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Abstract

Background and Aims—Previous studies show that microendoscopic images can be 

interpreted visually to identify the presence of neoplasia in patients with Barrett’s esophagus, but 

this approach is subjective and requires clinical expertise. This study describes an approach for 

quantitative image analysis of microendoscopic images to identify neoplastic lesions in patients 

with Barrett’s esophagus.
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Methods—Images were acquired from 230 sites in 58 patients using a fiber optic high-resolution 

microendoscope (HRME) during a standard endoscopic procedure. Images were analyzed by a 

fully automated image processing algorithm, which automatically selected a region of interest 

(ROI) and calculated quantitative image features. Image features were used to develop an 

algorithm to identify the presence of neoplasia; results were compared to histopathology 

diagnosis.

Results—A sequential classification algorithm that used image features related to glandular and 

cellular morphology resulted in a sensitivity of 84% and a specificity of 85%. Applying the 

algorithm to an independent validation set resulted in a sensitivity of 88% and a specificity of 

85%.

Conclusions—This pilot study demonstrates that automated analysis of microendoscopic 

images can provide an objective, quantitative framework to assist clinicians in evaluating 

esophageal lesions from patients with Barrett’s esophagus.

Introduction

Highly prevalent in the United States, Barrett’s esophagus (BE) is a major risk factor for the 

development of esophageal adenocarcinoma (EAC). The incidence rate of EAC is rapidly 

increasing in the Western World, with an estimated 600% increase in incidence over the last 

40 years [1–4]. Moreover, most cases of EAC are diagnosed at a late stage when treatment is 

challenging, resulting in significant morbidity and a poor 5-year survival rate [5]. Early 

diagnosis of neoplasia in patients with BE is challenging. Even with routine endoscopic 

surveillance, it is difficult to identify areas of dysplasia or neoplasia because they may be 

focal and flat and not visible on standard endoscopy. Endoscopy with random 4-quadrant 

biopsies is the accepted surveillance of BE for identifying the presence of dysplasia. 

However, 4-quadrant biopsies every 2 cm of the Barrett’s mucosa sample only a small 

fraction of the entire segment of BE, which can range from 1 to 20 cm in length, often 

resulting in sampling error. Random biopsy protocols have been shown to miss greater than 

50% of neoplasia [6, 7]. Improving early detection of BE-associated neoplasia is, therefore, 

critical to improve survival and quality of life for patients.

Coupled with standard endoscopy, high-resolution optical imaging technologies have the 

potential to improve diagnostic accuracy for the detection of precancerous and cancerous 

lesions in patients with BE by allowing real-time imaging with resolution that approaches 

that of conventional histopathology. Confocal endomicroscopy can distinguish esophageal 

neoplasia from benign Barrett’s mucosa with high accuracy by providing images of tissue 

architecture and cellular morphology with subcellular resolution throughout the esophageal 

epithelium. In several studies, confocal endomicroscopy combined with high-definition 

white-light endoscopy (HD-WLE) was shown to significantly improve the ability to detect 

BE-associated neoplasia [8, 9]. In a study conducted by Sharma et al. the sensitivity and 

specificity were 68.3% and 87.8%, respectively, when confocal endomicroscopy was used in 

combination with HD-WLE, compared with 34.2% and 92.7%, respectively, for HD-WLE 

alone [9]. Despite the potential for improving detection of esophageal neoplasia, current 

confocal platforms are available mostly in tertiary referral centers due to high-cost 

($150,000–$300,000). We recently developed a low-cost (<$5000) fiber-optic high-
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resolution microendoscope (HRME), capable of imaging tissue with subcellular resolution 

comparable to confocal microendoscopy [10]. Muldoon et al. showed the feasibility of the 

HRME to image various esophageal tissue types, including squamous, BE, and high-grade 

dysplastic tissue obtained by endoscopic mucosal resection [11]. Pierce et al. demonstrated 

the ability of the HRME to differentiate high-grade dysplasia from normal squamous 

mucosa and BE without dysplasia in vivo from a patient with BE [12].

Most studies of high-resolution endoscopic imaging rely on subjective visual interpretation. 

Inter- and intra-observer variability in the assessment of images impairs reliable diagnosis. 

Quantitative analysis offers an objective manner to examine images; the use of computer-

aided algorithms may reduce subjectivity among reviewers and enhance reproducibility, 

resulting in improving diagnostic accuracy. Such algorithms can be coupled with advanced 

optical imaging techniques with the potential to allow real-time in vivo diagnosis with high 

accuracy. The aim of this study was to develop quantitative HRME image analysis criteria 

for delineation of esophageal neoplasia in patients with BE.

