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Abstract

Hypermetabolism is the ubiquitous response to a severe burn injury, which was first described in 

the 19th century. Despite identification of important components of this complex response, 

hypermetabolism is still not well understood in its entirety. This article describes this incredibly 

fascinating response and the understanding we have gained over the last 100 years. Additionally, 

this article describes novel insights and delineates treatment options to modulate post-burn 

hypermetabolism with the goal to improve outcomes of burn patients.
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1. Introduction

There are over 300,000 deaths worldwide due to a burn injury 1. In the United States over 

500,000 burn injuries occur every year resulting in 40,000 to 60,000 admissions to a hospital 

or burn center for appropriate treatment. Over the last 40 years burn outcomes improved 

significantly, due to establishing specialized burn centers and profound advances in therapy 

strategies, such as improved resuscitation, implementation of burn specific critical care 

protocols, fast and more adequate wound coverage, more appropriate infection control, 

improved treatment of inhalation injury and better support of the hypermetabolic 

response 2,3. However, severe burns remain an injury that affects nearly every organ system 

and that leads to a substantial morbidity and mortality 2-6. Deaths in burn patients generally 

occur either immediately after the injury or weeks later as a result of infection/sepsis, multi-

system organ failure or hypermetabolic catabolic responses 3,7. It is interesting to note that 

over the last decade cause of death changed profoundly 7. Cause of death in severely burned 

patients used to be due to anoxic brain injury, followed by sepsis, and multi organ failure. 

Nowadays the major cause of death in burned patients is sepsis followed by multi organ 

failure and anoxic brain injury 7. As increased sepsis and infection, as well as MOF are 

usually strongly linked with hypermetabolism these data indicate that hypermetabolism is 
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not only directly but also indirectly related with poor outcomes after burn. This article aims 

to review the past of hypermetabolism after burn, the physiology of hypermetabolism, 

indicate current treatment options, and lastly to speculate on the future of hypermetabolism.

2. Hypermetabolism after burn

The observation that trauma in general can induce profound alterations in metabolism was 

already documented in the 19th century when Claude Bernard described a state of “diabète 

traumatique” during hemorrhagic shock 8. In 1943 Taylor et al described the abnormal 

nitrogen metabolism in burns 9. Keyser conducted some very important metabolic studies of 

burn patients in in the 1940s describing the pathophysiology of hypermetabolism 10. Truman 

Blocker conducted some very important and sophisticated studies in the 1950s identifying 

essential steps in protein metabolism after burn using radioactive labelled albumin 11. 

Numerous landmark papers 12-19 followed in the second half of the 20th century looking into 

more in depth cause and associations and truly manifesting post-burn hypermetabolism as a 

major contributor to post-burn morbidity and mortality.

2.1. Pathophysiology of Hypermetabolism

Hypermetabolism leads to vast catabolism which is associated with protein breakdown not 

only in muscle but also in almost every organ leading to multi organ dysfunction 20-22. 

Therefore we suggest that hypermetabolism and organ function and consecutively survival 

are closely linked with each other. The hypermetabolic response post-burn is not only very 

profound but also extremely complex and is most likely activated and sustained by stress 

induced hormonal releases and inflammation 5,6,23,24. The cause of this response is not 

entirely defined but it appears that an increased and prolonged expression of catecholamines, 

glucocorticoids, glucagon and dopamine are involved in initiating and maintaining this 

complex response which if untreated inevitably leads to a profound catabolic 

state 20,23,25-33. In addition, cytokines, endotoxin, neutrophil-adherence complexes, reactive 

oxygen species, nitric oxide and coagulation as well as complement cascades have also been 

implicated in mediating this response to burn injury 34. Others and we believe that once 

these cascades are initiated after burn, their mediators and by-products appear to further 

stimulate the persistent and increased metabolic rate associated with altered glucose, lipid, 

and amino acid metabolism 35.

