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Abstract

Colonization of the human stomach by Helicobacter pylori and its role in causing gastric cancer is 

one of the richest examples of complex relationship among human cells, microbes, and their 

environment. It is also a puzzle of enormous medical importance given the incidence and lethality 

of gastric cancer worldwide. We review recent findings that have changed how we view these 

relationships and affected the direction of gastric cancer research. For example, recent data 

indicate that subtle mismatches between host and microbe genetic traits greatly affect risk of 

gastric cancer. The ability of H pylori and its oncoprotein CagA to reprogram epithelial cells and 

activate properties of stemness demonstrates the sophisticated relationship among H pylori and 

progenitor cells in the gastric mucosa. The observation that cell-associated H pylori can colonize 

the gastric glands and directly affect precursor and stem cells supports these observations. The 

ability to mimic these interactions in human gastric organoid cultures as well as animal models 

will allow investigators to more fully unravel the extent of H pylori control on the renewing 

gastric epithelium. Finally, our realization that external environmental factors, such as dietary 

components and essential micronutrients, as well as the gastrointestinal microbiota, can change the 

balance between H pylori’s activity as a commensal or a pathogen has provided direction to 

studies aimed at defining the full carcinogenic potential of this organism.

Infection with Helicobacter pylori, a bacterial carcinogen, is the greatest risk factor for 

gastric cancer—a disease that claims hundreds of thousands of lives per year1. 
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Approximately 75% of the global gastric cancer burden and 5.5% of malignancies 

worldwide are attributable to H pylori-induced inflammation and injury2, yet the precise 

mechanisms that regulate cancer development in response to this organism are less well 

defined. Investigations focused on understanding gastric carcinogenesis have 

compartmentalized risk factors into categories such as H pylori strain variation, host 

responses and genotypes, and environmental influences. However, recently defined 

interactions among these categories have increased our understanding of disease risk and 

progression in individuals with persistent colonization3. We review exciting new data from 

discovery-based approaches and innovative model systems that recapitulate the gastric 

niche; these have increased our understanding of mechanisms that promote gastric 

carcinogenesis, within the context of host–microbe interactions.

Interactions Between Microbial and Human Genetic Ancestries

H pylori strains are highly genetically diverse and thrive as freely recombinogenic 

populations within their cognate human hosts. One technique that has been used to broadly 

assess and compare the genetic composition of H pylori strains is multi-locus sequence 

typing. Using this technology, Linz et al. found that H pylori strains segregated into several 

major clades that reflected the phylogeographic origins of their corresponding human hosts4. 

These findings, in conjunction with previous data establishing a >100,000 year association 

between H pylori and humans, invoke a model of prolonged adaptation in which H pylori 

should become less virulent over time5–7. However, this organism remains the strongest 

known risk factor for gastric cancer, raising the possibility that disrupted co-evolution 

between H pylori and humans may affect pathogenesis.

In many regions of the world, rates of H pylori infection and gastric cancer are concordant; 

in Asia, high prevalence rates of H pylori mirror the high prevalence of gastric cancer. 

However, this association is not universal. For example, the prevalence of H pylori infection 

in Africa is high, but the frequency of gastric cancer is extremely low8. In Colombia, the 

prevalence of H pylori is also very high throughout the country (>90% of individuals are 

infected), but individuals residing in the mountains have high rates of gastric cancer (150 

cases/100,000), whereas those on the coast have very low rates (6 cases/100,000)9. This 

disparity in the prevalence of gastric cancer, but not H pylori, has provided a unique 

opportunity to assess the effects of interactions between H pylori and human ancestry on 

gastric carcinogenesis.

Kodaman et al. recently used multi-locus sequence type and single nucleotide polymorphism 

analyses to assess genetic variations in H pylori and humans, respectively, in the Colombian 

population. Their goal was to determine how their co-evolutionary relationships affect 

development of intestinal-type gastric cancer6. Coastal Colombians comprised an admixture 

of African, European, and Amerindian genetic variation, whereas the mountain populations 

were of predominantly Amerindian ancestry, with only a minority of European genetic 

content. H pylori isolates collected from the same subjects contained genetic signatures of 

multiple ancestries; an ancestral African cluster predominated on the coast whereas a 

European cluster predominated in the mountains6, affirming previous results from studies of 

Amieva and Peek Page 2

Gastroenterology. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these populations10. Importantly, specific interactions between microbial and human genetic 

ancestries clearly predicted risk for intestinal-type gastric cancer.

All persons who fell within the lowest decile of African host ancestry content but who were 

infected with an H pylori strain containing >19.8% African ancestry (a genetic mismatch), 

had an intestinal-type gastric premalignancy 6. In terms of quantifiable risk, persons with 

high (95th percentile) Amerindian ancestry who are infected with H pylori strains containing 

high (95th percentile) African genetic content are predicted to have severe and extensive 

intestinal metaplasia (Figure 1)6. If the same individuals are instead infected with H pylori 

strains of the lowest levels (5th percentile) of African ancestry (genetic match), they are 

predicted to have only mild gastric atrophy6.