Methods

Patients

Patients with known BE or Barrett’s with dysplasia who were scheduled for routine 

surveillance endoscopy within an academic gastroenterology practice in New York City or 

who were referred from outside hospitals were recruited for this study. Study participants 

were at least 18 years old and signed a written informed consent and authorization. Persons 

who have allergy to proflavine, active GI bleeding, and contraindication to endoscopy were 

excluded from the study. The study was reviewed and approved by the Institutional Review 

Boards at Mount Sinai Medical Center and Rice University. The study was registered on 

Clinicaltrials.gov (registration number NCT01384227 and NCT02018367).

An endoscopist performed a standard upper endoscopic examination. Areas of Barrett’s 

mucosa suspicious for neoplasia during endoscopy were further interrogated with the 

HRME. Before HRME imaging, a topical solution (1–2 mL) of 0.01% proflavine in sterile 

PBS was applied to the esophageal surface using a standard endoscopic spray catheter. 

Proflavine, which was used under an Investigational New Drug (IND) application from the 

Food and Drug Administration (IND 102 217), is a fluorescent contrast agent which stains 

cell nuclei [13]. After application of proflavine, the fiber-optic probe of the HRME was 

inserted through the biopsy channel of the endoscope, and the distal tip was placed in gentle 

contact with the mucosal surface. Real-time imaging was performed; at each site, video 

sequences of approximately 3 seconds duration were acquired and then saved to a file. 

HRME images also were obtained from at least 2 of 4 sites selected for random quadrant 

biopsy. At each site imaged with the HRME, the fiber probe was used to make a superficial 

dimple to “mark” the imaged area. Each imaged site was then biopsied and submitted for 

routine histologic diagnosis. The endoscopist completed a standard of care evaluation by 

taking the remaining biopsies of the routine 4-quadrant biopsy procedure and submitting 

these for routine histologic diagnosis. All of the specimens were processed and sectioned in 

a standardized manner. Slides were later reviewed by 2 expert gastrointestinal pathologists 

(A.P., D.R.) blinded to both the endoscopists’ clinical impressions as well as the HRME 
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images. Cohen’s kappa statistic was used to assess the agreement of the pathologists. 

Diagnosis was performed using standard histologic criteria [14]; based on consensus 

histologic diagnosis as the criterion standard, samples were divided into the following 

categories: squamous mucosa, gastric cardia, Barrett’s metaplasia, low-grade dysplasia 

(LGD), high-grade dysplasia (HGD), or adenocarcinoma. Squamous mucosa, gastric cardia, 

Barrett’s metaplasia, and LGD were considered to be non-neoplastic, whereas the remaining 

categories were considered neoplastic.

Imaging System

The HRME system has been previously described in detail [15]. A bandpass-filtered blue 

light emitting diode (LED) (FF01-452/45, Semrock, Rochester, NY; M455L2, Thorlabs, 

Newton, NJ) provides light that passes through a dichroic mirror (485DCLP, Chroma 

Technology Corp, Bellows Falls, Vt) onto a fiber bundle (FIGH-30-850N, Fujikura, Tokyo, 

Japan) with a 1-mm outer diameter that is placed in contact with the tissue surface to be 

imaged. The fiber bundle is composed of 30,000 optical fibers with a 4-μm center-to-center 

spacing and a 720-μm field of view (FOV). Fluorescence emission returns through the fiber 

bundle and is imaged through the dichroic mirror and a 550-nm bandpass filter 

(FF03-550/88, Semrock, Rochester, NY). The emission then passes onto the optical sensor 

of a charge-coupled device (CCD) camera (GRAS-14S5M, Point Grey, Richmond, Canada). 

The system has a lateral and axial resolution of 4.4 and 20 μm, respectively. A laptop 

computer controls the system obtains and displays video at a rate of 15 frames per second.

Flowchart for Visual Classification of HRME Images of the Esophagus

HRME images were reviewed for quality control (QC) purposes by two reviewers (RRK, 

ML). First, one reviewer (ML) identified a single representative image frame from each 

video sequence. Second, the images selected from each video were then reviewed 

independently for QC by the two reviewers who were blinded to clinical impression and 

histologic diagnosis. Images were rejected if at least 50% of the FOV was out of focus or 

showed evidence of motion artifact. Last, images that met QC were then reviewed for the 

selection of a single image with the best image quality per site.