The metabolic changes post-burn occur in two distinct pattern of metabolic regulation 

following injury 36: the “ebb phase” usually occurs within 48 hours post-burn 36,37 and is 

characterized by decreased cardiac output, lower oxygen consumption, and lower metabolic 

rate. The lower metabolic response (hypo-metabolism) then gradually increases within the 

first five days post-injury to a plateau phase: flow phase; this phase is characterized by a 

hyperdynamic circulation, increases in body temperature, oxygen and glucose consumption, 

CO2 production, glycogenesis, proteolysis, lipolysis, and futile substrate cycling. Insulin 

release during this time period was found to be twice that of controls in response to glucose 

load 38,39 and plasma glucose levels are markedly elevated, indicating the development of an 

insulin-resistance 6,40,41. In addition lipolysis is substantially increased leading to increased 

free fatty acids and triglycerides 6,42. Current understanding has been that these metabolic 

alterations resolve soon after complete wound closure. However, recent studies found that 
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the hypermetabolic response to burn injury lasts significantly longer. We 23 found that 

various biomarkers indicative of an increased hypermetabolic response are significantly and 

persistently elevated for up to 3 years. We showed that total urine cortisol levels, serum 

cytokines, serum catecholamines, and basal energy requirements were significantly 

increased for up to 3years 23 and accompanied by impaired glucose metabolism and insulin 

sensitivity 43. These results indicate the importance of long-term follow-up and treatment of 

severely burned patients.

As the hypermetabolic response involves a vast number of pathways, including 

hyperinsulenimic hyperglycemic response indicative of profound insulin resistance,44-47 as 

well as lipid metabolism with increased lipolysis 48-51 and amino acid-protein-

metabolism 5,6,23,24 we will discuss each of these in more detail below.

2.2. Glucose metabolism

During the early post-burn phase, hyperglycemia occurs as a result of an increased rate of 

glucose appearance, along with an impaired tissue extraction of glucose, leading to an 

overall increase of glucose and lactate.52,53 Of major importance is recent evidence strongly 

suggesting that hyperglycemia is detrimental and associated with adverse clinical outcomes 

in severely burned patients. Hyperglycemia is associated with increased infections and 

sepsis, increased incidence of pneumonia, significantly increased catabolism and 

hypermetabolism, and, most importantly, with increased post-burn mortality.44-47,54,55 The 

evidence that hyperglycemia is detrimental in burn patients was further supported by a 

prospective randomized trial that showed that glucose control is beneficial in terms of post-

burn morbidity and organ function.47 Retrospective cohort studies further confirmed a 

survival benefit of glucose control in severely burned patients.46,55 These data strongly 

indicate that IR and hyperglycemia represent a significant clinical problem in burn patients 

and are clearly associated with poor outcomes.

Although the dire consequences of burn-induced hyperglycemia have been delineated, the 

molecular mechanisms underlying IR and hyperglycemia are essentially unknown. 

Therefore recent studies focused on the identification of molecular mechanisms that lead or 

are associated with IR and hyperglycemia. As the ER stress response was identified as one 

of the central intracellular stress signaling pathways linking IR, hyperglycemia, and 

inflammation in diabetes 56 and based on animal experiments, we asked the question 

whether burn induces ER stress and the unfolded protein response (UPR) in severely burned 

patients 6. As hypothesized, we found that a severe thermal injury induces ER stress in the 

metabolically active tissues skin, fat, and muscle.57 Additionally, we have recently shown 

that burn is not only associated with induction of ER stress but furthermore with activation 

of the adipose localized NLRP3 inflammasome which augments inflammation and increases 

IR and hyperglycemia 58. These interlinked responses may be mechanistically linked with 

the induction of post-burn hypermetabolism. But of greater importance is that scientists now 

realize that novel treatment approaches have to be derived from novel approaches and 

insight based on cellular or genomic responses.
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2.3. Fat metabolism