Gastric atrophy has lower risk of progression to cancer than intestinal metaplasia or 

dysplasia11. A recent study from Sweden predicted that 1/256 persons with normal mucosa, 

1/85 persons with non-atrophic gastritis, 1/50 persons with atrophic gastritis, 1/39 persons 

with intestinal metaplasia, and 1/19 persons with dysplasia will develop gastric cancer 

within 20 years12. Similarly, persons in the lowest levels (5th percentile) of Amerindian 

ancestry but high African ancestry who are infected with H pylori strains of high African 

genetic content are predicted to have only gastritis (Figure 1)6. Interactions between host 

and pathogen ancestries therefore completely accounted for differences in the severity of 

gastric injury in these populations; human or H pylori genetic variation alone are not 

sufficient to determine disease susceptibility—a genetic mismatch is also required7. This 

finding implies that the constant genetic adaptation of individual H pylori strains to their 

particular hosts achieved a balance that was disrupted by the acquisition of mismatched 

strains as diverse human populations began to intermix. An important next step for co-

evolutionary studies is to identify differential patterns of concerted selection in paired 

human and pathogenic loci obtained from other global populations, such as Asia, that differ 

in terms of cancer risk, human ancestry, and H pylori genetic variation.

There is also evidence that more granular interactions between host and pathogen genotypes 

can alter gastric cancer risk. From the bacterial side, the cag pathogenicity island (PAI) is a 

well-characterized and intensively studied H pylori virulence determinant; strains that 

contain the cag PAI increase the risk for distal gastric cancer compared to strains that lack 

this locus3. From the side of human genetics, specific polymorphisms in genes encoding 

inflammatory cytokines can greatly increase the risk of gastric cancer among H pylori-

infected persons13. El-Omar et al. reported that the odds ratio estimates for distal gastric 

cancer conferred by polymorphisms in IL1, IL10, or TNF were increased in persons infected 

with cag+ strains compared to the total H pylori-infected population14. Persons infected with 

H pylori isolates that possess another strain-specific genetic locus, type s1/m1 vacA alleles, 

are more likely to develop hypochlorhydria—a phenotype linked to high-expression alleles 

of IL1β and gastric cancer. The combination of high-risk host genotypes and cancer-

associated vacA alleles or cag genotype similarly markedly increases the risk for gastric 

cancer, up to 87-fold over baseline15. Evaluation of human genetic variation in conjunction 

with genetic analyses of infecting H pylori strains can therefore identify colonized persons at 

the highest risk for gastric cancer and who may be optimal candidates for antimicrobial 

intervention.
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Virulence Factors

H pylori has evolved the capacity to colonize and persist in one of the harshest environments 

of the human body, the stomach, which is microbicidal to a large number of species. H 

pylori use their motility, chemotaxis, urease production, and other mechanisms to adapt to 

the acidic conditions of the lumen and colonize a narrow protected niche near the surface of 

epithelial cells. In gastric biopsy specimens and in animal models, most of the bacteria are 

observed to be free-swimming in the mucus gel, and some adhere directly to the surface of 

the epithelium, but none are found more than 25μm away from the surface of the 

stomach16, 17. The necessity to colonize this narrow space brings the bacteria in close 

proximity to the epithelium, where they are subject to recognition and regulation by the 

mucosal immune system. It also allows H pylori to deliver bacterial products to the 

epithelium that modulate its activity and inflammatory responses for its own benefit. The 2 

best-studied bacterial factors associated with increased risk of cancer and peptic ulcer are 

CagA, with its associated T4SS, and particular alleles of the oligomeric toxin VacA. Both of 

these factors have a number of important effects on the epithelium and the mucosal immune 

system and can increase the risk of gastric pathology.

CagA is a large protein that varies in size from 120 to 140 kD; it is produced in the cytosol 

of the bacteria and then threaded through a molecular micro-syinge, the cag type IV 

secretion system (T4SS), across the 2 bacterial membranes and the host cell membrane into 

the host cell cytosol18–21. The cag TFSS also translocates peptidoglycan into host cells22, 23. 

The genes that encode CagA and the T4SS are located in a mobile region of the 

chromosome, the cag pathogenicity island (cag PAI), that is present in more virulent strains 

of H pylori24, 25. Once CagA reaches the host cell cytosol, tyrosines in EPIYA motifs are 

phosphorylated by host c-SRC and c-ABL kinases;26 CagA then functions as a eukaryotic 

signaling hub, creating a scaffold with multiple partners near the host cell membrane 

(reviewed in 27).

CagA has multiple effects on epithelial cells. These broadly include stimulating cell 

proliferation through mitotic signaling pathways such as the PI3 kinase–AKT28, 29, SHP2, 

GRB2 and MEK–ERK,30–32 and β-catenin–WNT pathways. 33–35 CagA also reduces 

epithelial cell apoptosis by interfering with tumor suppressors such as p5336, 37 and 

RUNX338. CagA alters epithelial cell polarity through direct interactions with the polarity 

protein MAP/microtubule affinity-regulating kinase 2 (MARK2 or PAR1b) 39, 40, and 

disrupts assembly and signaling through the cell junctions41, 42. These direct effects of CagA 

on epithelial cells could promote cancer development, because transgenic mice and 

zebrafish engineered to express CagA develop carcinomas even in the absence of 

inflammation35, 43. In addition to its direct effects on epithelial cells, CagA and the T4SS 

activate inflammatory, NF-κB-dependent signaling22, 44–46 that leads to recruitment of 

inflammatory cells, reactive oxygen species-induced damage,47–49 and wound healing 

responses, which are all oncogenic. These findings and the epidemiological data linking 

CagA to gastric cancer risk, have led to the definition of CagA as a bacterial oncoprotein43.