Two reviewers familiar with HRME images of BE from prior studies [12, 16] were asked to 

classify each image acquired in this study as neoplastic or non-neoplastic. They were 

blinded to histopathology diagnosis. To assist in the classification, each image was printed 

on a 3″×5″ card and reviewers independently arranged cards according to classification. 

Reviewers were interviewed after the exercise to allow the investigators to understand the 

rules they used in classification. A flowchart was then created to represent the sequential 

classification steps followed in reaching a visual assessment. The flowchart consisted of 

decision nodes structured in the form of “yes” or “no” questions that led to a specific answer 

choice. Each question was chosen to describe differences in cell type, cell morphology, and 

glandular structures, subsequently leading to each diagnostic category, and then used to 

extract relevant image features for the following classification analysis.

We also evaluated whether this flowchart could aid endoscopists in making correct visual 

reads with HRME images of the esophagus. The digital HRME images were reviewed by 
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three endoscopists with HRME experience. Using the flowchart, reviewers analyzed the 

entire set of images and recorded an impression for each image as one of the five categories. 

Results of visual image interpretation using the flowchart were calculated for each reviewer.

Automated Image Analysis

Figure 1 illustrates the quantitative image analysis procedure used in this study. At each 

image, the whole circular FOV was selected for analysis. Low-pass Gaussian filtering was 

applied to remove the background pattern associated with the structure of the fiber bundle 

used for HRME imaging [17]. Because the images acquired in this study exhibited different 

morphologic structures associated with squamous epithelium, intestinal metaplasia, and 

neoplasia, a variety of image features were explored for possible use in a classification 

algorithm. First, image intensity was calculated as a feature that could potentially be used to 

separate squamous tissue from glandular tissue because the fluorescence intensity of glands 

might be higher than that of squamous cell nuclei. Second, images were segmented to 

identify cell nuclei. Morphologic image processing and thresholding were used to segment 

nuclei in each HRME image. Morphologic processing (opening and smoothing) was used to 

compensate for the nonuniform background. Once a threshold was chosen by the histogram-

based automated thresholding method, nuclear and cytoplasmic regions were separated by 

this threshold. After nuclear segmentation, nuclear-to-cytoplasmic area ratio (N/C ratio), 

mean nuclear size, and mean nearest internuclear distance were calculated for each image. 

Last, granulometry was used to characterize epithelial thickness and lumen size of glands, in 

addition to nuclear size. Granulometry is a morphologic method to calculate the size 

distribution of objects in an image without explicitly segmenting each object [18]. HRME 

images exhibit bright nuclei and epithelial layers along with dark glandular lumens. The size 

distribution of nuclei and epithelial layers was calculated from each HRME image. 

Similarly, the size distribution of glandular lumens was calculated from the complement of 

each HRME image. From granulometry, the most frequent size, kurtosis, and skewness of 

the distribution of the following features were computed for each image: epithelial thickness 

and glandular lumen size.

Automated Image Classification

Features extracted from the HRME images were then used to develop and evaluate an 

automated sequential classification algorithm to classify whether each imaged site contained 

neoplastic tissue (HGD or cancer) or was non-neoplastic (normal squamous mucosa, gastric 

cardia, Barrett’s metaplasia, or LGD). Each step of the classification algorithm was modeled 

after the corresponding decision node of the flowchart developed from visual assessment. 

Two-class linear discriminant analysis was used to develop a classification algorithm at each 

node; extracted image features were added one at a time until classification performance no 

longer improved. Sensitivity and specificity were calculated for the sequential classification 

algorithm using histologic diagnosis as the gold standard. Data obtained at The Mount Sinai 

Medical Center from February 2nd, 2009 to July 28th, 2011 were assigned to a training set to 

develop and optimize the algorithm. The data obtained at The Mount Sinai Medical Center 

from September 27, 2012 to November 21, 2014 were assigned to an independent validation 

set to assess algorithm performance. Image analysis and classification are fully automated 

and require a total of 52 seconds for a single image.
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Results

Subject Information: Patients and Sites

A total of 93 subjects were enrolled in this study; corresponding pathology was available 

from 317 biopsy sites in 61 patients with images. Only sites with corresponding pathology 

results were considered for analysis. The agreement between the pathologists was found to 

be substantial, with a kappa statistic of 0.75. Consensus diagnosis was reached upon 

subsequent review for the study. Two reviewers (RRK, ML) selected representative HRME 

images from 230 sites that passed QC review; 87 sites had no images that passed QC review. 

