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Abstract

Many studies rely on estimation of Weber ratios (W) in order to quantify the acuity an individual’s 

approximate number system. This paper discusses several problems encountered in estimating W 
using the standard methods, most notably the low power and inefficiency of standard methods. 

Through simulation, this work shows that W can best be estimated in a Bayesian framework that 

uses an inverse (1/W) prior. This beneficially balances a bias/variance trade-off and, when used 

with MAP estimation is extremely simple to implement, requiring only a single term added to the 

function used to fit W. Use of this scheme substantially improves statistical power in examining 

correlates of W.

A common task in the study of numerical cognition is estimating the acuity of the 

approximate number system (Dehaene, 1997). This system is active in representing and 

comparing numerical magnitudes that are too large to exactly count. A typical kind of 

stimulus is shown in Figure 1, where participants might be asked to determine if there are 

more red or black dots, but the total area, min, and max sizes of these colored dots are equal, 

leading participants to use number rather than these other correlated dimensions to complete 

the comparison.1 In this domain, human performance follows Weber’s law, a more general 

psychophysical finding that the just noticeable difference between stimuli scales with their 

magnitude. Higher intensity stimuli—here, higher numbers—appear to be represented with 

lower absolute fidelity, but constant fidelity relative to their magnitude. Since Fechner 

(1860), some have characterized the psychological scaling of numbers as logarithmic, with 

the effective psychological distance between representations of numbers n and m scaling as 

n/m (Dehaene, 1997 ; Masin, Zudini, & Antonelli, 2009 ; Nieder, Freedman, & Miller, 

2002 ; Nieder & Miller, 2004 ; Nieder & Merten, 2007 ; Nieder & Dehaene, 2009 ; Portugal 

& Svaiter, 2011 ; Sun, Wang, Goyal, & Varshney, 2012). Alternatively, others have 

characterized numerical representations with a close but distinct alternative: a linear scale 

with linearly increasing error (standard deviation) on the representations, known as scale 
variability (Gibbon, 1977 ; Meck & Church, 1983 ; Whalen, Gallistel, & Gelman, 1999 ; 

Gallistel & Gelman, 1992). This latter formalization motivates characterizing an individual’s 

behavior by fitting a single parameter W that determines how the standard deviation of a 

representation scales with its magnitude: each numerosity n is represented with a standard 

deviation of W · n. In, tasks where subjects must compare two magnitudes, n1 and n2, this 

psychophysics can be formalized (e.g. Halberda, Mazzocco, & Feigenson, 2008) by fitting 

W to their observed accuracy via,

1Unfortunately, it is impossible to simultaneously control all other variables correlated with number. In this example, for instance, the 
mean dot size also varies between the stimuli.
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(1)

In this equation, Φ is the cumulative normal distribution function. The value in (1) gives the 

probability that a sample from a normal distribution centered at n1 with standard deviation 

W · n1 will be larger than a sample from a distribution centered at n2 with standard deviation 

W · n2 (for n1 > n2). The values n1 and n2 are fixed by the experimental design; the observed 

probability of answering accurately is measured behaviorally; and W is treated as a free 

variable that characterizes the acuity of the psychophysical system. As W → 0, the standard 

deviation of each representation goes to 0, and so accuracy will increase. As W gets large, 

the denominator in (1) goes to zero and accuracy approaches the chance rate of 50%.

The precise value of W for an individual is often treated as a core measurement of the 

approximate system’s acuity (though see Gilmore, Attridge, & Inglis, 2011), and is 

compellingly related to other domains: for instance, it correlates with exact symbolic math 

performance (Halberda et al., 2008 ; Mussolin, Nys, & Leybaert, 2012 ; Bonny & Lourenco, 

2013), its value changes over development and age (Halberda & Feigenson, 2008 ; Halberda, 

Ly, Wilmer, Naiman, & Germine, 2012), and is shared among human groups (Pica, Lemer, 

Izard, & Dehaene, 2004 ; Dehaene, Izard, Spelke, & Pica, 2008 ; Frank, Fedorenko, & 

Gibson, 2008).

Despite the importance of W as a psychophysical quantity, little work has examined the 

most efficient practices for estimating it from behavioral data. The present paper evaluates 

several different techniques for estimating W in order to determine which are most efficient. 

