to each phase-I stratum.

We consider here results from simulation studies that focus on Y and V as univariate binary variables but
consider separately binary and continuous versions of the covariate X. Again, for the two-stage adaptive
sampling, we consider phase-II selection in two steps. First, we select n(a) individuals using proportional
or balanced sampling. Second, we select the remaining n(b) = n − n(a) individuals according to the
approximate optimal mean score design found by using both the phase-I and phase-IIa data to estimate
the necessary design components parametrically or empirically. The fully adaptive sampling is similar,
but it uses a small balanced sample at phase-IIa to allow for an initial estimate of the design components,
and then individuals are selected one at a time with estimates of the design components being updated
after the selection of each individual.

For the two-stage adaptive sampling, we consider 10 possible choices for the proportion of the phase-II
sample selected at phase-IIb: we allow n(b)∕n to range from 0% to 90% in 10% increments. Note that when
n(b)∕n = 0%, n(b) = 0, which represents a scenario where the entire phase-II sample is chosen through
either proportional or balanced sampling (i.e., the design is nonadaptive). We frame the design in the con-
text of the motivating two-phase biomarker study in PsA. Specifically, this study aims to examine optimal
two-phase designs for selecting patients for measurement of the biomarker MMP-3 in the University of
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Toronto Psoriatic Arthritis Clinic with a view to examining the relationship between baseline MMP-3
levels and disease progression. We let Y denote a binary response indicating the fact that the disease has
progressed over the period of follow-up, let V denote an inexpensive binary covariate indicating an ele-
vated (abnormal) ESR measurement at the baseline assessment, and let X denote the baseline MMP-3
levels, the expensive covariate of interest.

For the simulation study, 2000 phase-I samples of size N = 800 were generated. For each individual,
the response Y had conditional mean

P(Y = 1|X,V; 𝛽) = expit(𝛽0 + 𝛽xX + 𝛽vV), (7)

and the binary covariates satisfied

P(X = 1|V; 𝛼) = expit(𝛼0 + 𝛼vV)

and

P(V = 1; 𝛾) = expit(𝛾0), (8)

where expit(Z) = exp(Z)∕(1+exp(Z)). The parameter values (𝛽0, 𝛽x, 𝛽v) = (−1.95, 1.00, 0.90), (𝛼0, 𝛼v) =
(1.05,−0.41), and 𝛾0 = −0.04 were obtained from fitting models to a small independent historical sample
of the PsA patients where MMP-3 levels were dichotomized using a clinically relevant cut point. We also
considered the case in which X is a continuous variable representing the scenario in which MMP-3 levels
were not dichotomized. Here, Y and V were still Bernoulli variables generated according to (7) and (8);
however, we supposed X|V arose from a gamma distribution with shape 𝛼0 and scale 𝛼1 + 𝛼vV , as in

g(X|V; 𝛼) =
X𝛼0 − 1 exp(−X∕(𝛼1 + 𝛼vV))

Γ(𝛼0)(𝛼1 + 𝛼vV)𝛼0
.

Because Y and V were discrete, we could still define strata as before at phase-I. The parameter values used
in generating these data were (𝛽0, 𝛽x, 𝛽v) = (−2.18, 0.03, .84), (𝛼0, 𝛼1, 𝛼v) = (1.40, 10, 5), and 𝛾0 = −0.04.
where values were chosen to reflect the empirical distribution of MMP-3 measurements given ESR status
in the historical PsA data.