The other metabolic pathway that is significantly altered during the post-burn 

hypermetabolic response is lipid metabolism, which may be related to changes in insulin 

resistance. Lipolysis consists of the breakdown (hydrolysis) of triacylglycerol into free fatty 

acids (FFA) and glycerol. Notably, lipolysis and free fatty acids not only contribute to post-

burn morbidity and mortality by fatty infiltration of various organs, but it was also shown 

that FFAs can mediate insulin resistance.59 Specifically, FFAs impair insulin-stimulated 

glucose uptake60,61 and induce insulin resistance through inhibition of glucose transport 

activity.62 In the context of type 2 diabetes, it has been shown that increased FFA levels are 

predictive for incidence and severity of the disease.63 One of the major alterations post-burn 

is significantly increased lipolysis, and several studies have suggested that increased 

lipolysis can be attributed to increased catecholamine levels.18,64 Interestingly, despite 

increased lipolysis, plasma FFA concentrations can be increased or decreased which can be 

due to hypo-albuminemia or increased intracellular FFA turnover, which is part of the futile 

cycle involving the breakdown of adipose and muscle TGs into FFA. Regardless, increased 

triglycerides and FFA lead to fatty infiltration of vital organs, especially the liver. 

Accordingly, fatty liver is very common post-burn and is associated with increased clinical 

morbidities, as well as metabolic alterations. Post-burn pathology examinations 65,66 and 

spectroscopy studies have shown that burned children have a 3 to 5-fold increase in hepatic 

triglycerides,67,68 associated with increased incidence of infection, sepsis, and poor 

outcome 51. Kraft et al. conducted a recent clinical analysis about the association between 

post burn FFA and TG with clinical outcomes in severely burned children. The authors 

found that in severely burned children elevated TGs are associated with worsened organ 

function and clinical outcomes as well as glucose metabolism 42. This data is in agreement 

with various other recent studies that showed a strong relationship between fat and glucose 

metabolism.69 Though this relationship is clear, the mechanism by which lipids induce 

insulin resistance is not entirely defined. The adipose tissue was ignored as a contributor to 

the hypermetabolic response for a long time, but it is increasingly evident that the adipose 

tissue plays a very central role in mediating not only metabolic but also inflammatory 

responses.

2.4. Protein metabolism

Protein/amino acids from skeletal muscle is the major source of fuel in the burned patient, 

which leads to marked wasting of muscle protein and consequently of lean body mass 

(LBM) within days after injury 5,70. The underlying pathophysiology was shown to be a 

substantial increase in muscle protein breakdown along with no or only a minor 

compensatory increase in muscle protein synthesis leading to muscle loss. Depending on the 

degree of muscle protein loss the clinical consequences can reach from infections to death 

and can be quite severe. A 10-15% loss in lean body mass has been shown to be associated 

with significant increases in infection rate and marked delays in wound healing. A further 

increase in loss of LBM leads to profound increased morbidity and with a LBM loss of 

approximately 40% even mortality 71. The resultant muscle weakness was further shown to 

prolong mechanical ventilator requirements, inhibit sufficient cough reflexes and delay 

mobilization in protein-malnourished patients, thus markedly contributing to the incidence 

of mortality in these patients 72. Persistent protein catabolism may also account for delay in 
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growth frequently observed in the pediatric patient population for up to two years post-

burn 23. Additionally, since skeletal muscle has been shown to be responsible for 70-80% of 

whole body insulin-stimulated glucose uptake, decreases in muscle mass may contribute to 

this persistent insulin resistance post-burn 73.

Of note is, that we have recently shown that body composition pre-existing to the burn can 

determine outcomes. Using the platform and database of the Glue Grant we found that mild 

obesity determined by BMI calculation has improved survival and outcomes when compared 

to normal BMI when risk adjusted 74. The worse outcomes have patients that are 

malnourished and cachectic or the morbidly obese ones indicating that the pre-injury 

nutritional status affects outcomes after a burn injury.