Since the problem of determining W is at its core a statistical inference problem—one of 

determining a psychophysical variable that is not directly observable—our approach is 

framed in terms of Bayesian inference. This work draws on Bayesian tools and ways of 

thinking that have increasingly become popular in psychology (Kruschke, 2010b, 2010a, 

2010c). In the context of the approximate number system, the first work to infer Weber 

ratios through Bayesian data analysis was (Lee & Sarnecka, 2010, 2011), who used 

Bayesian techniques to show that children’s performance in number tasks is better described 

by discrete and exact knower-level theories (e.g. Carey, 2009) than ones based in the 

approximate number system.

With a Bayesian framing, we are interested in P(W | D), the probability that any value for W 
is the true one, given some observed behavioral data D. By Bayes rule, this can be found via 

P(W | D) ∝ P(D | W) · P(W), where P(D | W) is the likelihood of the data given a particular 

W and P(W) is a prior expectation about what W are likely. In fact, P(D | W) is already well-

established in the literature: the likelihood W assigns to the data is given by (1), which 

quantifies the probability that a subject would answer correctly on each given trial for any 

choice of W.2 The key additional part to the Bayesian setting is therefore the prior P(W), 

2So the probability of an entire set of data D can be found by taking multiplying together P(correct | W, n1, n2) for each item the 
subject answered correctly, and 1 – P(correct | W, n1, n2) for each item they answered incorrectly. For numerical precision, these 
multiplications should be done in log space (i.e. on log probabilities as additions).
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which is classically a quantification of our expectations about W before any data is 

observed.

The choice of P(W) presents a clear challenge. There are many qualitatively different priors 

that one might choose and, in this case, no clear theoretical reasons for preferring one over 

another. These types of priors include those that are invariant to re-parameterization (e.g. 

Jeffreys’ priors), priors that allow the data to have the strongest influence on the posterior 

(reference priors), and those that could capture any knowledge we have about likely values 

of W (informative priors). Or, we might choose P(W) ∝ 1, corresponding to “flat” 

expectations about the value of W, in which case the prior does not affect our inferences. 

This naturally raises the question of which prior is best ; can correctly calibrating our 

expectations about W lead to better inferences, and thus better quality in studies that depend 

on W?

To be clear, the question of which prior is “best” is a little unusual from the viewpoint of 

Bayesian inference, since the prior is usually assumed from the get-go. However, there are 

criteria through which priors can be judged. Some recent work in psychology has argued 

through simulation that priors should not be tuned to real-world frequencies, since 

inferences with more entropic priors tend to yield more accurate posterior distributions 

(Feldman, 2013). In applied work on Bayesian estimators, the performance of different 

priors is often compared through simulations that quantify, for instance, the error between a 

simulated value and its estimated posterior value under each prior (e.g. Tibshirani, 1996 ; 

Park & Casella, 2008 ; Hans, 2011 ; Bhattacharya, Pati, Pillai, & Dunson, 2012 ; Armagan, 

Dunson, & Lee, 2013 ; Pati, Bhattacharya, Pillai, Dunson, et al., 2014).3 Here, we follow the 

same basic approach by simulating behavioral data and comparing priors to see which 

creates an inferential setup that best recovers the true generating value of W, under various 

assumptions about the best properties for an estimate to have. The primary result is that W 
can be better estimated than (1) by incorporating a prior—in particular, a 1/W prior—and 

using a simple MAP (maximum a posteriori) estimate of the posterior mode. As such, this 

domain provides one place for Bayesian ideas to find simple, immediate, nearly-effortless, 

quantifiable improvements in scientific practice.

The basic problem with W

The essential challenge in estimating W in the psychophysics of number is that W plays 

roughly the same role as a standard deviation. As such, the range of possible W is bounded 

(W ≥ 0) and typical human adults are near the “low” end of this scale, considerably less than 

1. A result of this is that the reliability of an estimate of W will depend on its value, a 

situation that violates the assumptions of essentially all standard statistical analyses (e.g. t-

tests, ANOVA, regression, correlation, factor analysis, etc.)