Optimal and adaptive designs were employed to minimize the asymptotic variance of the estima-
tor of 𝛽x, which was taken to be of special interest. Each design was executed for each of the 2000
simulated datasets, with n = 200 subjects sampled in phase-II. One way of contrasting the local
asymptotically-optimal design and the adaptive designs is in terms of the proportion of individuals
selected for measurement of X from each stratum, (nYV −nopt

YV )∕NYV . These are displayed in Figures 1 and
3 for the case where X is binary and in Figures 2 and 4 for settings involving a continuous X. The local
asymptotically-optimal design here utilized the true parameters that generate the data and is therefore
not practically feasible, while the adaptive approaches attempted to approximate this asymptotically-
optimal design by estimating necessary components using phase-I and phase-IIa data. Figures 1 and 2
display the differences in sampling proportions between the asymptotically-optimal design and the adap-
tive designs that resulted from both parametrically and empirically estimating , varX|Y ,V [U𝛽(Yi|Xi,Vi)],
and P(Y ,V) when using proportional stratified sampling at phase-IIa. The corresponding figures for the
designs employing balanced sampling in phase-IIa are presented in Figures 3 and 4.

The empirical relative efficiencies and empirical coverage probabilities of the estimators resulting from
the different designs are presented in Table I. The empirical relative efficiency (ERE) of design A was cal-
culated as evar0∕evarA ⋅ 100%, where evarA is the empirical variance of the estimator for 𝛽x arising from
design A and evar0 is the corresponding empirical variance under the asymptotically-optimal design,
which requires specification of the unknown parameter values. This definition is analogous with that of
Fedorov et al. [18] who examined efficiency in the context of optimal design for dose-finding experi-
ments. As an additional measure of the variation of estimators over the 2000 simulations, we also present
in Table I the empirical relative interquartile range (ERI) calculated as IQR0∕IQRA ⋅ 100%, where IQRA
is the observed interquartile range among the estimates for 𝛽x arising from design A and IQR0 is defined
analogously for the asymptotically-optimal design. Values of ERE or ERI less than 100% reflect a loss
of precision relative to the optimal design, and values greater than 100% indicate greater local precision
than realized with the asymptotically-optimal design using the true parameter values. Empirical coverage
probabilities show the percentage of the simulations in which the true 𝛽x is contained in 95% confidence
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intervals, which are constructed using sample estimates of the asymptotic variance in (3) upon completion
of phase-II sampling.

4.2. Empirical findings from simulation studies

The adaptive designs (i.e., those that selected some individuals in phase-IIb) resulted in sam-
pling fractions that were much closer to the optimal designs on average than were the nonadap-
tive sampling designs (Figures 1–4). However, the adaptive designs generally displayed greater
variability in the sampling rates between simulations. As the fraction of individuals selected
in phase-IIb increased two things occurred: (i) the average two-stage adaptive designs became
closer to the asymptotically-optimal design, and (ii) the between-simulation variability in the two-
stage adaptive designs increased. Selecting more individuals at phase-IIa allows for greater pre-
cision in estimating design components and, therefore, more stable designs. With more individ-
uals selected at phase-IIa, however, fewer individuals can be selected according to the approxi-
mately optimal design at phase-IIb. This demonstrates a trade-off between precision and accuracy
in the two-stage adaptive design when determining the fraction of individuals to select at each subphase
of the phase-II sampling. The best properties of the adaptive sampling design (in terms of designs that are
centered near the asymptotically-optimal design and have small between-simulation variability) resulted
from balancing the number of phase-II individuals selected in the internal pilot study (phase-IIa) and the
number of individuals that were selected according to the approximately optimal design (phase-IIb).

In the setting where X was binary, there was little difference between the adaptive approaches that
resulted from estimating design components parametrically and those arising from estimating design
components empirically either in terms of the designs themselves (Figures 1 and 3) or in terms of observed
efficiency (Table I). However, in the setting with a continuous expensive covariate X, the greater effi-
ciency of the parametric estimation of the design components translated into much less variability in
the two-stage adaptive design (Figures 2 and 4) and, in turn, much greater efficiency in the estimator
of interest (Table I). In fact, when considering a continuous expensive covariate, the adaptive designs
based on empirical estimation of design components offered no consistent efficiency gains over the non-

