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Abstract

Biological curation, or biocuration, is often studied from the perspective of creating and

maintaining databases that have the goal of mapping and tracking certain areas of biol-

ogy. However, much biocuration is, in fact, dedicated to finite and time-limited projects

in which insufficient resources demand trade-offs. This typically more ephemeral type of

curation is nonetheless of importance in biomedical research. Here, I propose a frame-

work to understand such restricted curation projects from the point of view of return on

curation (ROC), value, efficiency and productivity. Moreover, I suggest general strategies

to optimize these curation efforts, such as the ‘multiple strategies’ approach, as well as a

metric called overhead that can be used in the context of managing curation resources.

Introduction

Biocuration is the enterprise of annotating, organizing and

displaying biological data by humans (1). Its focus is on

tasks for which automatic means cannot achieve the same

level of quality as trained human curators. Due to the

costly nature of employing trained curators, an important

topic of biocuration research has been to increase the effi-

ciency of curatorial work. Proposals have covered such

topics as semi-automated workflows (2–7), user-friendly

curation interfaces (8–12), improved annotation (13, 14),

crowdsourcing (15, 16), outsourcing (17) and sharing of

resources across curation efforts (18).

Biocuration is often analyzed in the context of continu-

ally maintained biological databases that have the goal of

following a growing area of biology. For example, the data-

base BioGRID aims to curate all genetic and protein

interactions from the literature about S. cerevisiae and

S. pombe (19), and the focus of the model organism data-

base (MOD) Wormbase is to curate all genetic and molecu-

lar data published about C. elegans (20). There are also

databases whose goals are more ambitious than the re-

sources they have available and thus prioritize their curation

efforts. The MOD Ecocyc aims to curate, among other

things, functional information for all E. coli K-12 genes and

proteins (21). However, Ecocyc must prioritize its curation

efforts due to the high publication rate for its model organ-

ism. Another example is BindingDB, a database of protein–

ligand binding affinities, which selects proteins of special

importance to focus its curation efforts (22).

Such biological databases are ‘open’ curation projects

that work with the implicit or explicit premise of an unre-

stricted timeline, which is necessary to accomplish the goal
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of following a scientific field. This premise, however, does

not apply to humbler curation projects with fixed timelines

and limited resources. In such projects, not all relevant

data may be curated and, due to their more transient or

contingent nature, good-enough and best-effort results can

be acceptable. Pharmaceutical drug projects, for example,

prioritize efforts when multiple sources of data with differ-

ent degree of importance are available. In general, many

biological experiments are undertaken only after limited

data curation because analyzing every piece of existing in-

formation is not crucial.

More broadly speaking, there is a need to understand

biocuration in a formal way that acknowledges that there

are resource constraints involved. Biocuration studies only

use concepts such as curation speed, curation rate and full-

time equivalent curator time (23–25). On the other hand,

many existing information retrieval concepts do not fully

apply to biocuration because, as for other biological appli-

cations (26), settings differ from those of typical informa-

tion retrieval problems.

Results

In a curation project, there is a set of items to be curated

x¼ {xi}, with i¼ 1 . . . n, so that jxj ¼ n. Every item xi in this

set takes a certain amount of time Ti to be curated. The

average curation time is therefore:

T ¼
P

i¼1:::n Ti

n
;

which can be often estimated by curating a subset of items

or from past experience in similar curation projects. The

average curation speed is the inverse of the average cur-

ation time, v¼ 1/T. The value of v is a function of many

factors, such as the number of curators employed and the

layers of quality control involved. The trade-off between

quality and quantity in curation, though important, is not

further considered here. The maximum amount of curation

time available and average speed, in the cases discussed, is

a fixed quantity per project. Together, v and Tmax repre-

sent the curation resources available. Curation projects

with an unrestricted timeline do not have a Tmax, or the

Tmax is not a fixed value, and the curation resources avail-

able are defined mainly by v.