CagA’s effects on epithelial cells are reversible and do not become permanent unless the 

target cells acquire mutations. CagA therefore induces cellular transformation only in 
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special circumstances, by inducing accumulation of multiple genetic variants over time. One 

particularly intriguing emerging concept is that a combination of CagA’s signaling functions 

promotes cell de-differentiation or reprogramming of epithelial cells into more immature, 

stem-like cells that could be more prone to transformation.

Over the years, our understanding of CagA’s function has evolved from its discovery as a 

bacterial antigenic protein epidemiologically associated with disease to a sophisticated 

signaling molecule that controls fundamental aspects of epithelial biology. In recent years, 

several groups have begun to investigate the potential pathogenicity of CagA, along with the 

cellular context in which CagA exerts its effects in vivo. Researchers are asking question 

such as what determines where and when CagA is delivered into the host cell? How much 

CagA is delivered and what cell types are targets? Are there environmental or host factors 

that affect this process? Importantly, how does CagA benefit the bacterium?

The answers to these questions are not completely understood, but several avenues of 

investigation are providing insight. For example, CagA delivery to the host cell requires 

intimate contact between the T4SS and the host-cell membrane. The mechanisms of this 

interaction are being elucidated, but findings have reinforced the concept that bacterial 

adhesion to epithelial cells is a multi-step and complex process.

Several bacterial adhesins have been epidemiologically implicated in disease (reviewed 

in 50) and affect CagA delivery51. The T4SS, per se, has biologic activities independent of 

CagA. Several component of the TFSS needle, such as CagL, CagY and CagI, for example, 

bind β1 integrins to facilitate CagA delivery to epithelial cells52, 53. Since integrins are baso-

lateral protein complexes, inaccessible at the lumenal surface of the epithelium, it not well 

understood where and when CagA is delivered. The bacterial protease HtrA might be able to 

disrupt the epithelial junctions to allow the bacteria to reach integrins54.

Conversely, CagA delivery might not always benefit the microbe, because it also induces 

inflammatory signals such as production of IL8 and recruitment of neutrophils. To 

counteract these responses, however, the interaction between bacteria and the epithelium can 

be modified by genetic molecular switches. For example, expression of CagY, an essential 

component of the T4SS, can be genetically switched on and off through immune selection, 

which alters the inflammatory response to promote long-term persistence55. The expression 

of other adhesins by H pylori, such as BabA and SabA, which bind glycosylated receptors 

on the gastric mucosa, are also controlled by molecular switches that finely regulate 

expression levels in vivo56, 57. CagA polymorphisms vary among H pylori strains isolated 

from different human populations; these may influence outcomes of disease. For example, 

the C-terminal region of CagA contains repeated amino acid motifs (EPIYA) flanked by 

distinct conserved sequences that vary in their host molecular partners and activity31. These 

tyrosine phosphorylation domains are classified as EPIYA- A, B, C, or D, and differ 

between Western strains (containing A, B, and C domains) and East Asian strains 

(containing A, B, and D domains)31. The number and types of repeats have been associated 

with differing risks of carcinogenesis58. Recently, it was reported that the EPIYA-B motif 

binds and activates PI3-kinase and AKT, but many Western strains of H pylori carry a single 

nucleotide polymorphism in this domain that reduces its association with PI3 kinase and also 
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reduces the risk of gastric cancer59. The amount of CagA and its cellular target are also 

likely to have important roles in pathogenesis, but little is known about the precise location 

and timing CagA delivery.

VacA, a vacuolating cytotoxin, is asecreted by H pylori and can assemble into flower-

shaped oligomers when added to various types of host cell membranes60, 61. The oligomers 

function as selective anion channels, so VacA is defined as a pore-forming cytotoxin 

(reviewed in 62). VacA pores have a number of effects, including changing the permeability 

of the plasma membrane63, causing paracellular leakage in epithelial monolayers64, 

affecting endosomal maturation65, and injuring mitochondria66. All H pylori strains contain 

vacA genes, but there are multiple alleles that confer various degrees of activities in different 

assays (reviewed in 67). The more pathogenic alleles of the toxin cause formation of large, 

late-endosomal vacuoles inside cells in vitro68. VacA also induces apoptosis in many cells, 

by interfering with mitochondrial function69. In addition to its cytotoxic features, VacA acts 

as a powerful immunosuppressant. It inhibits T-cell development70 and promotes 

differentiation of dendritic cells into a tolerogenic phenotype that induces development of 

regulatory T cells71.

The simultaneous presence of CagA and VacA in a cell can have important consequences, 

depending on cellular context and interactions between CagA and VacA72, 73. One striking 

recent example is that VacA reduces the half-life of CagA by stimulating its degradation 

through the autophagy pathway74. Interestingly, in CD44+ cells that have some 

characteristics of cancer stem cells, the half-life of CagA was increased and not affected by 

the presence of VacA. So, the pathogenic effects of CagA can be exacerbated in the context 

of immature precursor cells, transformed cells, or stem cells74.

New Systems for Studying H pylori-induced Carcinogenesis

Most studies of carcinogenic mechanisms of H pylori have been performed in cancer cell 

lines, short-term ex vivo primary cell cultures, and infected rodents. However, cell lines that 

have undergone many passages often contain mutations, and are derived from cancer 

specimens. In vivo models are expensive and can be time consuming to generate. Isolated ex 

vivo gastric gland systems are limited by their relatively short life span (e.g., 1 week) and a 

propensity to become heavily contaminated by fibroblasts75.