Figure 1. Empirical differences in sampling fractions between the asymptotically-optimal design and the two-
stage adaptive designs employing proportional stratified sampling in phase-IIa according to the percentage of
the phase-II sample that is selected at phase-IIb (n(b)∕n) for a binary expensive covariate; N = 800; n = 200;
(𝛽0, 𝛽x, 𝛽v) = (−1.95, 1.00, 0.90), (𝛼0, 𝛼v) = (1.05,−0.41), and 𝛾0 = −0.04 ; nYV represents the number of indi-
viduals selected for the measurement of X from the available NYV individuals in stratum (Y ,V) in the two-stage
adaptive design, while nopt

YV represents the corresponding sample size for the asymptotically-optimal design. This
two-stage adaptive design was derived for selecting individuals for measurement of a binary X and relied on either

parametric or empirical estimation of design components from data collected in phase-I and phase-IIa.
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Figure 2. Empirical differences in sampling fractions between the asymptotically-optimal design and the two-
stage adaptive designs employing proportional stratified sampling in phase-IIa according to the percentage of
the phase-II sample that is selected at phase-IIb (n(b)∕n) for a continuous expensive covariate; N = 800; n =
200; (𝛽0, 𝛽x, 𝛽v) = (−2.18, 0.03, .84), (𝛼0, 𝛼1, 𝛼v) = (1.40, 10, 5), and 𝛾0 = −0.04; nYV represents the number of
individuals selected for the measurement of X from the available NYV individuals in stratum (Y ,V) in the two-stage
adaptive design, while nopt

YV represents the corresponding sample size for the asymptotically-optimal design. This
two-stage adaptive design was derived for selecting individuals for measurement of a continuous X and relied on

either parametric or empirical estimation of design components from data collected in phase-I and phase-IIa.

Figure 3. Empirical differences in sampling fractions between the asymptotically-optimal design and the two-
stage adaptive designs employing balanced sampling in phase-IIa according to the percentage of the phase-II
sample that is selected at phase-IIb (n(b)∕n) for a binary expensive covariate; N = 800; n = 200; (𝛽0, 𝛽x, 𝛽v) =
(−1.95, 1.00, 0.90), (𝛼0, 𝛼v) = (1.05,−0.41), and 𝛾0 = −0.04 ; nYV represents the number of individuals selected
for the measurement of X from the available NYV individuals in stratum (Y ,V) in the two-stage adaptive design,
while nopt

YV represents the corresponding sample size for the asymptotically-optimal design. This two-stage adaptive
design was derived for selecting individuals for measurement of a binary X and relied on either parametric or

empirical estimation of design components from data collected in phase-I and phase-IIa.
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Figure 4. Empirical differences in sampling fractions between the asymptotically-optimal design and the two-
stage adaptive designs employing balanced sampling in phase-IIa according to the percentage of the phase-II
sample that is selected at phase-IIb (n(b)∕n) for a continuous expensive covariate; N = 800; n = 200; (𝛽0, 𝛽x, 𝛽v) =
(−2.18, 0.03, .84), (𝛼0, 𝛼1, 𝛼v) = (1.40, 10, 5), and 𝛾0 = −0.04; nYV represents the number of individuals selected
for the measurement of X from the available NYV individuals in stratum (Y ,V) in the two-stage adaptive design,
while nopt

YV represents the corresponding sample size for the asymptotically-optimal design. This two-stage adaptive
design was derived for selecting individuals for measurement of a continuous X and relied on either parametric

or empirical estimation of design components from data collected in phase-I and phase-IIa.