Figure 2(a) illustrates the problem. The x-axis here shows a true value of W, which was used 

to generate simulate data consisting of 50 responses in a 2-up-1-down staircased design with 

n2 always set to n1 + 1. This simulation is used for all results in the paper, however the 

3Much of this work examines Lp regularization schemes in order to determine which priors provide the best sparsity pressures in high-
dimensional inference.
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results presented are robust to other designs and situations, including exhaustive testing of 

numerosities (see Appendix ) and situations where additional noise factors decrease 

accuracy at random (see Appendix ). In Figure 2(a), a posterior mean estimated W is shown 

by black dots using a uniform prior4, and the 95% highest posterior density region 

(specifying the region where the estimation puts 95% of its confidence mass) is shown by 

the black error bars. This range show the set of values we should consider to be reasonably 

likely for each subject, over and above the posterior point estimate in black. For comparison, 

a ML fit—using just (1)—is shown in red.

This figure illustrates several key features of estimating W. First, the error in the estimate 

depends on the value of W: higher Ws not only have greater likely ranges, but also greater 

scatter of the mean (circle) about the line y = x. This increasing variance is seen in both the 

mean (black) and ML fits, and Figure 2(b) suggests even the relative error may increase as 

W grows.

Because Bayesian inference represents optimal probabilistic inference relative to its 

assumptions, we may take the error bars here as normative, reflecting the certainty we 

should have about the value of W given the data. For instance, in this figure the error bars 

almost all overlap with the line y = x, which would be correct estimation of W. From this 

viewpoint, the increasing error bars show that we should have more uncertainty about W 
when it is large than when it is small. The data is simply less informative about high values 

of W when it is in this range. This is true in spite of the fact that the same number of data 

points are gathered for each simulated subject.

The reason for this increasing error of estimation is very simple: equation (1) becomes very 

“flat” for high W due to the fact that 1/W approacher zero for high values. This is shown in 

Figure 2(c), giving the value of (1) for various W on a simple data set consisting of a ten 

correct answers on (n1, n2) = (6, 7) and ten incorrect answers on (7, 8). When W is high, it 

predicts correct answers at the chance 50% rate and it matters very little which high value of 

W is chosen (e.g. W = 1.0 vs W = 2.0), as the line largely flattens out for high W. As such, 

choosing W to optimize (1) is in the best case error-prone, and the worst case meaningless 

for these high values. Figure 2(d) shows what happens when a prior P(W) ∝ 1/W is 

introduced. Now, we see a clear maximum because although the likelihood is flat, the prior 

is decreasing, so the posterior (shown) has a clear mode. The “optimal” (maximum) value of 

the line in Figure 2(d) might provide a good estimate of the true W.

The next two sections address two concerns that Figure 2(a) should raise. First, one might 

wonder what type of inferential setup would best allow us to estimate W. In this figure, the 

maximum likelihood estimation certainly looks better than posterior mean estimation. 

Section considers other types of estimation, different priors on W, and different measures of 

the effectiveness of an estimate. Section examines the impact that improved estimation has 

on finding correlates W, as well as the consequences of the fact that our ability to estimate 

W changes with the magnitude of W itself.

4Uniform on [0, 3].
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Efficient estimation of W

In general, use of the full Bayesian posterior on W provides a full characterization of our 

beliefs, and should be used for optimal inferences about the relationship between W and 

other variables. However, most common statistical tools do not handle posterior distributions 

on variables but rather only handle single measurements (e.g. a point estimate of W). Here, 

we will assume that we summarize the posterior in W with a single point estimate since this 

is likely the way the variable will be used in the literature. For each choice of prior, we 

consider several different quantitative measures of how “good” an estimate a point estimate 

is, using several different point-estimate summaries of the posterior (e.g. the mean, median, 

and mode). The analysis compares each to the standard ML fitting used by (1).

Figure 3 shows estimation of W for several priors and point estimate summaries of the 

posterior, across four different measures of an estimate’s quality. Each subplot shows the 

true W on the x-axis. The first column shows on the mean estimated Ŵ for each W, across 

1000 simulated subjects, using the 2-up-1-down setup used in Figure 2(a). Recovery of the 

true W here would correspond to all points lying on the line y = x. The second column 

shows the relative estimation, Ŵ/W at each value of W, providing a measure of relative bias. 