Gastroids effectively bridge in vitro and in vivo models by providing a replentishable culture 

system that can be readily generated from non-transformed gastric epithelium. Gastroids are 

3-dimensional structures with central lumens that contain the major cell types found within 

gastric glands, and epithelial cells within gastroids are polarized76. Further, gastroids can 

survive for up to 9 months76.

However, there are limitations with this system. Although gastroids can be used to study 

direct interactions between H pylori and gastric epithelium (reflecting early responses to 

infection), inflammatory signals from infiltrating immune cells and paracrine signals from 

stromal or mesenchymal cells also influence pathogenesis—these are not represented in 

current systems. However, the potential to include inflammatory and stromal cells, such as 

myofibroblasts, in conjunction with microfluidic technology, in more complex organoid 
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systems, should permit more detailed investigations into the role of chronic inflammation 

and injury on H pylori-induced gastric carcinogenesis in the future. Several groups have 

now developed and used gastroid models of H pylori infection originating from mouse and 

human tissues (Figure 2).

Wroblewski et al. used mouse gastroids to investigate the effects of H pylori strain-specific 

virulence factors on aberrant epithelial responses with carcinogenic potential42. This group 

demonstrated that gastroids can develop into a self-organizing, differentiating structure via 

expansion into single-layered epithelial spheroid structures that consist of mucus cells, 

parietal cells, G-cells, mucus neck cells, D-cells, and enterochromaffin-like (ECL) cells. 

Gastroids could be successfully infected with H pylori via microinjection (Figure 2), which 

resulted in mislocalization of occludin at the tight junction, a response identical to what had 

previously been demonstrated in H pylori-infected gastric epithelial cells in vitro and in 

vivo77. Infection of gastroids with H pylori cagA+ wild-type or isogenic mutant strains 

revealed that increased epithelial cell proliferation and β-catenin nuclear translocation was 

dependent upon CagA. The use of gastroids also identified a previously unreported 

mechanism through which H pylori may heighten the risk of carcinogenesis: increased snail 

expression, which was confirmed in human gastric tissue specimens42. Overall, these 

findings indicated that H pylori is effectively recognized by gastroids and that this system 

may be used as both a model for discovery as well as validation. Additionally, this system 

provides an important opportunity to study gastroids harvested from genetically deficient or 

transgenic mice in the future.

Other groups have extended these findings by developing human gastroids as a model of 

pathogenic interactions between H pylori and epithelial cells. McCracken et al. reported de 

novo generation of human gastroids derived from antral tissue via directed differentiation of 

stem cells78. Human gastroids could be successfully infected with H pylori, which resulted 

in an increase in CagA-dependent epithelial cell proliferation78, confirming previous 

findings from mouse gastroids. Importantly, intracellular CagA rapidly associated with the 

c-Met receptor, leading to its phosphorylation78, 79. Another group has recently shown that 

3-dimensional human gastroids can be converted into a 2-dimensional planar polarized 

model system80. This innovation has added considerable versatility to gastroids as a model 

for studying interactions between mutant strains of H pylori as well as genetically 

manipulated ex vivo primary cell systems (Figure 2). Bartfeld et al. have generated gastroids 

from human gastric corpus tissue and shown that gastroids can be directed towards 

progenitor-like gastric gland lineages or well-differentiated gastric pit lineages via 

manipulation of WNT and nicotinamide concentrations81. Importantly, interactions between 

H pylori and epithelial cells increased when undifferentiated gastric gland organoids were 

used instead of differentiated gastric pit organoids81. These findings indicate that the ability 

of H pylori to interact selectively with stem or progenitor cells may lower the threshold for 

gastric carcinogenesis.

Effects on Gastric Stem Cells

Several potential models have been developed to investigate how H pylori infection and its 

inflammatory response contribute to the dysregulated growth of long-lived cells and 
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eventually cancer. These include infection-induced de-differentiation of terminally 

differentiated epithelial cells into long lived, replicating cells; recruitment of mesenchymal 

stem cells to gastric glands during tissue damage and repair and subsequent transformation 

of these exogenous stem cells; and/or direct bacterial effects or inflammatory changes in the 

resident gastric progenitor and stem cells in the stomach.

Since H pylori inhabit the superficial mucus layer overlying the stomach lumen, and adhere 

to mucus pit cells, it is possible that these terminally differentiated cells are the targets of 

oncogenic transformation. This would involve de-differentiation into replicating cells and 

acquisition of oncogenic mutations and cancer stem cell traits. Many studies have provided 

evidence that CagA has reprogramming potential that could convert somatic epithelial cells 

into a pluripotent, stem cell-like state, and facilitate the acquisition of mutations. For 

example, cells expressing CagA or infected with CagA-positive bacteria lose key features of 

epithelial differentiation and undergo phenotypic and molecular changes associated with 

stemness and epithelial–mesenchymal transition42, 82–86. Also, CagA can aberrantly activate 

WNT signaling to β-catenin and induce WNT target genes such as the transcription factor 

CDX133–35, 87. CDX1 can, in turn, induce the expression of several stemness-associated 

factors, such as SALL4 and KLF5, potentially making cells more pluripotent88. Consistent 

with this observation, H pylori infection has been shown to induce ectopic expression of 

KLF5 in mouse gastric glands89.