3. Treatment of the hypermetabolic response

It is very interesting to note that at the beginning of the 20th century once the metabolic 

response to burn was recognized, clinicians and scientists initiated possible perturbation to 

reduce post-burn hypermetabolism. Shaffer and Coleman suggested the use of high caloric 

feeding for burn patients at the beginning of the 20th century, which was adapted Wilmore et 

al 75, suggesting up to 8000 kcal/day, and Curreri et al, suggesting 25 kcal/kg body weight 

plus an additional 40kcal/%TBSA burn 76. Nowadays our feeding regimens are usually 

based on resting energy expenditure and an additional stress factor, but it is still being 

discussed 77-79. Not only is the caloric amount currently under discussion, but furthermore 

the composition of the nutrition as well as other adjuncts. Already in 1946 Abbott et al 

described the use of a different amount and composition as well use of testosterone on the 

negative nitrogen balance 80.

3.1. Nutrition

Nutrition has and remains a controversially discussed topic but is nonetheless essential to 

alleviate hypermetabolism. But the primary goal of nutritional support is to provide an 

adequate energy supply and the nutrients necessary to maintain organ function and survival. 

Early adequate enteral nutrition alleviates catabolism and improves outcomes 81, however, 

overfeeding, in form of excess calories and/or protein is associated with hyperglycemia, 

carbon dioxide retention, fatty infiltration of organs, and azotemia 70. Therefore, nutrition is 

an essential component to alleviate hypermetabolism, but too much feeding is detrimental 

and it therefore imperative to calculate the caloric requirements as accurately as possible. 

Currently, resting energy requirements of burned patients are commonly estimated using 

equations that incorporate body mass, age, and gender 77-79. However these equations 

although based on patient-specific factors may significantly overestimate caloric 

requirements increasing the risk of overfeeding 82,83. Recently the adapted Toronto equation 

seems to be a better formula to calculate REE, as the calculated results very closely matched 

the MREEs. In general adequate nutrition is an essential component in burn care and should 

be initiated within 12 hours after injury 84.

At the moment no ideal nutrition for burn patients exists and there is no gold standard. 

Others and we recommend the use of a high glucose, high protein/amino acid, low fat 

nutrition with some unsaturated fatty acids 77-79. We believe that the major energy source 
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for burn patients should be carbohydrates and amino acids thereby sparing protein from 

oxidation for energy, allowing the protein to be effectively used by the skin and organs. 

Single amino acid supplementation was and is controversially discussed, especially alanine 

and glutamine. Glutamine is quickly depleted post-burn from serum and muscle 85,86, 

however this depletion mainly occurs intracellular and it is very difficult to deliver 

Glutamine effectively to the cells. Small studies in burn patients indicated that Glutamine 

supplementation decreased incidence of infection, length of stay and mortality 85,86. 

Therefore there is a signal that Glutamine supplemental maybe associated with beneficial 

effects. A current multicenter trial (REDOX) is addressing the answer and the results are 

expected over the next 4-5 years. The literature on Alanine is even sparser and at this time 

there is no evidence to administer or not administer Alanine. Lastly, components that 

recently gained attention are vitamins, micronutrients and trace elements 87. Plasma levels of 

vitamins and trace elements are significantly depressed for prolonged periods after the acute 

burn injury due to increased urinary excretion and significant cutaneous losses. Replacement 

of these micronutrients lessens morbidity in severely burned patients 88-94. Therefore, a 

complete daily multi- vitamin / mineral supplementation should be given.

3.2. Other non-pharmacological strategies

Early excision and closure of the burn wound has been probably the single greatest 

advancement in the treating patients with severe thermal injuries during the last two decades 

leading to substantially reduced resting energy requirements and subsequent improvement of 

mortality rates 5,95,96. It is in our opinion imperative to excise the burn wounds early, within 

72 hours after burn, and cover the excised areas with temporary cover materials or 

autologous skin. This will decrease the burn induced inflammatory and stress responses 

leading to decreased hypermetabolism.