Curation projects with fixed timelines and sufficient re-

sources are characterized by v � Tmax � n. Of interest here,

however, are curation projects for which the curation of all

items is not possible, so that v � Tmax < n. In that sense,

these are curation projects with ‘fixed, insufficient’ re-

sources. One way to deal with such projects is to use a fil-

tering strategy f on the initial items xf¼ f(x), where xf � x,

that can reduce the number of items to be curated to

jxfj ¼m< n so that v � Tmax � m. To simplify, our focus

initially is on the particular case that all curation resources

available end up being used, meaning that v � Tmax ¼ m.

Value, return on curation and productivity

Because items are often of different value (‘not all data are

created equal’), it is generally of interest that the set of

items that will be curated xf be of the highest value possible

in order to increase the return on curation (ROC). For

that, the aim of the filtering strategy f should be to include

as many valuable items belonging to x into xf as possible.

Choosing higher value items from the initial set x can be in

some cases straightforward. However, the value of the

items may not be fully known until they are curated.

There, the filtering strategy can be based, instead, on an es-

timation of the value. Such estimations are typical of docu-

ment triaging, which is an established task in the realm of

text mining (27–29) that involves the ranking of docu-

ments according to their curation priority.

A binary scale is a simple way to measure an item’s

value: an item is either valuable or not. Using a binary

scale, well-known information retrieval concepts can be

easily translated and applied. Items from xf that are valu-

able can be called true positives (TPs) and items that are

not valuable, false positives (FPs). False negatives (FNs) are

the valuable items in x that are not present in xf, while true

negatives (TNs) are the non-valuable items in x that are

not present in xf. The aim of the filtering strategy in such a

scenario is to maximize the density of TPs in xf, which can

be assessed using the precision metric: TP/(TPþ FP).

Precision is, thus, related to the curation productivity: the

higher the precision the more TPs per unit of time that can

be curated. If TPs and FPs take the same average amount

of time to be curated, then the production rate of TPs can

be defined as vTP ¼ v � precision. vTP is a measure of cur-

ation productivity.

Precision has some shortcomings as a metric when used

for curation. For one, it cannot be easily used to compare

the efficiency of filtering strategies. For example, imagine

three filtering strategies f75%, f50% and f25% that produce

an output xf of identical size but of precision 75, 50 and

25%, respectively. While these filtering strategies are

equally spaced by a precision difference of 25%, the num-

ber of FPs produced by f50% is 100% higher than the num-

ber produced by f75%, while the number of FPs produced

by f25% is 50% higher than the number produced by f50%.

Thus, the difference in the number of FPs is not linearly

proportional to the difference in precision. Similarly, preci-

sion cannot be easily used to compare filtering strategies in

their ability to produce a fixed number of TPs. To produce
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100 TPs, the f75% strategy produces 33 wasteful FPs, while

f50% produces 100 FPs and f25% produces 300 FPs.

These issues with precision also apply to other metrics

derived from precision, such as the F-measure, which is

further discussed below. Beyond that, the notion of preci-

sion as used in information retrieval is not easily expanded

into the realm of curation resources. For example, existing

differences in the amount of time that takes to curate FPs

and TPs cannot be introduced in the precision metric with-

out twisting its general meaning.

Overhead and efficiency

A metric that can be used to evaluate the results of filtering

strategies is overhead (O), which I define in its simplest

form as the ratio of FPs to TPs:

O ¼ FP

TP
:

In this simple form, overhead is related to precision in

the following way:

Precision ¼ 1

1þO
:

The ratio of FPs to TPs is sometimes used when evaluat-

ing diagnostic tests and screenings, as an alternative to the

positive predictive value (which is equivalent to precision)

(e.g. (30, 31)). In that context, it is used to indicate how

many patients are wrongly diagnosed per patient that is

correctly diagnosed.

In the context of curation, overhead is the additional

curation effort required due to the presence of FPs in xf.