However, surface mucus cells are short lived, with a typical life span of only 1–2 days, so 

their interactions with H pylori or inflammatory factors are limited. H pylori causes 

significant inflammatory responses throughout the depths of the glands as well as 

hyperplasia during periods of chronic active gastritis, indicated by increased cell division 

and apoptosis of normal glands90. This expands the range of proliferating cells into the 

upper regions of the glands90, potentially bringing immature cells into contact with the 

bacteria.

It is well established that premalignant metaplastic lesions are preceded by multifocal-

atrophic gastritis with loss of parietal cells and other differentiated cells91. Chronic atrophic 

gastritis is also accompanied by expansion of immature proliferating cells,92 which has been 

reproduced in a mouse model of atrophic gastritis in which parietal cells were genetically 

deleted93. When H pylori was introduced into this mouse model of atrophic gastritis, a direct 

interaction between the bacteria and gastric progenitor cells was observed, and some of the 

bacteria were internalized by progenitor cells94, 95. These studies were among the first to 

show that adult gastric stem cells could serve as a protective niche where a subpopulation of 

H pylori could reside to avoid clearance96.

More recently, direct interactions between H pylori and gastric precursor cells have been 

observed, in stomachs mice devoid of atrophy but infected with H pylori, and in samples 

from asymptomatic, infected patients with superficial gastritis. By reconstructing the gastric 

glands in 3-dimensions using confocal microscopy, these reports describe a subpopulation of 

H pylori that resides deep in the gastric glands. The gland-associated bacteria are distinct 

from the free-swimming bacteria in the surface mucus in that they grow as microcolonies 
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that adhere directly to epithelial junctions of gastric precursor cells in the isthmus and in the 

base of the glands (Figure 3)97, 98.

In addition, localized inflammatory responses in susceptible niches might also be associated 

with disease progression. For example, neutrophil infiltration specifically localized to the pit 

proliferative zone has been described as a characteristic pathologic finding of H pylori-

induced gastritis99. It is therefore plausible that direct interactions between H pylori and 

proliferative progenitor cells or longer-lived stem cells occurs throughout the life of the 

individual; these interactions may result in direct as well as indirect insults that lead to 

malignant transformation.

The precise markers that identify progenitor cells and stem cells in the stomach are under 

intense investigation and not fully understood. The gastric antrum shows similarities with 

the intestine in that the base of the glands contain stem cells marked by expression of the 

Lgr5 gene and controlled through WNT signaling76. LGR5 is a G-protein coupled receptor 

that regulates WNT signaling and marks stem cells in several tissues, including the small 

intestine, colon, hair follicles, and mammary glands (reviewed in 100). LGR5+ cells in the 

base of the antral glands give rise to rapidly dividing progenitor cells in the isthmus of the 

glands, which, in turn, proliferate and differentiate into all other cell types. Other potential 

stem cell markers in the antrum include rare cells marked by activity of the villin 

promoter101 and cells that express the transcription factor SOX2102. The identity of the stem 

cells in the corpus is less well understood. Similar to the antrum, the proliferative zone of 

the isthmus region below the gastric pits contains most of the mitotically active progenitor 

cells, and potential stem cells have been described in this region103–105.

Loss of parietal cells, which occurs in patients with atrophic gastritis, leads to expansion of a 

progenitor population in the isthmus marked by CD44 106. A subpopulation of mature chief 

cells can act as progenitor cells and give rise to metaplastic lesions in the corpus107. A 

recent study identified a subset of fully differentiated chief cells present at the base of the 

corpus glands that express the marker tumor necrosis factor receptor superfamily, member 

19 (TNFRSF19 or TROY) and function as more slowly growing stem cells in the corpus108. 

Finally, there is evidence that LRIG1 identifies a distinct population of quiescent stem cells 

in the stomach, similar to findings in the colon; H pylori infection can lead to expansion of 

this subpopulation in vivo89, 109.

Stem cells and progenitor cells are important candidate tumor-initiating cells in gastric 

cancer, and are the source of gastric cancer stem cells. Mouse experiments in which the 

tumor suppressor gene APC was deleted from LGR5+ stem cells revealed rapidly developing 

adenomas76. Likewise, inactivation of the tumor suppressor gene, Klf4, in villin-positive 

gastric progenitor cells increased gastric tumor initiation and progression in mice110.

Several studies have correlated stem cell numbers or damage and progression of gastric 

carcinoma. For instance, an immunohistopathology study examined the numbers of LGR5+ 

stem cells in human gastric mucosa as well as associated DNA damage. It found that 

patients with gastric cancer and H pylori infection had an expanded pool of LGR5+ stem 

cells in the antrum, and higher amounts of DNA oxidative damage in these stem cells111. 

Amieva and Peek Page 9

Gastroenterology. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Several other studies have confirmed that levels of LGR5 mRNA and protein are increased 

in stomach tissues from patients with gastric cancer112, 113. Higher levels of LGR5 may be a 

marker of poor prognosis for patients with gastric cancer114.

In addition to transforming potential observed in normal gastric stem cells, in animal models 

(chimeras with inflammatory conditions), chronic damage can lead to recruitment of bone 

marrow-derived mesenchymal stem cells that incorporate and transdifferentiate into 

epithelial cells of the gastric mucosa. In mice with Helicobacter felis infection, chronic 

inflammation, gastric metaplasia, dysplasia, and high-grade intraepithelial neoplasia, 

inflamed glands were found to contain bone marrow-derived cells. Subsequent neoplastic 

lesions were derived from bone marrow precursors rather than resident gastric stem cells115. 