The third column shows the variance in the estimate of Ŵ, V ar[ Ŵ | W]. Lower values 

correspond to more efficient estimators of W, meaning that they more often have Ŵ close to 

W. The fourth column shows the difference between the estimate and the true value 

according to an information-theoretic loss function. Assuming that a person’s representation 

of a number n is Normal(n, Wn), we may capture the effective quality of an estimate Ŵ for 

the underlying psychological theory by looking at the “distance” between the true 

distribution Normal(n, Wn) and the estimated distribution Normal(n, Ŵ n). One natural 

quantification of the distance between distributions is the KL-divergence (see Cover & 

Thomas, 2006). The fourth column shows the KL-divergence5 (higher is worse), quantifying 

in an information-theoretic sense, how much an estimated Ŵ matters in terms of the 

psychological model thought to underlie Weber ratios.

The rows in this figure correspond to four different sets of priors P(W). The first row is a 

uniform prior P(W) ∝ 1 on the interval W ∈ [0, 3]. Because this prior doesn’t affect the 

value of the posterior in this range, it has that P(W | D) = P(D | W) meaning that estimation 

is essentially the same as in ML fitting of (1). However, unlike (1), the Bayesian setup still 

allows computation of the variability in the estimated W, as well as posterior means (light 

blue), and medians (dark blue), in addition to MAPs (green). For comparison, each plot also 

shows the maximum likelihood fit (1) in red6.

The second row shows an inverse prior P(W) ∝ 1/W. This prior would be the Jeffreys’ prior 

for estimation of a normal standard deviation7, to which W is closely related, although the 

5The KL-divergence goes to infinity as Ŵ goes to zero, and some Ŵ are estimated very close to zero. To robustly handle this issue for 
very low W, means with 5% tails trimmed are plotted in the figure.
6These are generally identical to MAP, except that the uniform prior restricts to [0, 3], leading to decreased variance for high W.
7In that setting, the Jeffreys’ prior is the unique prior that is invariant to transformations (see Jaynes, 2003), meaning it does not 
depend on how we have formalized (parameterized) (1). In this sense, it “builds in” very little.
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inverse prior is not a Jeffreys’ prior for the current likelihood, which appears to be fairly 

complex. The inverse prior strongly prefers low W.

The third row shows another standard prior, an inverse-Gamma prior. This prior is often a 

convenient one for use in Bayesian estimation of standard deviations because it is conjugate 
to the normal, meaning that the posterior is of the same form as the prior, allowing efficient 

inference strategies and analytical computation. The shown inverse-Gamma uses a shape 

parameter α = 1 and scale β = 1, yielding a peak in the prior at 0.5. The shape of the inverse-

Gamma used here corresponds to some strong expectations that W is neither too small nor 

too large, but approximately in the right range. Because of this, this prior pulls smaller W 
higher, and higher W lower, as shown by the second column plot with estimates above the 

line for low W and below the line for high W.

The fourth row shows an exponential prior P(W) = λe−λW for λ = 0.1, a value chosen by 

informal experimentation. This corresponds to substantial expectations that W is small, with 

pull downwards instead of upwards for small W.

From Figure 3 we are able to read off the most efficient scheme for estimating W under a 

range of possible considerations. For instance, we may seek a prior that gives rise to a 

posterior with the lowest mean or median KL-Divergence, meaning the row for which the 

light and dark blue lines respectively are lowest in the fourth column. Or, we may commit to 

a uniform prior (first row) and ask whether posterior Means, Medians, or MAPs provide the 

best summary of the posterior under each of these measures (likely, MAP). Much more 

globally, however, we can look across this figure and try to determine which estimation 

scheme—which prior (column) and posterior summary (line type)—together provide the 

best overall estimate. In general, we should seek a scheme that (i) falls along the line (y = x) 

in the first column (low bias), (ii) falls along the line y = 1 in the second (low relative error), 

(iii) has the minimum value for a range of W in the third column (low variance), and (iv) has 

low values for KL-divergence (the errors in Ŵ “matter least” in terms of the psychological 

theory). With these criteria, the mean and median estimates of W are not very efficient for 

any prior: they are high variance, particularly compared to the ML and MAP fits, as well as 

substantially biased. Intuitively, this comes from the shape of the posterior distribution on 

W: the skew (Figure 2(d)) means that the mean of the posterior may be substantially 

different than the true value. The ML fits tend to have high relative variance for W > 0.5. In 

general, MAP estimation with the inverse 1/W prior (green line, second row) is a clear 

winner, with very little bias (the prior does not affect the posterior “too much”) and low 

variance across all these tested W. This also performs as well as ML fits in terms of KL-

Divergence. A close overall second place is the weak exponential prior. Both demonstrate a 

beneficial bias-variance trade-off: by introducing a small amount of bias in the estimates we 

can substantially decrease the variance of the estimated W. Appendices and show that 

similar improvements in estimation are found in non-staircased designs and where there are 

additional sources of unmodeled noise.