The altered physiologic state resulting from the hypermetabolic response attempts to at least 

partly generate sufficient energy to offset heat losses associated with this inevitable water 

loss. The body attempts to raise skin and core temperatures to 2°C greater than normal. 

Raising the ambient temperature from 25 to 33°C can diminish the magnitude of this 

obligatory response from 2.0 to 1.4 resting energy expenditure in patients exceeding 40% 

TBSA. This simple environmental modulation, meaning raise room temperature is an 

important primary treatment goal that frequently is not realized 97.

A balanced physical therapy and exercise program is a crucial yet easy intervention to 

restore metabolic variables and prevent acute and long-term adverse sequelae. Progressive 

resistance exercises in convalescent burn patients can maintain and improve body mass, 

augment incorporation of amino acids into muscle proteins, and increase muscle strength 

and endurance 82,98. It has been demonstrated that resistance exercising can be safely 

accomplished in burn patients without exercise related hyperpyrexia 82,98.

3.3. Pharmacologic modalities

3.3.1. Recombinant human Growth hormone—Daily intramuscular administration of 

recombinant human growth hormone (rhGH) during acute burn hospitalization has been 

shown to have a plethora of effects on post-burn hypermetabolism and inflammation 99,100. 
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RhGH has profound anabolic effects on muscle and skin95,101,102 by either direct effects via 

the GH receptor or via indirect effects via increased insulin like growth factor-I (IGF-I) 103. 

RhGH therefore seemed to be an ideal treatment option for post-burn hypermetabolism, 

however, in a prospective, multicenter, double-blind, randomized, placebo-controlled trial 

involving 247 patients and 285 critically ill non-burned patients Takala et al. found that high 

doses of rhGH were associated with a substantial increased morbidity and mortality 104 and 

the use of rhGH was therefore restricted. This exact mechanisms of this increased mortality 

is not entirely defined but among other effects rhGH causes hyperglycemia and insulin 

resistance 105,106 and was previously mentioned hyperglycemia by itself causes increased 

morbidity and mortality in burn patients. In follow-up studies in burn patients neither short 

nor long-term administration of rhGH was associated with an increase in mortality in 

severely burned children 27,107. But at this time rhGH is not recommended for burn patients.

3.3.2. Insulin-like growth factor—The effects of IGF-I on burn responses was initiated 

in part because GH increases IGF-I levels and it is not evident whether the beneficial effects 

of rhGH are due to GH or IGF-I. IGF-I administration in animals had anti-inflammatory, 

alleviation of stress responses, and anabolic effects. Because IGF-I when given alone has 

profound side-effects a new complex was developed in which IGF-I was bound in a 1:1 

molar ratio to its binding protein (IGFBP-3). In severely burned patients IGF-I/BP-3 

improved protein metabolism and attenuated catabolism with significantly less effects on 

hypo- (insulin) or hyperglycemia (rhGH) 108. IGF-I/BP-3 attenuates muscle catabolism by 

decreasing muscle protein breakdown, improved gut mucosal integrity, improved immune 

function, attenuate acute phase responses, and decreased inflammatory responses 108-111. 

However we observed that the complex of IGF-I/BP-3 increased neuropathies in severely 

burned patients and until this is further investigated IGF-I/BP-3 is on hold for clinical use at 

this moment. It is interesting to note, that other investigators demonstrated that the use of 

IGF-I alone is not effective in critically ill patients without burns indicating that IGF-I only 

exerts its effects when either IGF-I levels are low or the presence of a hypermetabolic 

induced high IGF-I turnover leading to an IGF-I deficiency. At this time, IGF-I is 

considered an experimental drug at this time. But modification of the IGF-I protein complex 

may result in a novel drug that is both safe and efficacious.