The remaining data set for subsequent analysis consisted of 230 images from 230 sites in 58 

patients. Of these sites, 195 were diagnosed as non-neoplastic and 35 were diagnosed as 

neoplastic. The data obtained from February 2, 2009 to July 28, 2011 were assigned to a 

training set which consisted of 77 images from 77 sites in 31 patients. The remaining data 

obtained from September 27, 2012 to November 21, 2014 were assigned to an independent 

validation set which consisted of 153 images from 153 sites in 27 patients. Table 1 shows 

the histologic diagnosis of the measured sites available for further analysis.

Visual Interpretation with Flowchart

Figure 2 shows the sequential flowchart that was developed for visual classification. Images 

from the training set were categorized into one of the following categories: normal 

squamous mucosa, gastric cardia, Barrett’s metaplasia, or neoplastic. Observers were first 

asked whether glands were visible in the HRME image. If not, images were classified as 

neoplastic if nuclei were crowded and as normal squamous tissue if nuclei were not 

crowded. If glands were visible, the epithelial layer was thin, and the lumen was large, the 

images were classified as gastric cardia. If not, the observers were asked whether the 

glandular epithelium shows loss of regular architecture. Images with regular glandular 

architecture were classified as Barrett’s metaplasia, whereas those with loss of regular 

architecture were classified as neoplastic.

Using the sequential flowchart, 3 endoscopists performed visual image classification, 

resulting in an average sensitivity of 81% (95% confidence interval (CI), 73%–88%) and an 

average specificity of 76% (95% CI, 50%–100%), with a kappa statistic of 0.39, indicating 

fair agreement.

Classification Performance

Quantitative image features were calculated. Relevant image features were selected as 

described to develop a sequential classification algorithm with optimal performance. Figure 

3A and 3B illustrate the resulting classification tree of the training and validation sets and 

show the performance of each node in the tree. At Node 1 of the classification tree, the most 

frequent epithelial thickness and intensity of the epithelial layer were chosen to classify 

whether each image contained glandular tissue or not. At Node 2, the N/C ratio was chosen 

to classify each image as neoplastic or non-neoplastic squamous tissue. The most frequent 

lumen size and kurtosis of lumen size were chosen at Node 3 to classify each image as 

cardia or not. The skewness of epithelial thickness was chosen at Node 4 to classify each 

image as neoplastic or non-neoplastic glandular tissue. Using the sequential classification 
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algorithm in the training set, 16 of 19 sites were correctly classified as neoplastic, and 49 of 

58 sites were correctly classified as non-neoplastic, resulting in a sensitivity of 84% and a 

specificity of 85%. Applying the algorithm to the validation set resulted in a sensitivity of 

88% and a specificity of 85%; 14 of 16 sites were correctly classified as neoplastic, and 116 

of 137 sites were correctly classified as non-neoplastic.

Discussion

In this study, we demonstrated that HRME imaging could discriminate BE with neoplasia 

from benign esophageal tissue including normal squamous, BE without dysplasia, and BE 

with low-grade dysplasia using quantitative image analysis and sequential classification 

analysis. A classification algorithm was created by sequential analysis of image features 

within the images, which represented differences in tissue architecture and cellular 

morphology between non-neoplastic and neoplastic esophageal tissue. The sequential 

classification algorithm was able to distinguish between neoplastic and neoplastic tissue 

with a sensitivity of 84% and a specificity of 85%. Preservation and Incorporation of 

Valuable Endoscopic Innovations thresholds suggested by the guidelines developed by The 

American Society for Gastrointestinal Endoscopy are a per-patient sensitivity of 90% or 

greater, specificity of 80% or greater, and negative predictive value (NPV) of 98% or greater 

[19]. Due to the small number of patients enrolled in the present study, we performed per-

biopsy analysis. Our classification algorithm resulted in a sensitivity of 88%, specificity of 

85%, and NPV of 98% in an independent validation set. Given the results an estimated NPV 

would be sufficiently high in a low prevalence setting, but results must be confirmed in a 

larger data set to support the use of HRME with quantitative image analysis as an 

appropriate approach for imaging of BE.