Overhead, thus, reflects the ‘wasted’ curation time spent

on curating FPs (the sum of all FPs is also known as over-

generation) that could be better used curating TPs instead.

Therefore, overhead is an efficiency measure. For example,

the overhead for f75%, f50% and f25% is 33, 100 and 300%,

respectively, which more appropriately depicts the differ-

ences in wasted effort involved in curating these three sets.

The overhead metric shows that there is little gain in cur-

ation efficiency with filtering strategies of a precision value

above a certain level, say>80%. The overhead correspond-

ing to a precision of 85% is 18%, while the overhead corres-

ponding to a precision of 75% is 33%. Thus, a 10% increase

in precision leads only to a 15% decrease in overhead.

Therefore, improving precision brings diminishing returns

and, beyond a certain level, may not be worth the effort.

At low precision levels, on the other hand, small

changes in precision can have large impact in the overhead,

as can be seen in Figure 1. A 40% precision is associated to

an overhead of 150%, while a 50% precision is associated

with a 100% overhead. Thus, in this case, a 10% increase

in precision leads to a 50% decrease in overhead.

A virtue of the concept of overhead is that it can be eas-

ily transplanted to different curation settings. In cases for

which curating FPs does not take the same amount of time

as curating TPs, overhead can be weighed by a factor.

For example, if the average curation time for an FP is TFP

and for a TP is TTP, then this factor can be expressed as

TFP=TTP and overhead as

O ¼ FP � TFP

TP � TTP

:

The rate of production of TPs (vTP) expressed in TPs

curated per unit of time can be then expressed as:

vTP ¼
1

TTPð1þOÞ

Thus, overhead relates the average time that it takes to

produce a TP in an ideal scenario in which there are no FPs

(overhead of 0%), with the average time it takes to produce

a TP when FPs are actually present. The larger the overhead,

the larger the difference between these two values.

Value scales

The discussion until this point has been concerned with a

binary value scale. Value, however, can be highly nuanced

depending on the curation goals (32). The value of an item

can be based on the experimental conditions in which it

was measured, its novelty, or the impact factor of the jour-

nal where it was published (33). An appropriate value scale

could take any cardinality or even be continuous.

Figure 1. Relationship between precision and overhead. As precision

decreases, overhead grows quickly and inversely to precision.
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Generically, if the value of a curated item xi is wi, then the

goal of the filtering strategy could be defined as maximiz-

ing the combined value of the elements in the set xf, or
P

wf . One typical, straightforward strategy to maximize
P

wf is to rank items by estimated value and to exclude

items that rank below a certain cut-off. In such cases, the

cut-off point may not need to be established beforehand if

items are curated in descending order starting with the

item of highest value and until time reaches Tmax. This

strategy has the virtue of eliminating the need to estimate

the curation speed v.

The overhead metric with non-binary value scales could

be defined in a weighted manner:

O ¼
P

iðwmax �wf
i Þ

P
iðw

f
i �wminÞ

;

for all wf
i [ wf, wf

i [ [wmin, wmax]. In this formulation,

overhead is a measure linked to the ‘creation of value,’

which is another way to look at the ROC. It relates to the

potential value that could be created curating the most

valuable items but is wasted instead by curating items of

value inferior to the maximum, wmax. This formulation

can be further refined for cases in which curating elements

of different value wi takes, on average, a different amount

of curation time T(wi):

O ¼
P

iðwmax �wf
i ÞTðw

f
i Þ

P
iðw

f
i �wminÞTðwf

i Þ
:

In the simplest case wmin¼wFP¼ 0, wmax¼wTP¼ 1, wi [
{wFP, wTP}, T(wmin)¼T(wmax) and overhead becomes the

ratio of FPs to TPs.