3.3.3. Oxandrolone—An anabolic agent that was introduced three decades ago but still is 

poorly explored is oxandrolone. Oxandrolone is a testosterone analog which possesses only 

5% of its virilizing androgenic effects. In burn patients treatment with oxandralone improves 

muscle protein catabolism via an increase in protein synthesis 112, reduce weight loss and 

increases donor site wound healing 113. In a large prospective, double-blinded, randomized 

single-center study, oxandrolone shortened length of acute hospital stay, maintained LBM 

associated with improved body composition, and improved hepatic protein synthesis 114. In 

a multi-center prospective randomized study Wolf and colleagues demonstrated that 

administration of 10 mg of oxandralone BiD decreased hospital stay and affected morbidity 

and mortality 115. The effects were independent of age 116,117. Oxandrolone seems not only 

to be a short term acute intervention, but it appears that long-term treatment with 

oxandrolone decreased chronically elevated hypermetabolism, and significantly increases 
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lean body mass at 6, 9, and 12 months, as well as bone mineral content at 12 months after 

burn compared to burned control patients 118,119.

A study in surgical patients however raised concerns about the use of oxandrolone in 

critically 120. The authors found Ventilator-dependent surgical patients receiving 

oxandrolone had a more prolonged course of mechanical ventilation and may enhance 

collagen deposition and fibrosis in the later stages of acute respiratory distress syndrome and 

thus prolong recovery. Another critical issue is that oxandrolone may cause acute hepatic 

damage increasing liver enzymes 114. Oxandrolone is a great option to alleviate catabolism 

for burn patients but its side effects need to be considered when it is being administered.

3.3.4. Propranolol—Beta-adrenergic blockade with propranolol represents probably the 

most efficacious anti-catabolic therapy in the treatment of burns. Augmented and increased 

catecholamines are the primary mediators to induce hypermetabolism 14-16. It therefore 

became evident that blocking catecholamine receptor maybe beneficial. As the alpha-

receptor blockade is not very well studied, the focus was so far on beta-adrenergic receptor 

blockade. It was repeatedly shown that acute administration of propranolol, a non-selective 

β1/β2 receptor antagonist, exerts anti-inflammatory and anti-stress effects 121. Propranolol 

reduces skeletal muscle wasting and increases lean body mass post-burn 21,122 and improves 

glucose metabolism by reducing insulin resistance 123. These effects or most likely 

associated with improved organelle function. Propranolol restores impaired mitochondrial 

dysfunction and alleviates burn induced ER stress 123. Propranolol therefore seems to have 

stress reducing properties that lead to an attenuated hypermetabolic response. Propranolol 

not only has beneficial effects acutely, others and we also found that long-term 

administration of propranolol appears to have beneficial effects. Long-term propranolol 

treatment significantly reduced persistently increased heart rates as well as resting energy 

expenditure, decreased accumulation of central mass and central fat, prevented bone loss, 

and improved lean body mass 124. It is important to note that there were very few adverse 

effects induced by propranolol. In appears, that propranolol acutely and long-term 

ameliorates the hyperdynamic, hypermetabolic, hypercatabolic, and osteopenic responses in 

pediatric patients 21,124,125 and therefore appears to be an adjunct with great potential. In 

light of the power of propranolol, a multi-center trial was initiated recently to study the 

effects of propranolol administration on short and long-term outcomes after burn injury.

3.3.5. Insulin—Insulin is a fascinating hormone because of its multi-factorial effects. 

Besides its ability to alter glucose metabolism, insulin has effects on fat and amino acid 

metabolism, is anabolic and enhances cell regeneration 47,126-129. Its main effect is however 

to regulate glucose metabolism and it Ii well documented that burn induces a 

hyperinsulenimic hyperglycemic state that is similar to the pathophysiology of type 2 

diabetes, differing only in its acute onset and severity 130. This acute onset of stress-induced 

hyperglycemia is associated with adverse clinical outcomes after severe burn 44,45. Burned 

patients with poor glucose control have a significantly higher incidence of bacteremia/

fungemia and mortality compared to burn patients who have adequate glucose control, as 

well as that hyperglycemia exaggerates protein degradation, enhancing the catabolic 

response 44,45.
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Insulin therapy has been shown in various studies to be beneficial for burn 