adaptive sampling design; this was true for both two-stage adaptive and fully adaptive sampling designs
based on empirical estimates of design components, and this result held both in terms of direct measures
of ERE and in terms of the relative size of interquartile ranges (ERI), which is an alternate measure of
the spread of resulting estimates that gives less weight to outliers. The adaptive designs (both two-stage
and fully adaptive) based on parametric estimation of design components, on the other hand, consistently
performed significantly better than the nonadaptive designs in terms of the efficiency achieved for the
estimator of interest. In terms of the relative size of interquartile range, the parametric adaptive designs
generally offered improvements over the nonadaptive designs; however, the nonadaptive balanced sam-
pling design was very close to the asymptotically-optimal design for binary X and was not consistently
improved by the adaptive procedures. The efficiency of the adaptive designs was often quite similar to
the efficiency achieved by the local asymptotically-optimal sampling design, which of course cannot be
implemented in practice. In fact, the adaptive designs often exceeded the asymptotically-optimal designs
in terms of efficiency; we note that this apparently contradictory result is possible here because the bench-
mark designs, while obviously very efficient in these finite-sample settings, are only truly optimal as
sample sizes tend to infinity.

In all cases, the empirical coverage probabilities were compatible with the nominal 95% level, which
indicates that the estimated asymptotic standard errors for the adaptive design closely tracked the
empirical standard errors. Therefore, the regular variance estimators worked well for these adaptive
designs, which achieved efficiency that was very similar to that of the asymptotically-optimal design.

The nonadaptive balanced design was more efficient than the nonadaptive proportional stratified sam-
pling design, but the nonadaptive designs were generally not as efficient as their adaptive counterparts.
The fully adaptive designs based on parametric estimation of the design components generally led to the
most precise estimates of effects. However, the two-stage adaptive designs are easier to implement in
practice and were also very efficient when based on parametric estimation of design components. These
two-stage adaptive designs were particularly effective when balancing the number of individuals selected
in each of the two subphases of sampling and when using balanced sampling design for the internal
pilot study. Although not presented here, these adaptive designs also generally resulted in an increase

2908

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 2899–2912



M. A. MCISAAC AND R. J. COOK

Table I. Empirical relative efficiencies (ERE) and empirical relative interquartile ranges (ERI) com-
pared with the asymptotically-optimal design based on true (unknown) parameters and empirical coverage
probabilities (ECP) of estimators for 𝛽x based on 2000 simulated datasets with N = 800 and n = 200.

Binary X Continuous X

Parametric Empirical Parametric Empirical

100n(b)∕n ERE ERI ECP ERE ERI ECP ERE ERI ECP ERE ERI ECP

Two-stage adaptive – proportional sampling in phase-IIa

0* 76.6 88.7 95.5 76.6 88.7 95.5 88.9 94.4 95.2 88.9 94.4 95.2
10 85.0 93.4 95.3 84.3 90.2 95.2 94.7 97.7 94.8 89.4 97.9 94.8
20 86.3 89.9 94.7 84.6 90.9 94.8 94.0 96.9 94.7 87.8 92.2 94.0
30 94.0 97.8 95.2 89.3 97.9 93.8 102.6 99.8 95.2 93.2 97.1 94.6
40 96.3 96.3 95.0 103.1 100.8 95.4 100.7 104.3 94.8 86.0 91.1 93.2
50 98.2 95.0 94.8 92.6 96.3 94.2 103.2 102.4 95.1 88.5 94.7 93.3
60 103.1 100.0 95.2 95.2 96.5 94.8 105.0 102.0 95.5 88.2 97.0 93.7
70 97.2 98.2 95.0 95.4 98.8 94.4 103.0 103.3 94.6 93.9 96.9 94.8
80 100.7 103.1 95.1 100.8 101.3 95.0 107.9 105.2 95.6 85.6 96.6 94.5
90 98.6 102.2 95.4 97.7 97.5 94.5 103.7 103.8 95.0 82.8 94.0 94.7