Similar findings were recently obtained in a mouse model of spasmolytic polypeptide-

expressing metaplasia caused by H pylori, in which approximately 25% of metaplastic 

glands contained cells derived from bone marrow precursors116.

Regardless of whether or not H pylori infection progresses to neoplasia in humans, the 

bacteria appear to have evolved specialized mechanisms to interact and affect the stem and 

progenitor cells in the gastric glands. To avoid the gastric lumen, H pylori are able to reach 

the surface of the stomach, adhere to the epithelial cells, and even grow as attached micro-

colonies directly on the epithelial junctions deep in the gastric glands97, 117. This gland-

associated H pylori population is more prominent in the isthmus in areas rich in mitotic 

progenitor cells (Figure 3), and occurs early during colonization of mice and in 

asymptomatic individuals prior to the development of atrophic gastritis97, 98. In mice, 

LGR5+ stem cells can be labeled by expression of green fluorescent protein,76 and the 

effects of H pylori infection on these cells can be monitored (Figure 4). It was recently 

reported that, within 2 weeks of infection, and before the onset of chronic gastritis, H pylori 

infection of the gastric glands activated the antral LGR5+ stem cells, leading to a doubling 

of the number of stem cells per gland by 2 months of infection98. The activation and 

expansion of stem cells spatially correlates with glands occupied by gland-associated H 

pylori (Figure 4), and mutant H pylori unable to colonize the glands do not activate the stem 

cells, suggesting that direct interaction between the bacteria and these cells promotes this 

hyper-proliferation.

Overall, it appears that H pylori has evolved the capacity to colonize a specialized niche 

near precursor and stem cells, and that it manipulates these cells for its benefit94, 98. 

Microscopic localization and interactions between the microbe and the progenitor 

epithelium could therefore be an important variable in the pathogenesis of gastric cancer. A 

micro-niche could exist within gastric glandular units that is particularly vulnerable to the 

oncogenic effects of H pylori.

H pylori and Iron

Two important clinical observations highlight the relationship between iron and H pylori 

pathogenesis. One is increasing evidence that H pylori infection is associated with iron 

deficiency anemia (IDA), both in sporadic cases of individuals that present with iron-

deficiency anemia refractory to iron supplementation118 as well as at a population level 
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related to iron deficiency anemia of childhood119. The contribution of H pylori to IDA in 

childhood likely has a significant health impact in resource-poor settings, since IDA affects 

30% of the human population and is associated with cognitive and developmental 

impairment120. A second observation is that markers of iron-deficiency are associated with 

increased risk of gastric cancer121. H pylori could therefore contribute to low iron states, 

which can worsen outcomes of H pylori infection. Research into the molecular mechanisms 

of these processes has made some connections between H pylori virulence factors and 

environmental risk factors for cancer.

Iron is an essential molecule for most living organisms, but it is a scarce resource for 

microbes colonizing the human body, because iron restriction is an ancient innate immune 

defense against infection. Interstitial and intracellular sources of iron are separated from the 

bacteria that colonize mucosal surfaces by the epithelial barrier and, within the body, iron is 

sequestered by high-affinity chelators such as transferrin, hemoglobin, and ferritin122. In the 

inflamed gastric mucosa, neutrophils secrete lactoferrin, which tightly binds free iron at the 

mucosal surface to starve bacteria123. In addition, inflammation induces upregulation of 

hepcidin, a central regulator of iron metabolism, which activates an iron reduction response 

to pathogens, by blocking iron uptake in the small intestine122.

So how does H pylori acquire iron in the stomach in the presence of such obstacles, and how 

is this related to the association between iron deficiency and carcinogenesis? H pylori has 

evolved multiple mechanisms of iron acquisition and each has effects that could contribute 

to gastric pathology. For example, H pylori express several membrane transporters that take 

up soluble forms of iron such as ferrous ions and ferric citrate molecules124. These forms of 

iron are usually insoluble, but the low pH in the stomach lumen solubilizes dietary ferric 

iron, and maintains it in solution as a complex with ascorbic acid125. Thus, the acidic gastric 

juice contains a source of soluble iron that can be directly used by H pylori. However, H 

pylori may have ready access this iron source, since it cannot survive in the low pH of the 

stomach lumen, instead remaining close to the epithelial surface where it produces urease to 

buffer its immediate surroundings. Long-term infection with H pylori often leads to a 

reduction in gastric acid and ascorbic acid secretion which, in turn, reduce the availability of 

soluble iron for H pylori and contribute to IDA126. In addition, lactoferrin further reduces 

the availability of free iron near the mucosa and may also contribute to IDA123.

The upregulation of hepicidin in response to H pylori infection might also reduce iron 

availability in the host and lead to IDA. For example, H pylori-associated iron-deficiency 

does not respond to oral iron therapy without eradication of the bacteria with antibiotics. 

Treatment of H pylori-infected children who have IDA with oral iron therapy did not reduce 

serum levels of hepcidin, indicating that eradication of the infection is required to restore 

normal iron homeostasis127. Hepcidin is expressed locally in parietal cells of the gastric 

glands, and gastric hepcidin increases during H pylori infection but normalizes following 

eradication128.