patients 30,55,129,131-136. In 2005, Pham et al 55 showed in a retrospective study that 

intensive insulin therapy lowers infection rates and improves survival. The study following 

was a cohort study from Hemmila et al. The authors found that intensive insulin therapy for 

burn-injured patients reduced the incidence of pneumonia, and decreased ventilator-

associated pneumonia, and urinary tract infections 46. We conducted and published the first 

prospective RCT in 2010; we enrolled almost 240 pediatric burned patients 47. The primary 

outcome was mortality, secondary outcomes included infections, organ function, and 

endocrinology data. Due to an uneven randomization, we could not find a difference in 

mortality between groups (p<0.14), but we found that that tight glycemic control 

significantly decreased infection and sepsis, improved organ function, and alleviated burn-

induced IR compared to control patients. Despite the non-significance for our primary 

outcome, this RCT indicated that insulin treatment has benefits in terms of post-burn 

morbidity for burn patients 47.

Intensive insulin therapy to maintain tight euglycemic control, however, represents a 

difficult clinical effort and has been associated with hypoglycemic episodes. Recent large 

clinical studies focused on insulin-induced hypoglycemia and its consequences: the VISEP 

trial found a 4-fold higher incidence of hypoglycemia; the GLUCONTROL trial found a 

3-4-fold higher incidence; and the NICE SUGAR trial, a similar incidence. Marae et al 

reported recently in NEJM that tight glucose control in pediatric intensive care patients had 

no significant effect on clinical outcomes but led to increased incidence of 

hypoglycemia 137. A recent retrospective study reported the relationship between mild (< 81 

mg/dL) to severe (< 40 mg/dL) hypoglycemic episodes and death 138 and found that patients 

who had hypoglycemic episodes had a mortality of 36.6% compared with 19.7% in those 

who did not experience hypoglycemia. Once the authors adjusted for insulin therapy, 

hypoglycemia was independently associated with increased risk of death, cardiovascular 

death, and death due to infectious disease138. The NICE SUGAR trial group used their 

patients from the prior trial and determined whether hypoglycemia leads to an increased 

morbidity and mortality in ICU patients 139. The authors were not able to prove a causal 

relationship between hypoglycemia and death but their data are strongly indicative that 

hypoglycemia in critically ill patients is associated with an increased risk of mortality.

Maintaining a continuous hyperinsulenimic, euglycemic clamp in burn patients is 

particularly difficult because these patients are being continuously fed large caloric loads 

through enteral feeding tubes in an attempt to maintain euglycemia. As burn patients require 

weekly operations and daily dressing changes, the enteral nutrition occasionally has to be 

stopped, which leads to disruption of gastrointestinal motility and the risk of hypoglycemia. 

Recent data from our center indicated that burn patients having one or more hypoglycemic 

episodes have a 9-fold increased odds ratio for mortality after burn, attesting to the profound 

detrimental outcomes of hypoglycemia 140. We conducted a study to determine the ideal 

glucose target in severely burned children. We found that 130 mg/dl is the best glucose 

target, because of glucose levels below 150-160 mg/dl but avoiding detrimental 

hypoglycemia 141. Therefore, we recommend at the current time to implement glucose 

control to a target of 130 mg/dl using insulin.

Jeschke Page 9

J Burn Care Res. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3.6. Other options—Newer potential mediators for post-burn hypermetabolism include 

a battery of agents, which the majority has not been studied thoroughly as a RCT in burn 

patients. Metformin (Glucophage), a biguanide, has recently been suggested as an 

alternative means to correct hyperglycemia in severely injured patients by inhibiting 

gluconeogenesis and improving peripheral insulin sensitivity 142,143. Despite Metformin’s 

very clearly described role in the diabetic population, its effects in burn patients are 

essentially unknown. To-date there are no large RCT’s in burn patients but two small studies 

reported that metformin decreased endogenous glucose production, accelerated glucose 

clearance in severely burned and lead to increased fractional synthetic rate of muscle protein 

and improvement in net muscle protein balance 142,144. The effects of metformin on clinical 

outcome are unknown but metformin seems to have an advantage over other anti-diabetic 

agents, as metformin does not cause hypoglycemia, thus possibly eliminating this concern 

associated with the use of exogenous insulin 142,145-147. Despite the advantages and 

potential therapeutic uses, treatment with metformin, or other biguanides, has been 

associated with lactic acidosis 148. Metformin is an interesting agent that may or may not 

have a role in regulating post-burn metabolism.