In several studies with confocal endomicroscopy, confocal imaging criteria for BE neoplasia 

were established and evaluated. Pohl et al. [20] evaluated the use of confocal 

endomicroscopy in the detection of neoplasia in 296 sites from 38 patients with BE, and 

achieved a sensitivity of 80% and a specificity of 94.1%, with a corresponding negative 

predictive value of 98.9%. Similarly, in a study conducted by Gaddam et al. [21], confocal 

imaging criteria for dysplastic BE were established and evaluated using 50 confocal images, 

resulting in a sensitivity of 76% and a specificity of 85%. Wallace et al. [22] established 

confocal imaging criteria in a training set of 20 BE images and tested in an independent 

validation set of 20 BE images. The study reported a sensitivity of 88% and a specificity of 

96%. Confocal endomicroscopy has shown high accuracy for detection of neoplasia; 

however, inter- and intra-observer variability exist in the interpretation of images obtained 

with this technique [23–25]. Rigorous diagnostic criteria using quantitative image analysis 

can reduce this subjectivity and provide consistent diagnosis with high accuracy. Muldoon et 

al. developed quantitative image analysis criteria for HRME images from either 

endoscopically resected or biopsied tissue to distinguish between neoplastic and non-

neoplastic esophageal mucosa [16]. The quantitative analysis using textural features within 

the images achieved a sensitivity of 87% and a specificity of 85%, whereas human analysis 

for the same images achieved average sensitivity and specificity of 87% and 53%, 

respectively.
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The quantitative classification algorithm described in this paper has the potential to improve 

the accuracy and reproducibility for detection of esophageal neoplasia by providing an 

objective means to classify images with improved consistency. This approach may be of use 

to clinicians, especially in low-resource settings. Also, it is noted that this sequential 

classification algorithm used intuitive images features which corresponded well to ones used 

for visual interpretation of the HRME images, such as epithelial cell morphology and 

glandular architecture of BE.

Several other studies have also proposed quantitative analysis of HRME images for 

diagnosis of neoplasia in patients with oral neoplasia [26, 27], cervical neoplasia [28, 29], 

and esophageal squamous cell carcinoma [30]. Analysis used in these studies, however, used 

nuclear segmentation to distinguish differences in cell morphology of neoplastic tissue. It is 

difficult to extend this approach to analysis of images from patients with neoplasia in the 

glandular epithelium, which exhibits differences in not only nuclear morphology but also 

glandular architecture [12, 31]. The quantitative classification algorithm presented here 

could be applied to any analysis of HRME images of the glandular epithelium where a 

variety of tissue types exist. Furthermore, confocal imaging of the gastrointestinal 

epithelium could be advantaged by this quantitative sequential classification analysis.

A limitation of this study is the small field of view (720 μm in diameter) of the HRME. 

Often, dysplastic changes in BE occur focally; the HRME may not image the small area of 

dysplasia identified in the larger biopsy specimen. The solution to this limitation could be to 

use video mosaicing during imaging, which is an emerging technique to increase the 

acquired field of view [32]. Another limitation is that 30% of sites were excluded due to bad 

image quality by because they were out of focus or had motion artifact. Technical 

improvements in the frame rate of imaging devices may minimize motion artifact during 

future image acquisition. Also, the current algorithm requires a total of 52 seconds to 

process and classify an image, which limits the ability to perform automated analysis at the 

time of endoscopy. Further improvements in execution speed may enable an automated 

frame-by-frame analysis.

The use of the HRME and quantitative diagnostic algorithm presented here could potentially 

impact the application of high-resolution microendoscopy as a useful tool in clinical practice 

by providing a cost-effective and reliable method for assisting clinicians in detecting 

esophageal neoplastic lesions during endoscopy. Further evaluation of this classification 

algorithm in real-time will be necessary in clinical practice.
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Acronyms

HRME high-resolution microendoscope
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BE Barrett’s esophagus

EAC esophageal adenocarcinoma

HD-WLE high-definition white-light endoscopy

IND investigational new drug

LGD low-grade dysplasia

HGD high-grade dysplasia

LED light emitting diode

FOV field of view

CCD charge-coupled device

QC quality control

N/C ratio nuclear-to-cytoplasmic ratio

CI confidence interval
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Figure 1. 
Image analysis procedure: (A) A circular ROI is selected. (B) Fiber pattern is removed using 

Gaussian filtering. (C) The contrast of an image is enhanced using adaptive histogram 

equalization. (D) Nuclei are segmented. The size distribution of glandular features is 

determined by using granulometry. (E) Quantitative image features are calculated.
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Figure 2. 
Flowchart for visual classification. Scale bars represent 100 μm.
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Figure 3. 
Resulting classification trees of (A) the training set and (B) the validation set. A bar graph 

on top indicates the total number of images in the data set. Bar graphs on bottom indicate the 

number of images classified as one of the categories.
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Table 1

Histopathology diagnosis of measured sites.

Histopathology diagnosis Training set Validation set

Non-neoplastic

Squamous mucosa 10 13

Gastric cardia 14 25

Barrett’s metaplasia 25 85

Low-grade dysplasia 9 14

Neoplastic
High-grade dysplasia 9 2

Adenocarcinoma 10 14

Total 77 153
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