As it has been mentioned, productivity and efficiency

metrics can be created before (prospectively) or after cur-

ation. If measured before curation, the values of the items

and the average curation times expected can be estimations

instead of the actual quantities. It is worth noting that the

value of an item may also change over time once it has

been curated. Thus, filtering strategies may not look opti-

mal retrospectively and any metrics that have been utilized

to design them, such as precision or overhead, inaccurate.

To take that into account, value estimations could be con-

sidered with a confidence interval.

Redundancy and novelty

A complicating factor in assigning value to an item is due

to its multiplicity or redundancy, which might not be read-

ily apparent before curation. A similar or identical item

may have been curated in a previous curation project or

appear more than once within the same curation project.

Given that a curation project might involve several curators,

an item might be in fact unique for more than one curator

independently, especially if the curation is not coordinated

in a centralized manner (for example, by having central cur-

ation records that are updated continuously).

Previous studies (34–36) have shown that redundant

items or items that lack novelty might be of little interest

for many practical purposes in biomedical research.

However, this depends on the curation project because

items that are similar but stem from independent experi-

mentation can possess value due to their confirmatory na-

ture. To adjust for each situation, metrics such as precision

or overhead can be re-defined on the basis of uniquely

curated items or by using novelty as a factor in the assigna-

tion of value. Redundant or already curated items can be

assigned, e.g. the same value that is assigned to an FP.

Double filtering criteria

An even more complicated scenario arises if the items to be

curated have to be valued according to more than one cri-

terion: a multi-dimensional problem, of which the simplest

case is the two-dimensional. Here, I will mention one typ-

ical setting that involves two dimensions: (1) the estimated

value of an item, and (2) the estimated probability that an

item is a TP. These are both estimations of value but are of

a different nature; one involving the properties of the item

and the other involving the quality of the filtering strategy.

Such a double-ranking has been tentatively studied for

extraction of interactions from text, using a high-value

gold-standard as a training set (37). Besides this example,

another approach is to consider the value of FPs to be the

minimum wmin, smaller than any other possible value,

wmin � wi. If we then consider p(xi) the probability of an

item xi to be a TP, then the overhead metric can be ad-

justed to be:

O ¼ f
P
ðwmax�wf

i ÞTðw
f
i Þpðx

f
i Þþ

P
ðwmax�wminÞTðwf

i Þð1�pðxf
i Þg

P
ðwf

i �wminÞTðwf
i Þpðx

f
i Þ

;

in which values, probabilities and average times are all

estimations.

Adjusting filtering strategies

Available curation resources can differ from project to pro-

ject depending on the circumstances. For example, the cur-

ation speed v can change based on the number of curators

employed. The maximum curation time available Tmax can

vary from project to project due to stricter or more lenient

deadlines. Therefore the creation of the set xf needs to be a
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function of the curation resources available for a given pro-

ject so that it is ensured that v � Tmax � jxfj ¼ m.

One way to attain this flexibility is to possess several fil-

tering strategies f that are able to produce sets of different

size m. I call this approach the ‘multiple strategies’ ap-

proach. It involves adopting the best possible filtering

strategies and choosing the most adequate for each specific

curation project. This is like acquiring a screwdriver set,

with one screwdriver for each type of screw.

To build a set of filtering strategies it is necessary to use

adequate metrics to select them. Swet proposed that an ideal

measure for retrieval should be a single number (26, 38).

Thus, evaluations of information retrieval systems rely on

single metrics such as area under the curve (AUC), F-meas-

ure (39) and TAP-k (26). However, to pick the best filtering

strategies one metric is not enough. Two filtering strategies fi
and fj can produce sets with the same precision or overhead

but different size mi and mj. Instead, a complementary

information retrieval metric such as recall (in the binary

case), which is a function of the number of TPs and FNs

(TP/(TP þ FN)), can be used in addition to precision or

overhead to compare filtering strategies. For example, if the

recall of fi is higher than that of fj, it means that mi > mj.

One additional issue when selecting the best filtering

strategies is that each strategy may be associated with a dif-

ferent cost in terms of resources required to apply it. Such

costs may affect, for example, the Tmax available and thus

influence the choice of strategy.