Other ongoing trials in order to decrease post-burn hyperglycemia include the use of 

Glucagon-Like-Peptide (GLP)-1 and PPAR-γ agonists (e.g., pioglitazone, thioglitazones) or 

the combination of various anti-diabetic drugs. PPAR-γ agonists, such as fenofibrate, have 

been shown to improve insulin sensitivity in patients with diabetes. Cree and colleagues 

found in a recent double-blind, prospective, placebo-controlled randomized trial that 

fenofibrate treatment significantly decreased plasma glucose significantly decreased plasma 

glucose concentrations by improving insulin sensitivity and mitochondrial glucose 

oxidation 67. Fenofibrate also led to significantly increased tyrosine phosphorylation of the 

insulin receptor (IR) and IRS-1 in muscle tissue after hyperinsulinemic-euglycemic clamp 

when compared to placebo treated patients, indicating improved insulin receptor 

signaling 67. GLP-1 has been shown to decrease glucose in severely burned patients but it 

was also shown that GLP-1 may not be sufficient to decrease glucose by itself and insulin 

needs to be given as an adjunct.

4. Future

Hypermetabolism is part of the body’s ubiquitous response to burn. Over the last 70 years 

the burn community went from recognizing hypermetabolism, to alleviate hypermetabolism, 

to now asking the question what causes hypermetabolism. It seems very evident that 

hypermetabolism is present and plays a significant role for burn patient outcomes. 

Hypermetabolism is not outdated or unimportant at all, and seems more central for survival 

than ever. In order to successfully treat patients during the acute and long-term setting we 

need to understand the molecular and genetic changes that occur during this complex 

response. Recent studies attempted to determine mechanisms in animals and humans and 

found that burn causes profound alterations in cell organelles as well as cellular metabolic 

and inflammatory responses, which represent beginnings of our understanding about the 

hypermetabolic response. Modern technological examinations and advances will further 

enable new discoveries that may lead to mechanistic insights that will change the way we 

treat post-burn hypermetabolism.
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5. Summary and Conclusion

The profound metabolic alterations post-burn associated with persistent changes in lipid and 

glucose metabolism, as well as impaired insulin sensitivity significantly contribute to 

adverse outcomes of burn patients. Even though advances in therapy strategies with the goal 

to alleviate the hypermetabolic response to burn have significantly improved the clinical 

outcome of these patients over the past years, therapeutic approaches to overcome and 

normalize this persistent hypermetabolism and associated hyperglycemia have remained 

challenging. Early excision and closure of the burn wound has been probably the single 

greatest advancement in the treating patients with severe thermal injuries during the last 

twenty years; leading to substantially reduced resting energy requirements and subsequent 

improvement of mortality rates in this particular patient population. At present, beta-

adrenergic blockade with propranolol represents probably the most efficacious anti-catabolic 

therapy in the treatment of burns. Other pharmacological strategies that have been 

successfully utilized in order to attenuate the hypermetabolic response to burn injury include 

insulin; maintaining blood glucose at levels below 130 mg/dl using intensive insulin therapy 

has been shown to reduce morbidity in burn patients, however, are associated with 

detrimental hypoglycemic events, that have led to the investigation of alternative strategies, 

including the use of metformin and the PPAR-γ agonist fenofibrate. Nevertheless, further 

studies are warranted to determine the safety and the appropriate use of novel agents or even 

some of the above mentioned drugs in burn patients.
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