The success of the MAP estimator over the mean may have more general consequences for 

Bayesian data analysis in situations like these where the likelihood is relatively flat (e.g 

Figure 2(c)). Here, the flatness of the likelihood leads to still a broad posterior (Figure 2(d)). 
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This is what leads posterior mean estimates of W to be much less useful than posterior MAP 

estimates.

It is important to point out that the present analysis has assumed each subject’s W is 

estimated independently from any others. This assumption is a simplification that accords 

with standard ML fitting. Even better estimation could likely be developed using a 

hierarchical model in which the group distribution of W is estimated for a number of 

subjects, and those subject estimates are informed by the group distribution. This approach, 

for instance, leads to much more powerful and sensible results in the domain of mixed-effect 

regression (Gelman & Hill, 2007). It is beyond the scope of the current paper to develop 

such a model, but hierarchical approaches will likely prove beneficial in many domains, 

particularly where distinct group mean Ws must be compared.

Power and heteroskedasticity in estimating W

We next show that improved estimates of W lead to improved power in looking for 

correlates of W, a fact that may have consequences for studies that examine factors that do 

and—especially—do not correlate with approximate number acuity. A closely related issue 

to statistical power is the impact of the inherent variability in our estimation of W. In 

different situations, ignoring the property that higher W are estimated higher noise can lead 

to either reduced power (type-I errors) or anticonservativity (type-II errors) (see Hayes & 

Cai, 2007).

Figure 4(a) shows one simple simulation assessing correlates of W. In each simulated 

experiment, a predictor x has been sampled that has a coefficient of determination R2 with 

the true value of W (not Ŵ). Then, 30 subjects were sampled at random from the Weber 

value range used in the previous simulation study (50 responses each, staircased n/(n +1) 

design). These figures show how commonly (y-axis) statistically significant effects of x on 

Ŵ were found at p < 0.05 as a function of R2 (x-axis), over the course of 5000 simulated 

experiments. Statistically powerful tests (lower type-I error rate) will increase faster in 

Figure 4(a) as R2 increases; statistically anti-conservative tests will have a value greater than 

0.05 when R2 = 0 (the null hypothesis).

Several different analysis techniques are shown. First, the red solid line shows the maximum 

likelihood estimator analyzed with a simple linear regression Ŵ ~ x. The light blue and 

green lines show the mean and MAP estimators for W respectively, also analyzed with a 

simple linear regression. The dark blue line corresponds to a weighted regression where the 

points have been weighted by their reliability.8 The dotted lines correspond to use of 

heteroskedasticity-consistent estimators, via the sandwich package in R (Zeileis, 2004). This 

technique, developed in the econometric literature, allows computation of standard errors 

and p-values in a way that is robust to violations of homoskedasticity.

8There is some subtlety in correctly determining these weights. For this plot, the posterior variance was determined through MCMC 
sampling. The optimal weighting in a regression (i.e. the weighting which leads to the unbiased, minimal variance estimator) weights 
points proportional to the inverse variance at each point. However, in R, this variance must include the residual variance, not solely the 
measurement error on W. Therefore, the regression was run in two stages: first, a model was run using the inverse variance as weights 
in R. Then, the residual error was computed and added back into the estimation error on W.
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This figure makes it clear first that the ML estimator typically used is underpowered relative 

to mean or MAP estimators. This is most apparent for R2s above 0.3 or so, for which the 

MAP estimators have a much higher probability of detecting an effect than the ML 

estimators. This has important consequences for null results, or comparisons between groups 

where one shows a significant difference in W and another does not, particularly when such 

comparison are (incorrectly) not analyzed as interactions (for discussion of this error, see 

Nieuwenhuis, Forstmann, & Wagenmakers, 2011). The increased power for non-ML 

estimations seen in Figure 4(a) indicates that such estimators should be strongly preferred by 

researchers and reviewers.