Since H pylori infection has effects on acid, hepcidin, and lactoferrin that lead to reduction 

of free iron, it is not surprising that H pylori also evolved alternative mechanisms of iron 

acquisition from the host. Unlike many other commensal and pathogenic bacteria that live at 
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mucosal surfaces, H pylori does not produce siderophores—small molecules that can usurp 

iron from the host and other microbes. However, in vitro studies with defined media have 

shown that H pylori can actually utilize lactoferrin as a source of iron, but only if it is fully 

saturated with iron. The same studies showed that H pylori can also extract iron from 

saturated transferrin and from hemoglobin129. H pylori therefore uses on only dietary iron, 

but also internal host iron reserves that are sequestered across the epithelial barrier.

How does H pylori reach iron sources that are present inside the host across from the 

epithelium? One possibility is that inflammation leads to epithelial erosions or disruption of 

barrier function exposing H pylori to hemoglobin in red blood cells or serum transferrin. A 

recent study used elegant in vivo microscopy to show that H pylori use chemotaxis to swim 

to and concentrate at mucosal sites of injury, such as ulcers130. Other studies have identified 

a novel mechanism of iron acquisition across the intact epithelium that links iron uptake to 

the virulence factors CagA, the cag T4SS, and VacA. As noted, a subpopulation of H pylori 

adhere to and grow directly on the epithelial surface forming cell-associated microcolonies 

deep in the gastric glands97. In an in vitro model of infection using polarized epithelia, cell-

associated H pylori grew on cell surfaces even under conditions of low iron availability that 

do not support the growth of free-swimming bacteria. This indicates that cell-associated H 

pylori can extract nutrients from or across polarized epithelial cells117.

CagA and VacA were each shown to be important for the ability to colonize the epithelial 

surface in conditions of low iron availability131. CagA, injected into the epithelium, 

stimulated the uptake of iron-saturated transferrin into the infected epithelial cells. It also 

perturbed cell polarity to alter the recycling of transferrin inducing its transcytosis across the 

epithelium (Figure 5). VacA also contributed to mislocalization of transferrin and its 

receptor by altering endosomal trafficking. These cellular effects raised the hypothesis that 

H pylori virulence factors have a role for bacterial survival in vivo in conditions of low iron 

availability. This hypothesis was tested in iron-deficient Mongolian gerbils fed iron-

restricted diets before infection with H pylori. In an iron-deficient host, wild-type CagA+ H 

pylori were able to thrive, whereas the CagA-isogenic mutants were defective in gastric 

colonization131.

These observations were quickly followed by the surprising finding that iron-deficient 

Mongolian gerbils infected with CagA+ H pylori develop more severe inflammation, and 

accelerated pre-malignant and malignant lesions compared to infected animals fed an iron-

replete diet121. Furthermore, H pylori isolated from iron-deficient animals or maintained in 

vitro in iron-deficient conditions have an increased ability to inject CagA and synthesize 

higher numbers of T4SS needles upon contact with host cells121, 132. The localization of H 

pylori in the mucosa was also different, with greater concentrations of bacteria migrating 

into the glands in iron-deficient animals. In human populations at risk of gastric cancer, H 

pylori strains isolated from patients with the lowest ferritin levels elicited the highest 

inflammatory responses when co-cultured with gastric epithelial cells. In summary, recent 

insights into the role of virulence factors in iron acquisition have provided a conceptual link 

between H pylori virulence, risk of gastric cancer, and iron-deficiency (Figure 5), and 

suggest that environmental factors such as micronutrient availability can significantly alter 

the outcome of the infection.
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Salt and H pylori Virulence

A link between high salt consumption and increased gastric cancer risk has been reported 

from numerous human studies133, 134. Gene expression in several bacterial pathogens, 

including H pylori, can be regulated by salt concentrations135. Of interest, transcriptional 

and proteomic studies have revealed increased expression of cagA in response to high-salt 

conditions136, 137, but only in certain H pylori strains. Based on these findings, Loh et al. 

sequenced the cagA promoter in a population of clinical H pylori isolates and identified a 

unique DNA motif (TAATGA) that was present in either 1 or 2 copies. Salt-induced up-

regulation of CagA was detected more commonly in strains containing 2 copies of the 

TAATGA motif than in strains containing 1 copy,138 and mutagenesis experiments 

confirmed that 2 copies of the TAATGA motif were required for salt-induced CagA 

expression.

The effects of salt on H pylori infection and gastric cancer have also been extended in vivo 

using mouse and gerbil models. One study in mice demonstrated that a high-salt diet 

increased levels of H pylori colonization in the stomach and resulted in increased parietal 

cell loss139. A study using gerbils reported that H pylori infection and a high-salt diet could 

independently induce atrophic gastritis and intestinal metaplasia140, whereas another 

investigation revealed that H pylori infection and high-salt diets have a synergistic effect on 

gastric carcinogenesis—but only when gerbils also received a chemical carcinogen141.

Gaddy et al. recently investigated the effects of a high-salt diet on microbe-induced cancer 

in gerbils using a unique carcinogenic strain of H pylori, 7.13142. Gastric adenocarcinoma 

was detected in a significantly higher proportion of infected animals on a high-salt diet than 

infected animals on a regular diet142. Infected animals fed a high-salt diet also developed 

more severe gastric inflammation142; hypochlorhydria, parietal cell loss, and high levels of 

gastric mucosal IL1B were detected in the animals that developed cancer. Animals infected 

with a cagA negative isogenic mutant strain and fed a high-salt diet had low levels of gastric 

inflammation and did not develop hypochlorhydria or gastric cancer. Similarly, a high-salt 

diet did not cause the development of gastric cancer in uninfected animals142. These results 

confirm that a high-salt diet potentiates the carcinogenic effects of cagA+ H pylori strains.