The multiple strategies approach can involve strategies

of very different nature, such as ‘high precision,’ ‘high re-

call’ and ‘compromise’ strategies. Figure 2a shows a set of

such strategies mapped to the precision-recall space. These

strategies define an area (shaded area) that is conceptually

very similar to that of area under the curve (AUC) and

which I call area covered (AC).

The AC can grow with the addition of new strategies. As

can be seen in Figure 2a, strategy C increases the AC defined

by strategies A and B. Strategy D, on the other hand, doesn’t

increase the AC defined by strategies A, B and C, because it

is an inferior strategy, in particular inferior to strategy B.

Figure 2. (a) ‘Multiple strategies’ approach in the precision-recall space. Strategy A can take the role of ‘high recall’ strategy, while C that of ‘high pre-

cision’ and B that of ‘compromise.’ A new strategy D is inferior to the set of strategies A, B and C, because it falls into the area covered (AC) by these

strategies. (b) Adjustable strategy. (c) ‘Multiple strategies’ approach involving an adjustable strategy (defined by the line) and a non-adjustable strat-

egy (defined by the dot). (d) Adjustable strategy in the overhead-recall space.
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Any new strategy that falls within the AC is inferior to the

set of existing strategies A, B and C. The goal of improving

a set of multiple strategies involves increasing the AC by

introducing new strategies that are superior or that comple-

ment existing strategies. In practice, this can be done

through benchmarking exercises. Rebholz-Schuhmann et al.

(41), e.g. benchmarked gene name taggers of very different

nature. In the results of that study, it can be seen that each

tagger has different precision-recall properties and therefore

can be used in different filtering strategies. A selected set of

gene name taggers with different precision-recall properties

could be put together to create an effective multiple strategy

to identify gene names in text.

Defining, creating and maintaining multiple strategies

can be costly. An alternative or complementary strategy is

to use filtering strategies with a recall (or precision/over-

head) that can be adjusted (Figure 2b and c). By increasing

the recall of an adjustable filtering strategy f the size of the

resulting dataset xf can grow, which translates into the

addition of more TPs and FPs into xf. Typically for adjust-

able filtering strategies, when recall is increased, precision

decreases (42) and, therefore, overhead increases. Thus,

the precision-recall function is monotonically decreasing,

while the overhead-recall function is monotonically

increasing (Figure 2b and d).

F-measure

The well-known F-measure, which is the harmonic mean

of precision and recall, deserves further examination. It

was made popular by its use at the 4th Message

Understanding Conference (MUC), a competition organ-

ized to improve the state of the art in information retrieval

(40). It was chosen because it summarizes precision and re-

call in one measure, and because it favors strategies that

balance precision and recall. For example, a tool with pre-

cision 90% and recall 10% has an F-measure of only 18%,

while a tool with precision 50% and recall 50% has an

F-measure of 50%. The F-measure penalizes, thus, the

difference between precision and recall, and the larger the

difference the higher the penalty.

Nonetheless, a ‘high precision’ strategy with 90% preci-

sion and 10% recall may be suitable for a curation project

when curation resources are scarce, regardless of its low

F-measure. The F-measure is, in fact a simplification of the

original Fb measure,

Fb ¼
ðb2 þ 1ÞPR

b2Pþ R
;

which was designed to deal with different precision/recall

scenarios. The F-measure is a particular case of the Fb

measure in which b ¼ 1. Values of b < 1 are used in cases

in which precision is favored and values of b > 1 for cases

in which recall is favored.