The value for R2 = 0 (left end of the plot) corresponds to the null hypothesis of no 

relationship. For clarity, the value of the lines have been replotted in Figure 4(b). Bars above 

the line 0.05 would reflect statistical anticonservativity, where the method has a greater than 

5% chance of finding an effect when the null (R2 = 0) is true. This figure shows that these 

methods essentially do not increase the type-II error rates with a possible very minor 

anticonservativity for robust regressions with the MAP estimate.9 Use of the weighted 

regression is particularly conservative. In general, the heteroskedasticity found in estimating 

W is not likely to cause problems when un-modeled in this simple correlational analysis.

Conclusion

This paper has examined estimation of W in the context of a number of common 

considerations. Simulations here have shown that MAP estimation with a 1/W prior allows 

efficient estimation across a range of W (Figure 3) and considering a variety of important 

features of good estimation. This scheme introduces a small bias on W that helps to correct 

the large uncertainty about W that occurs for higher values. Its use leads to statistical tests 

that are more powerful than the standard maximum likelihood fits given by (1). When used 

in simple correlational analyses, many of the standard analysis techniques do not introduce 

increased type-II error rates, despite the heteroskedasticity inherent in estimating W.

Instructions for estimation

The recommended 1/W prior is extremely easy to use, including only a –logW term in 

addition to the log likelihood that is typically fit. If subjects were shown pairs of numbers 

(ai, bi) and ri is a binary variable indicating whether they responded correctly (ri = 1) or 

incorrectly (ri = 0), we can fit W to maximize

(2)

In R (R Core Team, 2013), we can estimate W via

    optimize (function (W) {

9Error bars are not shown in this graph since they are very small as a result of the number of simulated studies run.
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        pcorrect <– pnorm(abs(ai–bi)/(W * sqrt (ai **2+bi**2)))

        –log (W) + sum(log (ifelse (ri, pcorrect, 1–pcorrect)))

    }, maximum=TRUE, interval=c (0, 3))

where ai, bi and ri are vectors of ai, bi, and ri respectively. Note that the use of MAP 

estimation here (rather than ML) amounts to simply inclusion of the –log(W) term in each. 

The ease and clear advantages of this method should lead to its adoption in research on the 

approximate number system and related psychophysical domains.
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Figure 1. 
An example stimulus for an approximate number task, where participants must rapidly 

decide if there are more black or red dots. The areas, min sizes, and max sizes between the 

dots are controlled, and the dots are intermixed in order to discourage strategies based on 

area.
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Figure 2. 
(a) Values of W estimated from single simulated subjects at various true values of W, 

running 50 steps of a 2-up-1-down staircase design. Points show posterior mean (black) and 

maximum likelihood (red) fits to the data. Error bars show 95% highest posterior density 

intervals. The dotted lines represent y = x, corresponding to perfect estimation of W. (b) 

Same data on a proportional scale to show the relative error of estimate at each W. (c) The 

likelihood given by (1) on a simple data set, showing that high values of W all make the data 

approximately equally likely. There is little hope of accurately estimating high W. (d) This 

can be corrected by introduction of a weak prior exhibiting a clear maximum (here, a MAP 

value). Whether this maximum is inferentially useful is the topic of the next section.
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Figure 3. 
Estimation properties of W for various priors (rows). The first column shows the mean 

estimate Ŵ as a function of the true value W. Unbiased estimation follows the line y = x 
shown in black. The second column shows the relative error of this estimate Ŵ/W. Unbiased 

estimation follows the line y = 1, shown in black. The third column shows the variance of 

the estimated Ŵ as a function of the true W. The fourth column shows a loss function based 

on the KL-divergence in the underlying psychophysical model.
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Figure 4. 
(a) A power analysis showing the probability of finding a correlation between a predictor 

with the given correlation (x-axis) to the true Weber ratio W. (b) The false positive (type II) 

error rate for various estimators and analyses when considering correlations.
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Figure 5. 
An analog to Figure 3 using a design in which all subjects see all items, from (1, 2) up to 

(12, 13) (i.e. not a staircased design). This shows similar patterns of performance for the 

various estimation schemes, indicating that the superiority of an estimator with an inverse 

prior is not an artifact of the staircased design.
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Figure 6. 
An analog to Figure 3 in the situation where subjects make mistakes 10% of the time, 

independent of the displayed stimuli (for instance, through inattention). This demonstrates 

that the efficient performance of the inverse prior holds even when the fit model is somewhat 

misspecified in that it neglects the extra noise. Note that in this case, the estimators tend to 

over-estimate W since the additional noise leads them to conclude that W is worse (higher) 

than it truly is.
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