Based on these data, there are several potential mechanisms by which dietary elements may 

augment the development of gastric cancer. The direct effects of dietary constituents on 

gastric epithelium may damage the mucosa, thereby allowing an increased entry of 

carcinogens into gastric tissue. Certain dietary components interact with intestinal immune 

receptors and thereby regulate intestinal immunity143, and similar responses might occur in 

the stomach. Diet might influence the composition of the gastric microbiota, or promote 

expansion of H pylori variants with pathogenic properties. Dietary factors could also 

influence epigenetic alterations—folic acid supplementation protected against the loss of 

global DNA methylation and reduced the development of gastric inflammation and 

dysplasia in Helicobacter-infected mice144. The findings summarized here, however, raise 

another possibility—namely that dietary constituents directly influence the pathogenic 

potential of H pylori by augmenting the expression and function of cancer-associated 

microbial virulence determinants.

Amieva and Peek Page 13

Gastroenterology. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The Gastrointestinal Microbiota

The role of H pylori in gastric carcinogenesis is undisputed. However, other microbes in the 

gastric or intestinal niche could also affect transformation of gastric epithelial cells (for 

review, see 145). Studies demonstrating the effectiveness of anti-H pylori regimens on 

gastric cancer incidence raised this possibility by showing that the cancer-lowering effects 

of antibiotics may be mediated their effects on non-H pylori residents of the gastrointestinal 

tract146. Germ-free hypergastrinemic INS-GAS mice that are mono-colonized with H pylori 

develop pre-malignant lesions at a slower pace than H pylori-infected specific pathogen-free 

INS-GAS mice147. This accelerated phenotype was associated with an increase in the 

proportion of Firmicutes and a decrease in the numbers of Bacteroidetes within the 

stomach147. Rapid progression to gastric neoplasia could be restored in germ-free INS-GAS 

mice that were pre-infected with a restricted Altered Schaedler’s Flora before challenge with 

H pylori148.

In addition to the role of the microbiota within the stomach, extra-gastric constituents of the 

microbiome have been shown to affect gastric carcinogenesis in mouse models. Infection of 

C57BL/6 mice with H bilis or H muridarum before challenge with H pylori significantly 

reduced the severity of H pylori-induced gastric inflammation149, 150. In contrast, pre-

colonization with a different entero-hepatic Helicobacter species, H hepaticus, increased H 

pylori-induced gastric injury150. These exciting results have provided an important 

framework for studies that can focus on defining fundamental relationships between H 

pylori and residents of the gastrointestinal microbiome as a means to understand gastric 

carcinogenesis.

Conclusions

Globally, gastric cancer leads to a high number of cancer-related deaths; increasing our 

understanding the risk factors for this disease is of utmost importance in identifying the 

individuals at greatest risk for developing gastric cancer. Infection with H pylori is 

extremely common and in some areas of the world, prevalence rates approach 100%, 

however, 97%–99% of colonized persons will never develop gastric cancer. The risk of 

developing gastric cancer is dependent on an opus of interacting components including H 

pylori strain-specific virulence factors, the host genotype, environmental factors such as diet 

as well as alternations in stem cell populations and the microbiome. Molecular interactions 

among these factors affect the outcome of long-term colonization of H pylori. It is therefore 

critical that results from mechanistic studies be used to identify persons who are at high risk 

of developing gastric cancer.
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Figure 1. 
Interactions between host and H pylori genetic ancestries and risk for developing intestinal-

type gastric adenocarcinoma in Colombia. Persons with high (95th percentile) Amerindian 

ancestry who are infected with H pylori strains containing high (95th percentile) African 

genetic content, are predicted to have severe and extensive intestinal metaplasia6. If the 

same individuals are instead infected with H pylori strains harboring the lowest levels (5th 

percentile) of African ancestry (genetic match), the histologic prediction is mild gastric 

atrophy6, a lesion with much less risk of progression to cancer11. Similarly, persons 

harboring the lowest levels (5th percentile) of Amerindian ancestry but high African 

ancestry who are infected with H pylori strains of high African genetic content are predicted 

to have gastritis only6.
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Figure 2. 
Translational applications for using mouse or human gastroids to study H pylori-induced 

gastric carcinogenesis.
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Figure 3. 
H pylori colonizes the gland base and interacts with gastric progenitor cells. H pylori are 

labeled green, actin red, and nuclei blue. Cells undergoing mitosis (labeled with ph-Histone) 

are marked by arrows.
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Figure 4. 
H pylori micro-colony interacting with LGR5 stem cells at the base of an antral gland. H 

pylori are labeled red, Lgr5+ cells green, and nuclei blue.
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Figure 5. 
Gastric epithelial cellular responses with carcinogenic potential that are induced by iron 

deficiency within the context of H pylori infection. The H pylori cag T4SS injects CagA 

into epithelial cells and this results in signaling that induces loss of cell polarity and effects 

on the epithelial junctions, pro-inflammatory phenotypes, and growth factor-like signaling 

that results in cellular proliferation. This also induces increased iron uptake and transcytosis. 

In the right panel, low levels of iron in the host induce increased adhesion and colonization 

of the glandular epithelium, increased number of T4SS pili, and an augmentation in levels of 

CagA injection and pathogenic signaling.
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