Two-stage adaptive – balanced sampling in phase-IIa

0* 95.2 99.6 95.2 95.2 99.6 95.2 90.6 90.6 95.0 90.6 90.6 95.0
10 101.6 102.3 95.3 102.9 102.5 95.5 98.3 98.6 94.6 95.2 99.2 95.0
20 96.8 101.5 93.8 98.4 98.9 95.0 102.0 99.4 94.7 95.9 99.8 94.6
30 105.2 103.7 95.3 99.9 100.7 95.0 107.5 103.1 95.9 88.2 92.2 93.8
40 100.1 103.2 95.0 102.5 98.4 94.9 109.7 105.4 95.5 93.9 95.3 94.0
50 103.8 99.3 95.3 100.0 100.1 94.8 101.0 101.8 95.0 96.7 95.5 95.5
60 99.8 97.6 95.0 98.9 96.4 95.2 100.8 98.3 94.8 86.5 90.8 94.2
70 103.7 98.9 95.5 96.6 98.5 94.3 103.2 103.6 95.0 85.0 90.7 93.8
80 100.2 101.1 94.7 97.7 98.0 94.7 103.9 104.0 95.2 86.6 91.5 94.8
90 95.8 98.5 95.2 96.0 96.2 94.8 102.3 100.6 95.2 84.0 95.9 94.8

Fully adaptive

102.4 107.0 95.3 99.0 96.7 94.5 102.4 101.9 95.3 86.8 89.1 94.3

The parameters were set to (𝛽0, 𝛽x, 𝛽v) = (−1.95, 1.00, 0.90), (𝛼0, 𝛼v) = (1.05,−0.41), and 𝛾0 = −0.04 for the case
with binary X and to (𝛽0, 𝛽x, 𝛽v) = (−2.18, 0.03, .84), (𝛼0, 𝛼1, 𝛼v) = (1.40, 10, 5), and 𝛾0 = −0.04 for the setting with
continuous X. Two-stage adaptive designs select n−n(b) individuals using proportional or balanced sampling and use
these individuals to estimate the design components either through parametric estimation (parametric) or through
empirical estimation (empirical) to approximate optimal selection of the remaining n(b) individuals. Nonadaptive
designs are a special case of the two-stage sampling where all individuals are selected in phase-IIa. Fully adaptive
designs involved selecting an initial balanced sample of size 40 (corresponding to 20% of n) and then selecting
the remaining individuals one at a time while updating estimates of the design component after each individual
is selected.
*The nonadaptive design does not require estimation of the design components, so there is no distinction between
design components being estimated ‘empirically’ or ‘parametrically’.

in efficiency for estimation of 𝛽0 over nonadaptive designs; there was little impact on the efficiency for
estimation of 𝛽v.

5. Concluding remarks

We presented an adaptive approach to selecting individuals for measurement of an expensive covariate in a
two-phase sampling design. This extension to Reilly and Pepe’s [12] optimal mean score sampling design
allows for explicit specification of near-optimal designs without a priori knowledge of the parameters
and without the necessity for costly external pilot studies. These adaptive procedures are particularly
important for elaborate response models where many parameters must be specified in order to derive the
optimal design. The efficiencies of estimators under adaptive sampling based on parametric estimation
of design components were generally very similar to those found under the theoretical optimal design,
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which cannot be implemented in practice. Previous studies have shown that the optimal mean score design
that is being emulated by this adaptive procedure has desirable properties even when analyses are to be
conducted using other methods [3, 13]. Additionally, there was no evidence of bias among the adaptive
sampling designs, and the empirical coverage probabilities were all compatible with the nominal levels.

Balanced sampling designs, as advocated by Breslow and colleagues [5, 9], were more efficient than
proportional stratified sampling, but these nonadaptive designs could not achieve the same efficiency
as the adaptive approaches. The fully adaptive designs could be very efficient but would be difficult to
implement in practice. The two-stage adaptive procedure may be the most useful approach as it often
offered near-optimal efficiency and would be relatively easy to implement in practice as it does not
require re-estimation of the design components following the selection and response ascertainment of
each individual. These findings of good efficiency and practical appeal in using a small number of phases
as opposed to a fully adaptive sampling design are similar to the results seen in the setting of optimal
dose-finding designs [18] and are analogous to the appeal of group sequential monitoring over sequential
monitoring in clinical trials [32].