A problem that the F-measure inherits from the preci-

sion metric is the difficulty of comparing the efficiency of

filtering strategies using only the F-measure. Differences in

F-measure for two filtering strategies are more or less sig-

nificant depending on the absolute value of the F-measures

and not just on their difference. From the point of view of

curation, two filtering strategies with F-measure of 95 and

90%, respectively, are more similar than two filtering

strategies with F-measure of 25 and 20%. (This can be eas-

ily observed at break-even point, i.e. when F-measure¼
recall¼ precision.) This is because as the values of preci-

sion and recall increase, the F-measure decelerates its

growth (the second derivate of the F-measure is negative

for the range of all possible values of precision and recall).

Thus, two metrics, such as precision or overhead together

with recall, are a better guide to comparing filtering strat-

egies than one metric such as the F-measure alone.

Saving resources

Thus far we have been assuming that all curation resources

available are used, v � Tmax ¼ m. However, in practice,

there might be multiple projects with different priorities

competing for resources. Resource saving in one curation

project can lead to more resources being available for other

projects. One approach to resource allocation across cur-

ation projects is to avoid wasting time on low-value items

using an absolute threshold of a minimum estimated value

wmin acceptable for an item. Thus, no item to be curated

would have an estimated value below wmin. With such a

threshold it could become possible that no single curation

project surpasses the maximum resources allowed for an

individual project or that the sum of the resources needed

for all curation projects does not surpass the maximum

amount of resources available. This threshold can be

defined in advance in absolute terms, as E-values are used

for sequence alignment results (E-values are used to assess

the statistical significance of a sequence alignment in algo-

rithms such as BLAST). An alternative to this approach

would be to optimize the value of time allowed Tj
max for

every project j so that the sum of overheads Oj for all pro-

jects is minimized: min
P

jOj, with
P

jT
j
max ¼ Tmax This is

an optimization problem that can be approached using any

of the overhead measures proposed.

Use case

As an example, I describe a use case involving the curation

of relations between proteins from the literature.
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In particular, the focus of the use case is on the curation of

relations between the human proteins interleukin 32

(IL32), which is a pro-inflammatory cytokine, and the

anti-inflammatory cytokine interleukin 10 (IL10) in

Medline abstracts up to 2014.

As baseline, 27 abstracts mention IL32 and IL10 (or

synonyms) in Medline publications up to 2014. To reduce

the work load of curating 27 abstracts, a ‘high recall’ filter-

ing strategy based on co-occurrence can be applied to select

abstracts in which IL10 and IL32 are mentioned at least

once together in the same sentence. (This can be done with

the help of the software Linguamatics I2E (43).) Such strat-

egy yields 18 abstracts, of which 11 contain sentences that

relate, even if tenuously, IL10 and IL32. Thus the overhead

in this curation project is, to a first approximation, 7/18 ¼
39%. In other words, FPs represent a 39% of additional

effort.

However, this overhead value is somewhat misleading

because, in this case, curating FPs requires less effort than

curating TPs. An FP can be decided after reading the text,

while a TP requires further storing and annotation. Thus,

if the average time to curate a TPðTTPÞ is 2 times larger

than the average time it takes to curate an FP then the over-

head can be computed as:

O ¼ FP � TFP

TP � TTP

¼ 7

18� 2
¼ 19%

where 19% is the additional curation time due to the FPs.

In order to reduce this curation load further, we can priori-

tize the results by filtering for sentences that, besides IL10

and IL32, mention also interaction-related keywords (43,

44). Thus, this would assign these sentences a higher prob-

ability of signaling TPs than those sentences without these

keywords. This filtering, however, only reduces the num-

ber of results to 17, eliminating one of the FPs and reduc-

ing the overhead slightly. Nonetheless, we could be

interested in zooming in on those sentences with certain

interaction keywords that signal more potential value,

such as interaction keywords related to physical protein

interactions, e.g. bind, phosphorylate. That would allow

us to rank the results in a more nuanced way.

To reduce the curation load even more, we can use a

text mining tool such as iHOP (45), which is able to iden-

tify protein interactions in the literature. For the present

use case, iHOP only retrieves sentences about one abstract

with an interaction between IL10 and IL32. This abstract

is a TP and therefore its curation is associated to an over-

head of 0%. The reduced number of results produced by

iHOP in comparison to the co-occurrence method is prob-

ably due to the more narrow definition of interaction that

is codified in the iHOP algorithm.