Other simulation studies showed very similar results and so have not been presented in depth here.
Simulations involving clustered response vectors (based on [14]) similarly showed that the adaptive
design achieved levels of efficiency on par with the true optimal design; in those simulations, however,
the nonadaptive balanced design was not nearly as efficient, so the benefit of the adaptive design was even
more obvious.

One important finding here is that these two-stage adaptive designs should be based on parametric
assumptions about necessary design components, rather than less precise empirical estimation. Focusing
on parametric estimation at the design stage is reasonable as our goal is to employ the estimator from
the most efficient design possible. This is especially true given that model misspecification at the design
stage will not affect the consistency of the robust mean score estimation procedure. Additionally, the
efficiency resulting from asymptotically-optimal mean score designs has been shown to be quite robust
to model misspecification at the design stage [13].

There is also a trade-off between the potential efficiency of a large phase-IIb sample and the decreased
precision of estimates of the design parameter values when phase-IIa is small in two-stage adaptive sam-
pling. The two-stage adaptive designs that collected nearly equal numbers of individuals at phase-IIa and
at phase-IIb were generally quite effective at generating near-optimal sampling fractions that were very
efficient in finite samples.

We have focused here on the setting of a two-phase design in which phase-I data are available and
one wishes to optimally select a fixed number of individuals for measurement of an expensive covariate
during the second phase; this is precisely the setting of the motivating biomarker study. The simula-
tions used were based on parameters derived from analyses based on a pilot study consisting of complete
data from 20 arthritis patients with (Y ,V) = (0, 0), 7 patients with (Y ,V) = (0, 1), 17 patients with
(Y ,V) = (1, 0), and 9 patients with (Y ,V) = (1, 1). If these data are taken as an internal pilot subsam-
ple (i.e., as a phase-IIa sample) in this setting where N00∕N = 0.39,N01∕N = 0.12,N10∕N = 0.28,
and N11∕N = 0.21, then the two-stage adaptive sampling strategy would recommend the phase-IIb

design
(

n(b,opt)
00 , n(b,opt)

01 , n(b,opt)
10 , n(b,opt)

11

)
= (17, 40, 36, 54) in order to select the allotted 200 individu-

als for efficient estimation of 𝛽x when MMP-3 measurements are to be dichotomized; if MMP-3 is

to be considered continuously, then the optimal phase-IIb design is
(

n(b,opt)
00 , n(b,opt)

01 , n(b,opt)
10 , n(b,opt)

11

)
=

(35, 42, 32, 38) for selection of the remaining 147 patients. Note that in order to achieve a balanced
or proportional stratified sampling design, we would use

(
n(b)00 , n

(b)
01 , n

(b)
10 , n

(b)
11

)
= (30, 33, 43, 41) and(

n(b)00 , n
(b)
01 , n

(b)
10 , n

(b)
11

)
= (58, 40, 17, 32), respectively, regardless of whether MMP-3 is to be dichotomized.

The efficiency gained through this two-stage adaptive sampling strategy will depend on the accuracy of
the parameters estimated at phase-IIa.

More generally, we recommend that the phase-II sampling be carried out adaptively in two stages
as follows:

(i) With a fixed number of individuals to be sampled in phase-II, half of them should be sampled
using balanced stratified sampling with strata defined based on the phase-I data.

(ii) The remaining individuals to be sampled in phase-II should be chosen to satisfy the approxi-
mately optimal stratum-specific sampling sizes derived using (6) with available data being used
in parametric estimation of necessary design components.
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This approach would not be much more complex to implement than the nonadaptive two-phase designs
in the motivating biomarker study, but it would lead to efficiency gains in the range of 5–20% when
estimating the parameter of interest.

In settings different from the one we considered, it could be that the phase-I or phase-II sample sizes
are not fixed in advance; further study of such settings is required to determine the best strategies for the
use of adaptive two-phase designs.
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