Depending on the curation time available we may de-

cide for any of the three filtering strategies exposed, which

produce different levels of overhead, taking into account

that the filtering process itself requires time. For a pair of

proteins with a large number of results iHOP might be the

best choice while sentence co-occurrence might be better

suited for less-studied pairs.

Discussion

Although curation with insufficient resources and fixed

deadlines is common, it is, understandably, not very fre-

quently described in the published literature. Some system-

atic reviews and meta-analyses are instances of curation with

insufficient resources. Such studies describe high recall, low

precision situations in which the objective is to identify every

relevant article about a topic even if many FPs need to be re-

viewed as well. Trade-offs in such cases can be nonetheless

necessary because curators cannot review beyond a certain

number of articles. Computational tools can be constructed

that try to optimize the filtering process (46, 47).

The clinical setting is also a typical environment for cur-

ation with insufficient resources, especially for busy clin-

icians working in evidence-based medicine (48–50).

Clinicians need to make decisions in a situation of compet-

ing time commitments, and possible urgency due to pa-

tients’ conditions, which leads to restrictions in the

curation time spent seeking and reviewing relevant infor-

mation to produce a complete picture of a patient’s condi-

tion, diagnosis, potential treatment plans or outlook.

Pharmacovigilance is another area in which prioritizing

curation efforts is necessary (51). Reviewing the post-mar-

keting safety surveillance data for popular drugs can be

overwhelming for the institutions and companies that

monitor these drugs. Signal detection can be used to priori-

tize the evidence with higher priority and increase the effi-

ciency of the process (52).

Creating a pathway network or a systems biology

model is often another case of insufficient curation re-

sources. A curation project involving, e.g. a heavily studied

pathway such as the Wnt signaling pathway is bound to be

based on a set of prioritized information (53) rather than

on an exhaustive analysis.

Finally, pharmaceutical companies need to be able to

search, process and review large datasets at every stage of the

drug pipeline, including in areas such as target discovery, lead

optimization, toxicology, clinical pharmacology, regulatory

submission and repurposing. In target discovery, for example,

there is a need for low recall, moderate/high precision and

high value results. In such settings, filtering strategies that can

deal with multiple types of data can be utilized to pinpoint

valuable items (54, 55) across a large space of potential leads.
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Conclusions

I have proposed and analyzed some variables and metrics

related to value, efficiency and productivity that can be

used in the realm of biocuration projects under the con-

straints of insufficient resources and incoming deadlines

and with the goal of maximizing ROC. Throughout the ex-

position, the overhead metric was presented as a measure

of curation efficiency and used to illustrate different ideas

about curation.

From the analysis, I have suggested the need to consider

the adoption of more than one filtering strategy or adjust-

able strategies in settings in which similar curation projects

may appear at different times, rather than settling for just

one strategy that might have the highest F-measure.

Having a good ‘toolbox’ can help in dealing with curation

projects under changing resource constraints. Of course,

much can be learned during the process of curation that

can help further develop and fine-tune filtering strategies.

Filtering errors and biases learned during curation can be

used to improve filtering (56).

Additionally, the analysis suggests that it may not be ne-

cessary to seek filtering strategies of very high quality be-

cause, in the settings here described, all items have to be in

any case curated and, thus, small percentages of FPs can be

tolerated. On the other hand, when filtering strategies are

of moderate quality, small erosions in their performance

can quickly impact the curation efficiency.

The curation projects here discussed have different

properties from those of continuously curated databases,

partially because they aim at ‘fixed targets,’ instead of

moving targets. As emphasized in the discussion, filtering

strategies are highly dependent on the curation resources

available, and, thus, curation resources should be the driv-

ing factor in the design of filtering strategies.
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